2002年全国卷高考理科数学精彩试题及问题详解
- 格式:doc
- 大小:575.28 KB
- 文档页数:8
2002年普通高等学校招生全国统一考试数学试卷(理科)及答案本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I卷1至2页.第II卷3至9页.共150分.考试时间120分钟.第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.本试卷分第I卷(选择题)和第II 卷(非选择题)两部分.第I卷1至2页.第II 卷3至9页.共150分.考试时间120分钟.(1)圆1)1(22=+-y x 的圆心到直线y x =的距离是 (A)21 (B )23 (C)1 (D )3 (2)复数3)2321(i +的值是 (A )i - (B)i (C )1- (D )1(3)不等式0|)|1)(1(>-+x x 的解集是(A)}10|{<≤x x (B )0|{<x x 且}1-≠x(C )}11|{<<-x x (D )1|{<x x 且}1-≠x(4)在)2,0(π内,使x x cos sin >成立的x 的取值范围是(A ))45,()2,4(ππππ (B)),4(ππ (C))45,4(ππ (D))23,45(),4(ππππ (5)设集合},412|{Z k k x x M ∈+==,},214|{Z k k x x N ∈+==,则 (A)N M = (B )N M ⊂ (C )N M ⊃ (D)∅=N M(6)点)0,1(P 到曲线⎩⎨⎧==ty t x 22(其中参数R t ∈)上的点的最短距离为(A)0 (B)1 (C )2 (D)2(7)一个圆锥和一个半球有公共底面,如果圆锥的体积恰好与半球的体积相等,那么这个圆锥轴截面顶角的余弦值是(A )43 (B )54 (C)53 (D)53- (8)正六棱柱111111F E D C B A ABCDEF -的底面边长为1,侧棱长为2,则这个棱柱侧面对角线D E 1与1BC 所成的角是(A)︒90 (B )︒60 (C)︒45 (D)︒30(9)函数c bx x y ++=2(),0[+∞∈)是单调函数的充要条件是(A )0≥b (B)0≤b (C)0>b (D)0<b(10)函数111--=x y 的图象是(11)从正方体的6个面中选取3个面,其中有2个面不相邻的选法共有(A )8种 (B)12种 (C)16种 (D )20种(12)据2002年3月5日九届人大五次会议《政府工作报告》:“2001年国内生产总值达到95933亿元,比上年增长7.3%”,如果“十•五”期间(2001年-2005年)每年的国内生产总值都按此年增长率增长,那么到“十•五”末我国国内年生产总值约为(A)115000亿元 (B)120000亿元 (C )127000亿元 (D)135000亿元第II 卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线.(13)函数x a y =在]1,0[上的最大值与最小值这和为3,则a =(14)椭圆5522=+ky x 的一个焦点是)2,0(,那么=k(15)72)2)(1(-+x x 展开式中3x 的系数是。
绝密★启用前 试卷类型:A2023年普通高等学校招生统一考试(全国甲卷)理科数学本试卷共4页,22小题,满分150分,考试用时120分钟。
注意事项:1. 答卷前,考生务必用黑色字迹笔或签字笔将自己的姓名、考生号、考场号和座位号等填写在答题卡上。
用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上。
将条形码横贴在答题卡右上角“条形码粘贴处”。
2. 作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3. 非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4. 考生必须保持答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
一、选择题:本大题共12小题,每小题5分,共计60分.每小题给出的四个选项中,只有一项选项是正确的.请把正确的选项填涂在答题卡相应的位置上.1.设集合},|{Z k k x x A ∈1+3==,},|{Z k k x x B ∈2+3==,U 为整数集,则=)(B A C U ( )A .},|{Z k k x x ∈3=B .},|{Z k k x x ∈-13= C .},|{Z k k x x ∈-23= D .【解析】 集合A 由被3除余1的整数组成,集合B 由被3除余2的整数组成,B A 由不能被3整除的整数组成,所以,)(B A C U 由被3整除的整数组成,故选A .2.若复数R a ai i a ∈2=1+,))((-,则=a ( )A .1-B .0C .1D .2【解析】 由2=1+))((ai i a - ,得2=1+22i a a )(-, 所以,2=2a ,0=12a -,即1=a ,故选C .3.执行下面的程序框图,输出的=B ( ) A .21 B .34 C .55 D .89【解析】 1=n 时判断为“是”,执行3个处理框后,2=5=3=n B A ,,;2=n 时判断为“是”, 执行3个处理框后,3=13=8=n B A ,,;3=n 时判断为“是”, 执行3个处理框后,4=34=21=n B A ,,;4=n 时判断为“否”,输出34,故选B .4.向量1==b a ,2=c 且0=++c b a ,则>=<c b c a --,cos ( ) A .51- B .52-C .52D .54【解析】 显然2=1==222c b a ,,,由0=++c b a ,得0=++)(c b a a ,即0=1++ac ab , 同理0=1++bc ab ,0=2++bc ac ,所以,1==0=-bc ac ab , .于是4=+=2c cb ac ab c b c a ----))((,5==2)(c a c a --,5==2)(c b c b --,所以54=554=>=<cb c a c b c a c b c a ------))((,cos .故选D .开始结束输出B5.已知正项等比数列}{n a 中,1=1a ,n S 为}{n a 前n 项和,45=35-S S ,则=4S ( )A .7B .9C .15D .30 【解析】 因为数列}{n a 为正项等比数列,设公比为)(0>q q ,则 4325++++1=q q q q S ,23++1=q q S ,由题意,得4++15=++++12432-)(q q q q q q ,解之,2=q .所以15=8+4+2+1=4S .故选C .6.有50人报名足球俱乐部,60人报名乒乓球俱乐部,70人报名足球或乒乓球俱乐部,若已知某人报了足球俱乐部,则其报乒乓球俱乐部的概率为( )A .80.B .40.C .20.D .10. 【解析】 因为同时报名乒乓球和足球两个俱乐部的人数为40=7060+50-,记“某人报了足球俱乐部”为事件A ,“某人报了乒乓俱乐部”为事件B , 则75=7050=)(A p ,76=7060=)(B p ,74=7040=)(AB p , 所以,在已知某人报了足球俱乐部的条件下,其报乒乓球俱乐部的概率为80=54=7474==.)()()|(A p AB p A B p ,故选A .7.“1=+22βαsin sin ” 是 “0=+βαcos sin ”的( ) A. 充分条件但不是必要条件 B.必要条件但不是充分条件 C. 充要条件 D. 既不是充分条件也不是必要条件 【解析】 由1=+22βαsin sin ⇔βα22=cos sin ,命题“若βα22=cos sin ,则0=+βαcos sin ”为假, 命题“若0=+βαcos sin ,则βα22=cos sin ”为真,所以,“1=+22βαsin sin ” 是 “0=+βαcos sin ”的必要但不是充分条件,故选B .8.已知双曲线),(0>0>1=2222b a b y a x -的离心率为5,其中一条渐近线与圆1=3+222)()(--y x 相交于B A ,两点,则=AB ( )A .51-B .52-C .52D .54 【解析】 由双曲线),(0>0>1=2222b a by a x -的离心率为5,可得双曲线的渐近线方程为0=±2y x .又圆心),(32到0=+2y x 的距离为57,大于圆的半径1,所以0=+2y x 与圆不相交,圆心),(32到0=2y x -的距离为51=d ,小于圆的半径1=r , 所以0=2y x -与圆相交,所以 554=54=5112=2=222)(--d r AB .故选D .9.有5名志愿者参加社区服务,共服务星期六、星期天两天,每天从中任选两人参加服务,则恰有1人连续参加两天服务的选择种数为( )A .120B .60C .40D .30 【解析】 先从5人中任选1人参加两天服务,有15C 种选法; 再从剩下4人中任选1人参加星期六服务,有14C 种选法; 最后从剩下3人中任选1人参加星期天服务,有13C 种选法. 根据乘法原理,共有60=131415C C C 种不同选法.故选B .10.已知)(x f 为函数)cos(6+2=πx y 在向左平移6π个单位所的函数,则)(x f y =与2121=-x y 的交点个数为 ( )A .1B .2C .3D .4【解析】 先通过平移得到x x x x f y 2=2+2=6+6+2==sin )cos())(cos()(-πππ,即x x f 2=sin )(-.分别作x y 2=sin -和2121=-x y 的图象,如图,因为2143×21>1=43×2-----)())(sin(ππ,即84=21>83π, 2143×21>1=43×2--ππ)sin(,即812=23<83π,由图可知x y 2=sin -与2121=-x y 的交点个数为3.故选C .11.在四棱锥ABCD P -中,底面ABCD 为正方形,3==4=PD PC AB ,,°45=PCA ∠,则PBC ∆的面积为( )A .22B .23C .24D .25【解析】 连接BD AC ,相交于O ,连接PO ,PD PC = ,PO PO =,OD OC =,POD POC ∆∆≌∴,PDO PCO ∠=∠,又PD PC = ,PDO PCO ∠=∠,BD AC =,PDB PCA ∆∆≌∴,PB PA ∠=,在PCA ∆中,24=3=CA PC ,,°45=PCA ∠,所以,°45××2+=222cos AC PC PC AC PA -O xyπABCDPO17=22×24×3×29+32=-,在PBC ∆中,4=3=BC PC ,,17==PA PB ,所以173=174×2916+17=××2+=∠222--BC PB PC BC PB PBC cos ,于是1722=PBC ∠sin , 所以,PBC ∆的面积为24=1722×4×17×21=×××21PBC BC PB ∠sin .故选C .12.已知椭圆1=6+922y x ,21F F ,为两个焦点,O 为原点,P 为椭圆上一点,53=∠21PF F cos ,则=PO ( )A .52 B .230 C .53D .235【解析】在椭圆1=6+922y x 中,3=a ,6=b ,3=c ,由2122222121×2+=53=PF PF FF PF PF PF F -∠cos 2121212221221×2×224=×2×2+=PF PF PF PF PF PF FF PF PF PF PF ---)(, 所以215=×21PF PF . 设点),(n m P ,则21PF F ∆的面积为3=54×215×21=∠×××212121PF F PF PF sin , 于是 3=3=××2121n n F F ,所以3=2n .又P 为椭圆上一点,所以29=2m .230=3+29=+=22n m PO .故选B .二、填空题(每小题5分,共20分) 13. 若)sin()(2+++1=2πx ax x y -为偶函数,则=a 【解析】 因为x a x x x ax x y )(cos )sin()(2+1++=2+++1=22--π.而1++2x x cos 是偶函数,所以2=a ,应填2.14. 设y x ,满足约束条件 1≥+32333+2y x y x y x≤-≤- ,设y x z 2+3=,则z 的最大值为【解析】 作出满足约束条件的点),(y x 的可行域, 由),(),(y x y x z •23=2+3=所以,当3=3=y x ,时,z 取得最大值15. 故填15.15. 在正方体1111D C B A ABCD -中,F E ,分别为11B A CD ,的中点,则以EF 为直径的球面与正方体每条棱的交点总数为 【解析】 设正方体的棱长为2,O 为球心,于是,球O 的半径为2==OF OE ,可求得点O 到所有棱的距离均为2,所以球面与正方体每条棱的交点总数为12,故填12.16. 在ABC ∆中,2=AB ,°60=∠BAC ,6=BC ,D 为BC 上一点,AD 为BAC ∠的平分线,则=AD【解析】在ABC ∆中,由正弦定理知,ACBABBAC BC ∠sin sin =∠,O xyB 1ABC D A 1C 1D 1EFOMN即22=63=×=BCBACAB ACB ∠∠sin sin ,所以°45=ACB ∠,于是°75=ABC ∠,在ABD ∆和ACD ∆中,分别由正弦定理知,°30=°45sin sin CD AD , °306=°75sin sin CD AD -,42+6=°75sin , 由°30=°45sin sin CD AD ,得AD CD 2=2, 由°306=°75sin sin CDAD -,得CD AD 262=26--)(,解得2=AD ,故填2.三、解答题:本题共5小题,共60分.解答应写出文字说明、证明过程和演算步骤. 17.(12分)已知数列}{n a 中,1=2a ,设n S 为}{n a 的前n 项和,n n na S =2. (1)求}{n a 的通项公式;(2)求数列}{nn a 21+的前n 项和n T . 【解析】 (1)由n n na S =2,得0=1a ,当2≥n 时,111=2---n n a n S )(, 两式相减,得11=2---n n n a n na a )(, 即11=2---n n a n a n )()(, 当2>n 时,21=1---n n a a n n ,此时, 223211××××=a a aa a a a a n n n n n --- 1=1×12××32×21=-----n n n n n , 当21=,n 时均满足,所以}{n a 的通项公式为1=-n a n ; (2)由n n n n a 2=21+,所以n n n T 2++23+22+21=32 , 两边同乘以21,得1+322+21++22+21=21n n n n n T - , 两式相减,得1+1+322211=221++21+21+21=21n n n n n n n T --- , 所以,n n n T 22+2=-.18.(12分)在三棱柱111C B A ABC -中,2=1AA ,⊥1C A 底面ABC ,°90=∠ACB ,1A 到平面11B BCC 的距离为1.(1)证明:C A AC 1=;(2)若直线1AA 与1BB 距离为2,求1AB 与平面11B BCC 所成角的正弦值. 【解析】 (1)由⊥1C A 底面ABC ,°90=∠ACB ,可知°90=∠11C A C , 平面⊥11C A C 平面BC B C 11,1A 到平面11B BCC 的距离为1.即C A C Rt 11∆斜边上的高为1,又斜边长2==11AA CC , 所以C A C 11∆为等腰三角形,即C A C A 111=, 又AC C A =11,所以C A AC 1=. (2)由1CA CB CA ,,,两两互相垂直,由直线1AA 与1BB 距离为2,得3=BC ,,以C 为原点,分别以1CA CB CA ,,为x 轴,y 轴,z 轴,建立空间直角 坐标系,则),,(000C ,),,(2001A ,),,(030B ,),,(2021-C ,),,(002A ,),,(2321-B ,于是),,(030=CB ,ABCA 1B 1C 1),,(202=1-CC ,),,(2322=1-AB ,平面11B BCC 的一个法向量为),,(101=n , 所以1AB 与平面11B BCC所成角的正弦值为1313=131=101×2322101•2322=),,(),,(),,(),,(--.19.(12分)为探究某药物对小鼠的生长作用,将 40 只小鼠均分为两组,分别为对照组(不药物)和实验组(加药物).(1)设其中两只小鼠中对照组小鼠数目为X ,求X 的分布列和数学期望; (2)测得 40 只小鼠体重如下(单位:g )(已按从小到大排好) 对照组:17.3 18.4 20.1 20.4 21.5 23.2 24.6 24.8 25.0 25.4 26.1 26.3 26.4 26.5 26.8 27.0 27.4 27.5 27.6 28.3实验组: 5.4 6.6 6.8 6.9 7.8 8.2 9.4 10.0 10.4 11.2 14.4 17.3 19.2 20.2 23.6 23.8 24.5 25.1 25.1 26.0 (i )求 40 只小鼠体重的中位数m ,并完成下面 2×2 列联表: (ii )根据 2×2 列联表,能否有 95%的把握认为药物对小鼠 生长有抑制作用 参考数据:【解析】 (1)X 的所有可能取值为0,1,2,且7819==0=240220020C C C X P )(; 7840==1=240120120C C C X P )(;7819==2=240020220C C C X P )(. X 的分布列为数学期望为1=7819×2+7840×1+7819×0=)(X E .(2)(i ) 40 只小鼠体重的中位数423=2623+223=...m .完成下面 2×2 列联表为(ii )计算8413>4006=20×20×20×2040×14×146×6=22..)(-K , 所以,有 95%的把握认为药物对小鼠生长有抑制作用.20.(12分)直线0=1+2y x -与)(0>2=2p px y 交于B A ,两点,154=AB .(1)求p 的值;(2)F 为px y 2=2的焦点,N M ,为抛物线上的两点,且0=•NF MF ,求MNF 面积的最小值.【解析】 (1)将0=12=-y x 代入px y 2=2,得0=2+42p py y -,设),(),,(2211y x B y x A ,则p y y 4=+21,p y y 2=21, 于是,221221+=)()(y y x x AB --212212214+5=5=y y y y y y --)()(154=8165=2p p -.所以,2=p ,(2)F 为x y 4=2的焦点,),(01∴F ,设),(M M y y M 42,),(N Ny y N 42,由0=•NF MF ,得 0=41•4122),(),(N N M M y y y y ----,即0=+414122N M NM y y y y ))((--,0=1+++41162222N M N M N M y y y y y y )(-,即224+=4)()(N M N M y y y y -, 设直线MN 的方程为n my x +=,与抛物线方程联立,得 )(n my y +4=2,即0=442n my y --,于是有,m y y N M 4=+,n y y N M 4=-, 且0>16+16=2n m ∆,0>+2n m .将224+=4)()(N M N M y y y y -变为224+=16+4)()(N M N M N M y y y y y y -, 即224+4=41644)()()(n n m ---,0>1=+422)()(-n n m , 0≥1+6=422n n m -,解得22+3≥n 或223≤-n , 即1228≥4=--n y y N M .记MNF ∆面积为S ,则S =1+421=+4421=22N M N M N M M N N M y y y y y y y y y y --- 24+161=4+81=)(N M N M N M y y y y y y - 22124=4+1228161≥)()(--. 所以记MNF ∆面积的最小值为2124)(-.21.(12分)已知xxax x f 3=cos sin )(-,),(20∈πx . (1)若8=a ,讨论)(x f 的单调性;(2)若x x f 2<sin )(恒成立,求a 的取值范围.【解析】 (1)由8=a ,xx x x f 38=cos sin )(-,xxx x x x x f 622433+8=′8=′cos cos sin cos )cos sin ()(--x xx 4223+8=cos sin cos -xx x 4223+412=cos )cos )(cos (-.因为0>3+42x cos ,0>4x cos ,),(20∈πx .所以,当0>2=122x x cos cos -时,即),(40π∈x 时,)(x f 单调递增, 当0<2=122x x cos cos -时,即),(24ππ∈x 时,)(x f 单调递增. (2)由x x f 2<sin )(恒成立,即0<23x xxax sin cos sin --,),(20∈πx , 令x xxax x g 2=3sin cos sin )(--,则0=0)(g ,)(x g 的最大值小于零, x xxx a x g 223+=′422cos cos sin cos )(--2+423=242x x x a cos cos cos ---, 令t x =2cos , 得232+42+=′t t t a x g --)(,1<<0t ,设232+42+=t t t a t --)(ϕ,则33326+24=6+24=′tt t t t t ----)(ϕ, 323+2+212=t t t t ))((--,由1<<0t 知,0>′)(t ϕ,)(t ϕ单调递增,)(x g ′单调递增, 所以3=1<-a t )()(ϕϕ,3<′-a x g )(, 当3≤a 时,0<′)(x g ,)(x g 为减函数,最大值小于零,满足题意; 当3>a 时,)(x g ′在),(20π内有零点,即)(x g 在),(20π内有极小值点, 又因为2→πx 必有∞-→)(x g ,这不可能. 所以,所求求a 的取值范围是∞,3]-(.四、选做题:本题共2小题,任选一道作答,共10分.22 〖选修4-4:坐标系与参数方程〗(10分)【解析】 (1)因为令0=y ,得,αsin 1=1-t ,所以αsin 1==1t PA ,令0=x ,得,αcos 2=2-t ,所以αcos 2==2t PB ,由4=PB PA ,得4=2ααcos sin ,即1=2αsin ,1±=2αsin ,由题意παπ<<2,所以43=πα.(2) 由(1)知t x 222=-,t y 22+1=,所以3=+y x , l 的极坐标方程为3=+θρθρsin cos .23 〖选修4-5:不等式选讲〗(10分)【解析】 (1)由x x f <)(,得0>+<2a a x a x ,-, 两边平方,2222+2+<4+84a ax x a ax x -,即0<3+10322a ax x -,0<33))((a x a x --,因为0>a ,所以a x a3<<3. (2)因为0>a ,当a x ≥时,a x x f 32=-)(;当a x <时,x a x f 2=-)(;作出函数图象,得),(),,(020a B a A ,),(),,(a a D aC -023.函数图象与坐标轴围成的面积为2,即 2=43=+2a S S BCD AOB ∆∆,所以362=a .xyAO a -aa BCD。
2022年全国新高考1卷数学真题及答案解析今年的高考数学试卷坚持思想性与科学性的统一,从中华优秀传统文化、社会经济发展、科技发展与进步等方面设置了真实情境。
下面是小编为大家收集的关于2022年全国新高考1卷数学真题及答案解析。
希望可以帮助大家。
2022年全国新高考1卷数学真题2022年全国新高考1卷数学答案解析高考数学备考六大复习建议01 函数与导数近几年高考中,函数类试题一般会出现2道选择题、2道填空题、1道解答题。
其中,选择题和填空题经常考的知识点更偏向反函数,函数的定义域和值域,函数的单调性、奇偶性、周期性,函数的图象、导数的概念和应用等,这些知识点要着重复习。
而在分值颇高的解答题中,通常会考查考生对于函数与导数、不等式运用等考点的掌握运用情况。
掌握题目背后的知识点,建立自己的答题思路是非常重要的。
值得考生们注意的是,函数和导数的考查,经常会与其他类型的题目交叉出现,所以需要重视交叉考点问题的训练。
02 三角函数、平面向量和解三角形三角函数是每年必考题,虽是重点但难度较小。
哪怕是基础一般的同学,经过二轮复习的千锤百炼,都可以掌握这部分内容。
所以,三角函数类题目争取一分都不要丢!从题型来看,会覆盖选择题、填空题、解答题三大类型。
大题会出现在二卷解答题的第一个,也证明此类型题目的难度比较小。
在三角函数的部分,高三考生需要熟练的知识点有不少。
(1)掌握三角变换的所有公式,理解公式的意义、应用场景、考查形式、使用方法等。
(2)熟悉三角变换常用的方法——化弦法、降幂法、角的变换法等。
应用以上方法进行三角函数式的求值、化简、证明。
(3)掌握三角变换公式在三角形中应用的特点,并能结合三角形的公式解决一些实际问题。
(4)熟练掌握正弦函数、余弦函数、正切函数、余切函数的性质,并能用它研究复合函数的性质。
同时,也要掌握这些函数图象的形状、特点。
(5)掌握三角函数不等式口诀:sinα上正下负;cosα右正左负;tanα奇正偶负。
2023年普通高等学校招生全国统一考试(全国乙卷)理科数学一、选择题1. 设252i1i iz +=++,则z =( ) A. 12i −B. 12i +C. 2i −D. 2i +2. 设集合U =R ,集合{}1M x x =<,{}12N x x =−<<,则{}2x x ≥=( ) A. ∁U (M ∪N ) B. N ∪∁U M C. ∁U (M ∩N )D. M ∪∁U N3. 如图,网格纸上绘制的一个零件的三视图,网格小正方形的边长为1,则该零件的表面积为( )A. 24B. 26C. 28D. 304. 已知e ()e 1xax x f x =−是偶函数,则=a ( )A. 2−B. 1−C. 1D. 25. 设O 为平面坐标系的坐标原点,在区域(){}22,14x y xy ≤+≤内随机取一点,记该点为A ,则直线OA 的倾斜角不大于π4的概率为( ) A.18 B.16C.14D.126. 已知函数()sin()f x x ωϕ=+在区间π2π,63⎛⎫ ⎪⎝⎭单调递增,直线π6x =和2π3x =为函数()y f x =的图像的两条对称轴,则5π12f ⎛⎫−= ⎪⎝⎭( )A. B. 12−C.12D.7. 甲乙两位同学从6种课外读物中各自选读2种,则这两人选读的课外读物中恰有1种相同的选法共有( ) A. 30种B. 60种C. 120种D. 240种8. 已知圆锥PO O 为底面圆心,P A ,PB 为圆锥的母线,120AOB ∠=︒,若PAB 的面积等于)A.πB.C. 3πD.9. 已知ABC 为等腰直角三角形,AB 为斜边,ABD △为等边三角形,若二面角C AB D −−为150︒,则直线CD 与平面ABC 所成角的正切值为( ) A.15B.5C.D.2510. 已知等差数列{}n a 的公差为23π,集合{}*cos N n S a n =∈,若{},S a b =,则ab =( )A. -1B. 12−C. 0D.1211. 设A ,B 为双曲线2219y x −=上两点,下列四个点中,可为线段AB 中点的是( )A. ()1,1B. ()1,2-C. ()1,3D. ()1,4−−12. 已知O 的半径为1,直线P A 与O 相切于点A ,直线PB 与O 交于B ,C 两点,D 为BC的中点,若PO =PA PD ⋅的最大值为( )A.12B.12+C. 1+D. 2二、填空题13.已知点(A 在抛物线C :22y px =上,则A 到C 的准线的距离为______.14. 若x ,y 满足约束条件312937x y x y x y −≤−⎧⎪+≤⎨⎪+≥⎩,则2z x y =−的最大值为______.15. 已知{}n a 为等比数列,24536a a a a a =,9108a a =−,则7a =______.16. 设()0,1a ∈,若函数()()1xx f x a a =++在()0,∞+上单调递增,则a 的取值范围是______.三、解答题17. 某厂为比较甲乙两种工艺对橡胶产品伸缩率的处理效应,进行10次配对试验,每次配对试验选用材质相同的两个橡胶产品,随机地选其中一个用甲工艺处理,另一个用乙工艺处理,测量处理后的橡胶产品的伸缩率.甲、乙两种工艺处理后的橡胶产品的伸缩率分别记为i x ,()1,2,,10i y i =⋅⋅⋅.试验结果如下:记1,2,,10i i i z x y i =−=⋅⋅⋅,记1210,,,z z z ⋅⋅⋅的样本平均数为z ,样本方差为2s . (1)求z ,2s ;(2)判断甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率是否有显著提高(如果z ≥为有显著提高)18. 在ABC 中,已知120BAC ∠=︒,2AB =,1AC =. (1)求sin ABC ∠;(2)若D 为BC 上一点,且90BAD ∠=︒,求ADC △的面积.19. 如图,在三棱锥−P ABC 中,AB BC ⊥,2AB =,BC =PB PC ==BP ,AP ,BC 的中点分别为D ,E ,O ,AD =,点F 在AC 上,BF AO ⊥.(1)证明://EF 平面ADO ; (2)证明:平面ADO ⊥平面BEF ; (3)求二面角D AO C −−的正弦值.20. 已知椭圆2222:1(0)C b b x a a y +>>=,点()2,0A −在C 上.(1)求C 的方程; (2)过点()2,3−的直线交C 于,P Q 两点,直线,AP AQ 与y 轴的交点分别为,M N ,证明:线段MN 的中点为定点.21. 已知函数1()ln(1)f x a x x ⎛⎫=++⎪⎝⎭. (1)当1a =−时,求曲线()y f x =在点()()1,1f 处的切线方程; (2)是否存在a ,b ,使得曲线1y f x ⎛⎫=⎪⎝⎭关于直线x b =对称,若存在,求a ,b 的值,若不存在,说明理由. (3)若()f x 在()0,∞+存在极值,求a 的取值范围.四、选做题【选修4-4】(10分)22. 在直角坐标系xOy 中,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为ππ2sin 42⎛⎫=≤≤ ⎪⎝⎭ρθθ,曲线2C :2cos 2sin x y αα=⎧⎨=⎩(α为参数,2απ<<π).(1)写出1C 的直角坐标方程;(2)若直线y x m =+既与1C 没有公共点,也与2C 没有公共点,求m 的取值范围.【选修4-5】(10分)23. 已知()22f x x x =+−. (1)求不等式()6f x x ≤−的解集;(2)在直角坐标系xOy 中,求不等式组()60f x y x y ≤⎧⎨+−≤⎩所确定的平面区域的面积.(2023·全国乙卷·理·1·★)设252i1i i z +=++,则z =( )(A )12i −(B )12i +(C )2i −(D )2i+答案:B解析:由题意,2252222i 2i 2i (2i)ii 2i 12i 1i i 11(i )i i iz ++++=====−−=−++−+,所以12i z =+. (2023·全国乙卷·理·2·★)设全集U =R ,集合{|1}M x x =<,{|12}N x x =−<<,则{|2}x x ≥=( ) (A )∁U (M ∪N ) (B )N ∪∁U M (C )∁U (M ∩N ) (D )M ∪∁U N 答案:A解析:正面求解不易,直接验证选项,A 项,由题意,{|2}MN x x =<,所以(){|2}U MN x x =≥ð,故选A.(2023·全国乙卷·理·3·★)如图,网格纸上绘制的一个零件的三视图,网格小正方形的边长为1,则该零件的表面积为( )(A )24(B )26(C )28(D )30答案:D解析:如图所示,在长方体1111ABCD A B C D −中,2AB BC ==,13AA =,点,,,H I J K 为所在棱上靠近点1111,,,B C D A 的三等分点,,,,O L M N 为所在棱的中点,则三视图所对应的几何体为长方体1111ABCD A B C D −去掉长方体11ONIC LMHB −之后所得的几何体,该几何体的表面积和原来的长方体的表面积相比少2个边长为1的正方形, 其表面积为:()()()22242321130⨯⨯+⨯⨯−⨯⨯=.答案详解(2023·全国乙卷·理·4·★★)已知e ()e 1xax x f x =−是偶函数,则a =( )(A )2− (B )1− (C )1 (D )2 答案:D解法1:要求a ,可结合偶函数的性质取特值建立方程,由()f x 为偶函数得(1)(1)f f −=,故1e ee 1e 1a a −−−=−− ①, 又111e e e e 11e e 1a a aa −−−−−−==−−−,代入①得1e e e 1e 1a a a −=−−, 所以1e e a −=,从而11a −=,故2a =, 经检验,满足()f x 为偶函数.解法2:也可直接用偶函数的定义来分析,因为()f x 为偶函数,所以()()f x f x −=恒成立,从而e e e 1e 1x x ax ax x x −−−=−−,故e e e 1e 1x x ax ax −−−=−−,所以e e e 1e e 1x ax x axax −−⋅=−−,从而e e e 1e 1ax x xax ax −=−−,故e e ax x x −=, 所以ax x x −=,故(2)0a x −=,此式要对定义域内任意的x 都成立,只能20a −=,所以2a =.(2023·全国乙卷·理·5·★)设O 为平面坐标系的原点,在区域22{(,)|14}x y x y ≤+≤内随机取一点,记该点为A ,则直线OA 的倾斜角不大于 π4 的概率为( )( ) (A )18(B )16(C )14(D )12答案:C 解析:因为区域(){}22,|14x y xy ≤+≤表示以()0,0O 圆心,外圆半径2R =,内圆半径1r =的圆环,则直线OA 的倾斜角不大于π4的部分如阴影所示,在第一象限部分对应的圆心角π4MON ∠=, 结合对称性可得所求概率π2142π4P ⨯==.(2023·全国乙卷·理·6·★★)已知函数()sin()f x x ωϕ=+在区间2(,)63ππ单调递增,直线6x π=和23x π=为函数()y f x =的图象的两条对称轴,则5()12f π−=( ) (A) (B )12− (C )12(D答案:D解析:条件中有两条对称轴,以及它们之间的单调性,据此可画出草图来分析, 如图,2362T T πππ−=⇒=,所以22Tπω==,故2ω=±, 不妨取2ω=,则()sin(2)f x x ϕ=+, 再求ϕ,代一个最值点即可,由图可知,()sin(2)sin()1663f πππϕϕ=⨯+=+=−,所以232k ππϕπ+=−,从而52()6k k πϕπ=−∈Z , 故55()sin(22)sin(2)66f x x k x πππ=+−=−,所以5555()sin[2()]sin()sin 1212633f πππππ−=⨯−−=−==.(2023·全国乙卷·理·7·★★)甲乙两位同学从6种课外读物中各自选读2种,则这两人选读的课外读物中恰有1种相同的选法共有( )(A )30种 (B )60种 (C )120种 (D )240种 答案:C解析:恰有1种课外读物相同,可先把相同的课外读物选出来,再选不同的, 由题意,先从6种课外读物中选1种,作为甲乙两人相同的课外读物,有16C 种选法,再从余下5种课外读物中选2种,分别安排给甲乙两人,有25A 种选法, 由分步乘法计数原理,满足题意的选法共1265C A 120=种.(2023·全国乙卷· 理· 8·★★★)已知圆锥PO O 为底面圆心,P A ,PB 为圆锥的母线,o 120AOB ∠=,若PAB ∆,则该圆锥的体积为( ) (A )π (B (C )3π (D ) 答案:B解析:求圆锥的体积只差高,我们先翻译条件中的PAB S ∆,由于P A ,PB 和APB ∠都未知,所以不易通过1sin 2PAB S PA PB APB ∆=⋅⋅∠求P A ,再求PO ,故选择AB 为底边来算PAB S ∆,需作高PQ ,而AB 可在AOB ∆中求得,在AOB ∆中,由余弦定理,222AB OA OB =+−2cos 9OA OB AOB ⋅⋅∠=,所以3AB =,取AB 中点Q ,连接PQ ,OQ ,则OQ AB ⊥,PQ AB ⊥, 所以1133222PAB S AB PQ PQ PQ ∆=⋅=⨯⨯=,又PAB S ∆=,所以32PQ =PQ =,在AOQ ∆中,o 1602AOQ AOB ∠=∠=,所以cos OQ OA AOQ =⋅∠=,故OP ==所以圆柱PO 的体积213V π=⨯.PO ABQ(2023·全国乙卷·理·9·★★★)已知ABC ∆为等腰直角三角形,AB 为斜边,ABD ∆为等边三角形,若二面角C ABD −−为o 150,则直线CD 与平面ABC 所成角的正切值为( )(A )15(B (C (D )25答案:C解析:两个等腰三角形有公共的底边,这种情况常取底边中点构造线面垂直, 如图,取AB 中点E ,连接DE ,CE ,由题意,DA DB =,AC BC =,所以AB DE ⊥,AB CE ⊥,故DEC ∠即为二面角C AB D −−的平面角, 且AB ⊥平面CDE ,所以o 150DEC ∠=, 作DO CE ⊥的延长线于O ,则DO ⊂平面CDE , 所以DO AB ⊥,故DO ⊥平面ABC ,所以DCO ∠即为直线CD 与平面ABC 所成的角,不妨设2AB =,则1CE =,DE = 因为o 150DEC ∠=,所以o 30DEO ∠=,故3cos 2OE DE DEO =⋅∠=,sin OD DE DEO =⋅∠=,52OC OE CE =+=,所以tan OD DCO OC ∠==. DACBEO【反思】两个等腰三角形有公共底边这类图形,常取底边中点,构造两个线线垂直,进而得出线面垂直.(2023·全国乙卷·理·10·★★★★)已知等差数列{}n a 的公差为23π,集合*{cos |}n S a n =∈N ,若{,}S a b =,则ab =( )(A )1− (B )12− (C )0 (D )12答案:B解析:由题意,S 中的元素为1cos a ,2cos a ,3cos a ,…,由于cos y x =周期为2π,恰为公差的3倍,所以cos n a 必以3为周期重复出现,故只需考虑前三个值. 但题干却说{,}S a b =,只有两个元素,为什么呢?这说明前三个值中恰有两个相等,若讨论是哪两个相等来求1a ,则较繁琐,我们直接画单位圆,用余弦函数的定义来看,如图,由三角函数定义可知,在终边不重合的前提下,余弦值相等的两个角终边关于x 轴对称,所以要使1cos a ,2cos a ,3cos a 中有两个相等,则1a ,2a ,3a 的终边只能是如图所示的两种情况,至于三个终边哪个是1a ,不影响答案,只要它们逆时针排列即可, 若为图1,则131cos cos 2a a ==,2cos 1a =−,所以S 中的元素是12和1−,故12ab =−;若为图2,则1cos 1a =,231cos cos 2a a ==−,所以S 中的元素是1和12−,故12ab =−.1图2图(2023·全国乙卷·理·11·★★★)设A ,B 为双曲线2219y x −=上两点,下列四个点中,可能为线段AB 中点的是( )(A )(1,1) (B )(1,2)− (C )(1,3) (D )(1,4)−− 答案:D解析:涉及弦中点,考虑中点弦斜率积结论,A 项,记(1,1)M ,由中点弦斜率积结论,9AB OM k k ⋅=,因为1OM k =,所以9AB k =,又直线AB 过点M , 所以AB 的方程为19(1)y x −=−,即98y x =− ①,只要该直线与双曲线有2个交点,那么A 项就正确,可将直线的方程代入双曲线方程,算判别式,将①代入2219y x −=整理得:272144730x x −+=, 21(144)47273144(144273)2880∆=−−⨯⨯=⨯−⨯=−<,所以该直线与双曲线没有两个交点,故A 项错误,同理可判断B 、C 也错误,此处不再赘述; D 项,记(1,4)N −−,则4ON k =,由中点弦斜率积结论,9AB OM k k ⋅=,所以94AB k =, 又直线AB 过点N ,所以AB 的方程为91(1)4y x −=−,整理得:9544y x =− ②, 将②代入2219y x −=整理得:263901690x x +−=, 判别式2290463(169)0∆=−⨯⨯−>,所以该直线与双曲线有两个交点,故D 项正确.(2023·全国乙卷·理·12·★★★★)已知⊙O 半径为1,直线P A 与⊙O 相切于点A ,直线PB 与⊙O 交于B ,C 两点,D 为BC 的中点,若PO PA PD ⋅的最大值为( )(A (B (C )1 (D )2+答案:A解析:1OA =,1PO PA ===,所以cos cos PA PD PA PD APD PD APD ⋅=⋅∠=∠ ①, 且PAO ∆是等腰直角三角形,所以4APO π∠=,因为D 是BC 的中点,所以OD BC ⊥,求PA PD ⋅要用APD ∠,故可设角为变量,引入CPO ∠为变量,可与直角PDO ∆联系起来,更便于分析, 设CPO θ∠=,则04πθ≤<,有图1和图2两种情况,要讨论吗?观察发现图2的每一种PD ,在图1中都有一个对称的位置,二者PD 相同,但图2的夹角APD ∠更大,所以cos APD ∠更小,数量积也就更小,从而PA PD ⋅的最大值不会在图2取得,故可只考虑图1, 如图1,4APD APO CPO πθ∠=∠−∠=−,代入①得cos()4PA PD PD πθ⋅=− ①,注意到PD 与θ有关,故将它也用θ表示,统一变量, 由图可知,cos PD PO DPC θ=∠=, 代入①得:2cos cos()4PA PDπθθ⋅=−2)cos sin cos θθθθθθ==+ 1)1cos 214sin 2222πθθθ+++=+=,故当8πθ=时,sin(2)14πθ+=,PA PD ⋅取得最大值12+.A PODB C A PODBC1图2图θθ(2023·全国乙卷·理·13·★)已知点A 在抛物线2:2C y px=上,则点A 到C 的准线的距离为_____. 答案:94解析:点A 在抛物线上25212p p ⇒=⋅⇒=, 所以抛物线的准线为54x =−, 故A 到该准线的距离591()44d =−−=.(2023·全国乙卷·理·14·★)若x ,y 满足约束条件312937x y x y x y −≤−⎧⎪+≤⎨⎪+≥⎩,则2z x y =−的最大值为______.答案:8解析:作出可行域如下图所示:z =2x −y ,移项得y =2x −z ,联立有3129x y x y −=−⎧⎨+=⎩,解得52x y =⎧⎨=⎩,设()5,2A ,显然平移直线2y x =使其经过点A ,此时截距−z 最小,则z 最大,代入得z =8(2023·全国乙卷·理·15·★★)已知{}n a 为等比数列,24536a a a a a =,9108a a =−,则7a =_____. 答案:2−解析:已知和要求的都容易用通项公式翻译,故直接翻译它们,34252453611111a a a a a a qa q a q a q a q =⇒=,化简得:11a q = ①, 8921791011188a a a q a q a q =−⇒==− ②,由①可得11a q=,代入②得:158q =−,所以52q =− ③, 结合①③可得6557112a a q a q q q ==⋅==−.(2023·全国乙卷·理·16·★★★★)设(0,1)a ∈若函数()(1)x x f x a a =++在(0,)+∞上单调递增,则a 的取值范围是_____.答案: 解析:直接分析()f x 的单调性不易,可求导来看, 由题意,()ln (1)ln(1)x x f x a a a a '=+++,因为()f x 在(0,)+∞上,所以()0f x '≥在(0,)+∞上恒成立,即ln (1)ln(1)0x x a a a a +++≥,参数a 较多,没法集中,但x 只有两处,且观察发现可同除以x a 把含x 的部分集中起来,所以(1)ln ln(1)0x xa a a a+++≥,故1ln (1)ln(1)0x a a a +++≥ ①, 想让式①恒成立,只需左侧最小值0≥,故分析其单调性, 因为111a+>,11a +>,所以ln(1)0a +>,从而1ln (1)ln(1)x y a a a=+++在(0,)+∞上,故011ln (1)ln(1)ln (1)ln(1)ln ln(1)x a a a a a a a a+++>+++=++,所以①恒成立ln ln(1)0a a ⇔++≥,从而ln[(1)]0a a +≥,故(1)1a a +≥,结合01a <<1a ≤<.(2023·全国乙卷·理·17·★★)某厂为比较甲乙两种工艺对橡胶产品伸缩率的处理效应,进行10次配对试验,每次配对试验,选用材质相同的两个橡胶产品,随机地选其中一个用甲工艺处理,另一个用乙工艺处理,测量处理后的橡胶产品的伸缩率,甲、乙两种工艺处理后的橡胶产品的伸缩率分别记为i x ,(1,2,,10)i y i =⋅⋅⋅,试验结果如下:记(1,2,,10)i i i z x y i =−=⋅⋅⋅,记1210,,,z z z ⋅⋅⋅的样本平均数为z ,样本方差为2s . (1)求z ,2s ,(2)判断甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率是否有显著提高.(如果z ≥则认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高,否则不认为有显著提高) 解:(1)由题意,i z 的数据依次为9,6,8,8−,15,11,19,18,20,12, 所以10111()(9688151119182012)111010i i i z x y ==−=++−++++++=∑,10222222222111()[(911)(611)(811)(811)(1511)(1111)(1911)1010i i s z z ==−=−+−+−+−−+−+−+−+∑222(1811)(2011)(1211)]61−+−+−=.(2)由(1)可得z <,所以甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高.(2023·全国乙卷·理·18·★★★)在ABC ∆中,已知o 120BAC ∠=,2AB =,1AC =. (1)求sin ABC ∠;(2)若D为BC 上一点,且o 90BAD ∠=,求ADC ∆的面积.解:(1)(已知两边及夹角,可先用余弦定理求第三边,再用正弦定理求角)由余弦定理,22222o 2cos 21221cos1207BC AB AC AB AC BAC =+−⋅⋅∠=+−⨯⨯⨯=,所以BC =,由正弦定理,sin sin AC BC ABC BAC =∠∠,所以o sinsin AC BAC ABC BC ⋅∠∠===(2)如图,因为o 120BAC ∠=,o 90BAD ∠=,所以o 30CAD ∠=,(求ADC S ∆还差AD ,只要求出ABC ∠,就能在ABD ∆中求AD ,ABC ∠可放到ABC ∆中来求)由余弦定理推论,222cos 2AB BC AC ABC AB BC +−∠===⋅,所以cos AB BD ABC ==∠,AD ==,故o 11sin 1sin 3022ADC S AC AD CAD ∆=⋅⋅∠=⨯=.(2023·全国乙卷·理·19·★★★★)在三棱锥P ABC −中,AB BC ⊥,2AB =,BC =PB PC ==,BP ,AP ,BC 的中点分别为D ,E ,O ,AD =,点F 在AC 上,BF AO ⊥. (1)证明:EF ∥平面ADO ;(2)证明:平面ADO ⊥平面BEF ; (3)求二面角D AO C −−的大小.PDBAFCOE解:(1)证法1:(由图可猜想DEFO 是平行四边形,故尝试证DE 平行且等于OF . 注意到D ,E ,O 都是所在棱的中点,故若能证出F 是中点,则DE ,OF 都平行且等于AB 的一半,问题就解决了. 那F 的位置由哪个条件决定呢?显然是BF AO ⊥,我们可以设AF AC λ=,利用向量来翻译BF AO ⊥,求出λ) 设AF AC λ=,则()(1)BF BA AF BA AC BA BC BA BA BC λλλλ=+=+=+−=−+, 12AO AB BO BA BC =+=−+,因为BF AO ⊥,所以1((1))()2BF AO BA BC BA BC λλ⋅=−+⋅−+ 22(1)4(1)402BA BC λλλλ=−+=−+=,解得:12λ=,所以F 是AC 的中点, 又D ,E ,O 分别是BP ,AP ,BC 的中点,所以DE 和OF 都平行且等于AB 的一半,故DE 平行且等于OF , 所以四边形DOFE 是平行四边形,故EF ∥OD ,又EF ⊄平面ADO ,DO ⊂平面ADO ,所以EF ∥平面ADO . 证法2:(分析方法同解法1,证明F 为AC 中点的过程,也可用平面几何的方法)如图1,在ABC ∆中,因为BF AO ⊥,所以o 2190AOB AOB ∠+∠=∠+∠=,故12∠=∠①, 又2AB =,BC =O 为BC 中点,所以BO =tan 1BO AB∠==,tan 3AB BC ∠==所以tan 1tan 3∠=∠,故13∠=∠,结合①可得23∠=∠,所以BF CF =, 连接OF ,因为O 是BC 中点,所以OF BC ⊥,又AB BC ⊥,所以OF ∥AB , 结合O 为BC 中点可得F 为AC 的中点,接下来同证法1.(2)(要证面面垂直,先找线面垂直,条件中有AO BF ⊥,于是不外乎考虑证AO ⊥面BEF 或证BF ⊥面AOD,怎样选择呢?此时我们再看其他条件,还没用过的条件就是一些长度,长度类条件用于证垂直,想到勾股定理,我们先分析有关线段的长度) 由题意,12DO PC ==,AD ==,AO ,所以222152AO DO AD +==,故AO OD ⊥,(此时结合OD ∥EF 我们发现可以证明AO ⊥面BEF ) 由(1)可得EF ∥OD ,所以AO EF ⊥,又AO BF ⊥,且BF ,EF 是平面BEF 内的相交直线, 所以AO ⊥平面BEF ,因为AO ⊂平面ADO ,所以平面ADO ⊥平面BEF .(3)解法1:(此图让我们感觉面PBC ⊥面ABC ,若这一感觉正确,那建系处理就很方便. 我们先分析看是不是这样的. 假设面PBC ⊥面ABC ,由于AB BC ⊥,于是AB ⊥面PBC ,故AB BD ⊥,但我们只要稍加计算,就会发现222AB BD AD +≠,矛盾,所以我们的感觉是不对的,也就不方便建系. 怎么办呢?那就在两个半平面内找与棱垂直的射线,它们的夹角等于二面角的大小. 事实上,这样的射线已经有了)由题意,AO BF ⊥,由前面的过程可知AO OD ⊥,所以射线OD 与BF 的夹角与所求二面角相等, (OD 与BF 异面,直接求射线OD 和BF 的夹角不易,故考虑通过平移使其共面,到三角形中分析) 因为OD ∥EF ,所以EFB ∠的补角等于射线OD 和BF 的夹角,由题意,AC ==12BF AC ==,12EF PC ==(只要求出BE ,问题就解决了,BE 是ABP ∆的中线,可用向量来算,先到ABD ∆中求cos ABP ∠) 在ABD ∆中,222cos 2AB BD AD ABP AB BD +−∠==⋅,因为1()2BE BA BP =+,所以222113(2)[4622(442BE BA BP BA BP =++⋅=⨯++⨯=,故BE =,在BEF ∆中,222cos 2BF EF BE BFE BF EF +−∠==⋅,所以o 45BFE ∠=,故二面角D AO C −−的大小为o 135.解法2:(得出所求二面角等于射线OD 与BF 夹角的过程同解法1. 要计算此夹角,也可用向量法. 观察图形可发现OA ,OB ,OD 的长度都已知或易求,两两夹角也好求,故选它们为基底,用基底法算OD 和BF 的夹角) 1113122()2()22222BF BC CF OB CA OB CB BA OB OB OA OB OB OA =+=−+=−++=−++−=−+,所以31313()cos 22222OD BF OD OB OA OD OB OD OA DOB BOD ⋅=⋅−+=−⋅+⋅=−∠=∠,又222cos 2OB OD BD BOD OB OD +−∠==⋅,所以3322OD BF ⋅=−=−,从而3cos ,6OD BF OD BF OD BF−⋅<>===⋅,故o ,135OD BF <>=,所以二面角D AO C −−为o 135. 解法3:(本题之所以不便建系,是因为点P 在面ABC 的射影不好找,不易写坐标.那有没有办法突破这一难点呢?有的,我们可以设P 的坐标,用已知条件来建立方程组,直接求解P 的坐标)以B 为原点建立如图2所示的空间直角坐标系,则(0,0,0)B ,(2,0,0)A ,C ,O ,设(,,)(0)P x yz z >,则(,,)222x y z D,由PB PC ⎧⎪⎨=⎪⎩2222226(6x y z x y z ⎧++=⎪⎨+−+=⎪⎩,解得:y =, 代回两方程中的任意一个可得224x z += ②,(此时发现还有AD =这个条件没用,故翻译它)又AD =,所以222222(2)5[(]244424x y z x y z −++=+−+,将y =代入整理得:22220xz x ++−= ③,联立②③结合0z >解得:1x =−,z =,(到此本题的主要难点就攻克了,接下来是流程化的计算)所以1(2D −,故1(2DO =−,(AO =−, 设平面AOD 的法向量为(,,)xy z =m ,则1022220DO x y z AO x ⎧⋅=+−=⎪⎨⎪⋅=−=⎩m m ,令1x =,则y z ⎧=⎪⎨=⎪⎩=m 是平面AOD 的一个法向量,由图可知(0,0,1)=n 是平面AOC的一个法向量,所以cos ,⋅<>==⋅m n m n m n , 由图可知二面角D AO C −−为钝角,故其大小为o 135.BAFC1图2图123O【反思】当建系后有点的坐标不好找时,直接设其坐标,结合已知条件建立方程组,求解坐标,这也是一种好的处理思路.(2023·全国乙卷·理·20·★★★)已知椭圆2222:1(0)C b b x a a y +>>=的离心率是3,点()2,0A −在C 上.(1)求C 的方程; (2)过点()2,3−的直线交C 于,P Q 两点,直线,AP AQ 与y 轴的交点分别为,M N ,证明:线段MN 的中点为定点.答案:(1)22194y x+= (2)证明见详解解析:(1)由题意可得22223b a b c c ea ⎧⎪=⎪⎪=+⎨⎪⎪==⎪⎩,解得32a b c ⎧=⎪=⎨⎪=⎩,所以椭圆方程为22194y x +=.(2)由题意可知:直线PQ 的斜率存在,设()()()1122:23,,,,PQ y k x P x y Q x y =++,联立方程()2223194y k x y x ⎧=++⎪⎨+=⎪⎩,消去y 得:()()()222498231630k x k k x k k +++++=,则()()()2222Δ64236449317280kk k k k k =+−++=−>,解得0k <,可得()()2121222163823,4949k k k k x x x x k k +++=−=++,因为()2,0A −,则直线()11:22y AP y x x =++, 令0x =,解得1122y y x =+,即1120,2y M x ⎛⎫⎪+⎝⎭,同理可得2220,2y N x ⎛⎫ ⎪+⎝⎭,则()()1212121222232322222y y k x k x x x x x +++++⎡⎤⎡⎤++⎣⎦⎣⎦=+++ ()()()()()()12211223223222kx k x kx k x x x +++++++⎡⎤⎡⎤⎣⎦⎣⎦=++()()()()1212121224342324kx x k x x k x x x x +++++=+++()()()()()()222222323843234231084949336163162344949k k k k k k k k k k k k k k k +++−++++===++−+++,所以线段PQ 的中点是定点()0,3.(2023·全国乙卷·理·21·★★★★)已知函数1()()ln(1)f x a x x=++.(1)当1a =−时,求曲线()y f x =在(1,(1))f 处的切线方程;(2)是否存在a ,b ,使得曲线1()y f x=关于直线x b =对称?若存在,求a ,b 的值;弱不存在,说明理由;(3)若()f x 在(0,)+∞上存在极值,求a 的取值范围.解:(1)当1a =−时,1()(1)ln(1)f x x x =−+,2111()ln(1)(1)1f x x x x x'=−++−⋅+,所以(1)0f =,(1)ln 2f '=−,故所求切线方程为0ln 2(1)y x −=−−,整理得:(ln 2)ln 20x y +−=. (2)由函数的解析式可得()11ln 1f x a x x ⎛⎫⎛⎫=++ ⎪ ⎪⎝⎭⎝⎭, 函数的定义域满足1110x x x ++=>,即函数的定义域为()(),10,−∞−⋃+∞, 定义域关于直线12x =−对称,由题意可得12b =−,由对称性可知111222f m f m m ⎛⎫⎛⎫⎛⎫−+=−−> ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,取32m =可得()()12f f =−, 即()()11ln 22ln 2a a +=−,则12a a +=−,解得12a =,经检验11,22a b ==−满足题意,故11,22a b ==−.即存在11,22a b ==−满足题意.(3)由函数的解析式可得()()2111ln 11f x x a x x x ⎛⎫⎛⎫=−+'++ ⎪ ⎪+⎝⎭⎝⎭, 由()f x 在区间()0,∞+存在极值点,则()f x '在区间()0,∞+上存在变号零点; 令()2111ln 101x a x x x ⎛⎫⎛⎫−+++= ⎪ ⎪+⎝⎭⎝⎭,则()()()21ln 10x x x ax −++++=, 令()()()2=1ln 1g x ax x x x +−++,()f x 在区间()0,∞+存在极值点,等价于()g x 在区间()0,∞+上存在变号零点,()()()12ln 1,21g x ax x g x a x '=''=−+−+ 当0a ≤时,()0g x '<,()g x 在区间()0,∞+上单调递减,此时()()00g x g <=,()g x 在区间()0,∞+上无零点,不合题意; 当12a ≥,21a ≥时,由于111x <+,所以()()''0,g x g x >'在区间()0,∞+上单调递增, 所以()()00g x g ''>=,()g x 在区间()0,∞+上单调递增,()()00g x g >=, 所以()g x 在区间()0,∞+上无零点,不符合题意; 当102a <<时,由()''1201g x a x =−=+可得1=12x a−, 当10,12x a ⎛⎫∈− ⎪⎝⎭时,()0g x ''<,()g x '单调递减, 当11,2x a ⎛⎫∈−+∞ ⎪⎝⎭时,()0g x ''>,()g x '单调递增,故()g x '的最小值为1112ln 22g a a a ⎛⎫−=−+⎪⎝⎭', 令()()1ln 01m x x x x =−+<<,则()10x m x x−+'=>, 函数()m x 在定义域内单调递增,()()10m x m <=, 据此可得1ln 0x x −+<恒成立,则1112ln 202g a a a ⎛⎫−=−+<⎪'⎝⎭, 令()()2ln 0h x x x x x =−+>,则()221x x h x x−++'=,当()0,1x ∈时,()()0,h x h x '>单调递增, 当()1,x ∈+∞时,()()0,h x h x '<单调递减,故()()10h x h ≤=,即2ln x x x ≤−(取等条件为1x =),所以()()()()()222ln 12112g x ax x ax x x ax x x ⎡⎤=−+>−+−+=−+⎣⎦',()()()()22122121210g a a a a a ⎡⎤−>−−−+−=⎣⎦',且注意到()00g '=,根据零点存在性定理可知:()g x '在区间()0,∞+上存在唯一零点0x . 当()00,x x ∈时,()0g x '<,()g x 单调减,当()0,x x ∈+∞时,()0g x '>,()g x 单调递增, 所以()()000g x g <=.令()11ln 2n x x x x ⎛⎫=−− ⎪⎝⎭,则()()22211111022x n x x x x−−⎛⎫=−+=≤ ⎪⎝⎭', 则()n x 单调递减,注意到()10n =, 故当()1,x ∈+∞时,11ln 02x x x ⎛⎫−−< ⎪⎝⎭,从而有11ln 2x x x ⎛⎫<− ⎪⎝⎭, 所以()()()2=1ln 1g x ax x x x +−++()()211>1121ax x x x x ⎡⎤+−+⨯+−⎢⎥+⎣⎦21122a x ⎛⎫=−+ ⎪⎝⎭,令211022a x ⎛⎫−+= ⎪⎝⎭得2x =0g >, 所以函数()g x 在区间()0,∞+上存在变号零点,符合题意. 综合上面可知:实数a 得取值范围是10,2⎛⎫ ⎪⎝⎭.【选修4-4】(10分)(2023·全国乙卷·文·22·★★★)在直角坐标系xOy 中,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为2sin 42ππρθθ⎛⎫=≤≤ ⎪⎝⎭,曲线2C :2cos 2sin x y αα=⎧⎨=⎩(α为参数,2απ<<π).(1)写出1C 的直角坐标方程;(2)若直线y x m =+既与1C 没有公共点,也与2C 没有公共点,求m 的取值范围. 答案:(1)()[][]2211,0,1,1,2x y x y +−=∈∈ (2)()(),022,−∞+∞解析:(1)因为2sin ρθ=,即22sin ρρθ=,可得222x y y +=, 整理得()2211x y +−=,表示以()0,1为圆心,半径为1的圆,又因为2cos 2sin cos sin 2,sin 2sin 1cos 2x y ======−ρθθθθρθθθ,且ππ42θ≤≤,则π2π2≤≤θ,则[][]sin 20,1,1cos 21,2x y =∈=−∈θθ, 故()[][]221:11,0,1,1,2C x y x y +−=∈∈.(2)因为22cos :2sin x C y αα=⎧⎨=⎩(α为参数,ππ2α<<),整理得224x y +=,表示圆心为()0,0O ,半径为2,且位于第二象限的圆弧, 如图所示,若直线y x m =+过()1,1,则11m =+,解得0m =;若直线y x m =+,即0x y m −+=与2C相切,则20m =>⎩,解得m =若直线y x m =+与12,C C均没有公共点,则m >0m <, 即实数m 的取值范围()(),022,−∞+∞.【选修4-5】(10分)(2023·全国乙卷·文·23·★★)已知()22f x x x=+−(1)求不等式()6x f x ≤−的解集;(2)在直角坐标系xOy 中,求不等式组()60f x y x y ⎧≤⎨+−≤⎩所确定的平面区域的面积. 答案:(1)[2,2]−; (2)8.解析:(1)依题意,32,2()2,0232,0x x f x x x x x −>⎧⎪=+≤≤⎨⎪−+<⎩,不等式()6f x x ≤−化为:2326x x x >⎧⎨−≤−⎩或0226x x x ≤≤⎧⎨+≤−⎩或0326x x x <⎧⎨−+≤−⎩, 解2326x x x >⎧⎨−≤−⎩,得无解;解0226x x x ≤≤⎧⎨+≤−⎩,得02x ≤≤,解0326x x x <⎧⎨−+≤−⎩,得20x −≤<, 因此22x −≤≤,所以原不等式的解集为:[2,2]−(2)作出不等式组()60f x y x y ≤⎧⎨+−≤⎩表示的平面区域,如图中阴影ABC ,由326y x x y =−+⎧⎨+=⎩,解得(2,8)A −,由26y x x y =+⎧⎨+=⎩, 解得(2,4)C ,又(0,2),(0,6)B D , 所以ABC 的面积11|||62||2(2)|822ABC C A SBD x x =⨯−=−⨯−−=.。
11 普通高等学校招生全国统一考试数学(文史类)及答案本试卷分第 I 卷(选择题)和第 II 卷(非选择题)两部分.第 I 卷 1 至 2 页.第 II 卷 3 至 9页.共 150 分.考试时间 120 分钟.第Ⅰ卷(选择题共 60 分)一、选择题:本大题共 12 小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)直线(1 + a )x + y + 1 = 0 与圆 x 2+ y 2- 2x = 0 相切,则 a 的值为(A )1,-1(2)复数( +2(B ) 2. - 23 i )3 的值是2(C )1(D ) -1(A ) - i(B ) i(C ) -1(D )1(3)不等式(1 + x )(1- | x |) > 0 的解集是(A ){x | 0 ≤ x < 1}(B ){x | x < 0 且 x ≠ -1}(C ){x | -1 < x < 1} (D ){x | x < 1且 x ≠ -1}(4)函数 y = a x在[0,1]上的最大值与最小值这和为 3,则 a =(A ) 1 2 (B )2 (C )4 (D )1 4(5)在(0,2π) 内,使sin x > cos x 成立的 x 的取值范围是(A ) ( )(6)设集合 M = {x | x = + , k ∈ Z },N = {x | x = 2 4 + , k ∈ Z } 4 2 (A ) M = N (B ) M ⊂ N (C ) M ⊃ N (D ) M N = ∅(7)椭圆5x 2+ ky 2= 5的一个焦点是(0,2) ,那么 k =π,π ) (π, 5π )(B ) ( π ,π)(C )( π,5π ) (D )( π ,π) ( 5π, 3π4 2444 4 k 1 k 1 44 2,则22 2(A ) -1(B )1(C ) (D ) - (8)一个圆锥和一个半球有公共底面,如果圆锥的体积恰好与半球的体积相等,那么这个圆锥轴截面顶角的余弦值是 (A ) 34(B ) 45(C ) 35(D ) - 35(9) 0 < x < y < a < 1,则有(A ) log a (xy ) < 0 (B ) 0 < log a (xy ) < 1(C )1 < log a (xy ) < 2 (D ) log a (xy ) > 2(10)函数 y = x 2+ bx + c (∈ [0,+∞) )是单调函数的充要条件是 (A ) b ≥ 0(B ) b ≤ 0π(C ) b > 022(D ) b < 0(11)设θ∈ (0,1 ) ,则二次曲线 x 4 1 ctg θ- y tg θ= 1的离心率取值范围(A ) (0, ) 2 (B ) ( , ) 2 2 (C ) ( , 2 ) 2 (D ) ( 2,+∞)(12)从正方体的 6 个面中选取 3 个面,其中有 2 个面不相邻的选法共有(A )8 种 (B )12 种 (C )16 种 (D )20 种第 II 卷(非选择题共 90 分)二、填空题:本大题共 4 小题,每小题 4 分,共 16 分.把答案填在题中横线. (13)据新华社 2002 年 3 月 12 日电,1985 年到 2000 年间。
2000年普通高等学校招生全国统一考试数学(理工农医类)本试卷分第I卷(选择题)和第II卷(非选择题)两部分。
第I卷1至2页。
第II卷3至9页。
共150分。
考试时间120分钟。
第I卷(选择题共60分)注意事项:1.答第I卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上。
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答,不能答在试题卷上。
3.考试结束,监考人将本试卷和答题卡一并收回。
参考公式:三角函数的积化和差公式正棱台、圆台的侧面积公式其中c′、c分别表示上、下底面周长,l表示斜高或母线长其中S′、S分别表示上、下底面积,h表示高一、选择题:本大题共12分,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)设集合A和B都是自然数集合N,映射f:A→B把集合A中的元素n映射到集合B中的元素,则在映射f下,象20的原象是()(A)2 (B)3(C)4(D)5(2)在复平面内,把复数对应的向量按顺时针方向旋转,所得向量对应的复数是(A)(B)(C)(D)(3)一个长方体共一顶点的三个面的面积分别是,这个长方体对角线的长是(A)(B)(C)6(D)(4)已知sinα>sinβ,那么下列命题成立的是(A)若α、β是第一象限角,则cosα>cosβ(B)若α、β是第二象限角,则tgα>tgβ(C)若α、β是第三象限角,则cosα>cosβ(D)若α、β是第四象限角,则tgα>tgβ(5)函数y=-xcosx的部分图象是(6)《中华人民共和国个人所得税法》规定,公民全月工资、薪金所得不超过800元的部分不必纳税,超过800元的部分为全月应纳税所得额,此项税款按下表分希累进计算。
某人一月份应交纳此项税款26.78元,则他的当月工资、薪金所得介于(A)800~900元(B)900~1200元(C)1200~1500元(D)1500~2800元(7)若a>b>1,,则(A)R<P<Q(B)P<Q<R(C)Q<P<R(D)P<R<Q (8)以极坐标中的点(1,1)为圆心,1为半径的圆的方程是(A)(B)(C)(D)(9)一个圆柱的侧面展开图是一个正方形,这个圆柱的全面积与侧面积的比是(A)(B)(C)(D)(10)过原点的直线与圆相切,若切点在第三象限,则该直线的方程是(A)(B)(C)(D)(11)过抛物线(a>0)的焦点F作一直线交抛物线于P、Q两点,若线段PF与FQ 的长分别是p、q,则等于(A)2a(B)(C)4a(D)(12)如图,OA是圆锥底面中心O到母线的垂线,OA绕轴旋转一周所得曲面将圆锥分成体积相等的两部分,则母线与轴的夹角为(A)(B)(C)(D)第II卷(非选择题共90分)注意事项:1.第II卷共7页,用钢笔或圆珠笔直接答在试题卷中。
2023年高考理科数学试卷解析版(全国乙卷)2023年高考理科数学试卷解析版真题(全国乙卷)小编带来了2023年高考理科数学试卷解析版(全国乙卷),数学与我们的生活有着密切的联系,现实生活中蕴涵着大量的数学信息,数学在现实生活中有着广泛的应用。
下面是小编为大家整理的2023年高考理科数学试卷解析版(全国乙卷),希望能帮助到大家!2023年高考理科数学试卷解析版(全国乙卷)高中数学基础知识点一、函数的概念与表示1、映射(1)映射:设A、B是两个集合,如果按照某种映射法则f,对于集合A中的任一个元素,在集合B中都有唯一的元素和它对应,则这样的对应(包括集合A、B以及A到B的对应法则f)叫做集合A到集合B 的映射,记作f:A→B。
注意点:(1)对映射定义的理解。
(2)判断一个对应是映射的方法。
一对多不是映射,多对一是映射2、函数构成函数概念的三要素①定义域②对应法则③值域两个函数是同一个函数的条件:三要素有两个相同二、函数的解析式与定义域1、求函数定义域的主要依据:(1)分式的分母不为零;(2)偶次方根的被开方数不小于零,零取零次方没有意义;(3)对数函数的真数必须大于零;(4)指数函数和对数函数的底数必须大于零且不等于1;三、函数的值域1求函数值域的方法①直接法:从自变量x的范围出发,推出y=f(x)的取值范围,适合于简单的复合函数;②换元法:利用换元法将函数转化为二次函数求值域,适合根式内外皆为一次式;③判别式法:运用方程思想,依据二次方程有根,求出y的取值范围;适合分母为二次且∈R的分式;④分离常数:适合分子分母皆为一次式(x有范围限制时要画图);⑤单调性法:利用函数的单调性求值域;⑥图象法:二次函数必画草图求其值域;⑦利用对号函数⑧几何意义法:由数形结合,转化距离等求值域。
主要是含绝对值函数四.函数的奇偶性1.定义:设y=f(x),x∈A,如果对于任意∈A,都有,则称y=f(x)为偶函数。
如果对于任意∈A,都有,则称y=f(x)为奇函数。
2023高考全国甲卷理科数学试题及解析(完整版)高中必考重点知识点●不等式1、不等式你会解么?你会解么?如果是写解集不要忘记写成集合形式!2、的解集是(1,3),那么的解集是什么?3、两类恒成立问题图象法——恒成立,则=?★★★★分离变量法——在[1,3]恒成立,则=?(必考题)4、线性规划问题(1)可行域怎么作(一定要用直尺和铅笔)定界——定域——边界(2)目标函数改写:(注意分析截距与z的关系)(3)平行直线系去画5、基本不等式的形式和变形形式如a,b为正数,a,b满足,则ab的范围是6、运用基本不等式求最值要注意:一正二定三相等!如的最小值是的最小值(不要忘记交代是什么时候取到=!!)一个非常重要的函数——对勾函数的图象是什么?运用对勾函数来处理下面问题的最小值是7、★★两种题型:和——倒数和(1的代换),如x,y为正数,且,求的最小值?和——积(直接用基本不等式),如x,y为正数,则的范围是?不要忘记x,xy,x2+y2这三者的关系!如x,y为正数,则的范围是?高中数学要怎么来学课前预习一个老生常谈的话题,也是提到学习方法必将的一个,话虽老,虽旧,但仍然是不得不提。
虽然大家都明白该这样做,但是真正能够做到课前预习的能有几人,课前预习可以使我们提前了解将要学习的知识,不至于到课上手足无措,加深我们听课时的理解,从而能够很快的吸收新知识。
记笔记这里主要指的是课堂笔记,因为每节课的时间有限,所以老师将的东西一般都是精华部分,因此很有必要把它们记录下来,一来可以加深我们的理解,好记性不如烂笔头吗,二来可以方便我们以后复习查看。
如果对课堂讲述的知识不理解的同学更应该做笔记,以便课下细细琢磨,直到理解为止。
课后复习同预习一样,是个老生常谈的话题,但也是行之有效的方法,课堂的几十分钟不足以使我们学习和消化所学知识,需要我们在课下进行大量的练习与巩固,才能真正掌握所学知识。
涉猎课外习题想要在数学中有所建树,取得好成绩,光靠课本上的知识是远远不够的,因此我们需要多多涉猎一些课外习题,学习它们的解题思路和方法,如果实在不能理解,可以问问老师或者同学。
2022年普通高等学校招生全国统一考试(全国甲卷)理科数学注意事项:1.答卷前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号填写在答题卡上,并认真核准条形码上的准考证号、姓名、考场号、座位号及科目,在规定的位置贴好条形码。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若13i z =-+,则1zzz =-( )A .13i -+B .13i -C .133-+ D .133- 2.某社区通过公益讲座以普及社区居民的垃圾分类知识.为了解讲座效果,随机抽取10位社区居民,让他们在讲座前和讲座后各回答一份垃圾分类知识问卷,这10位社区居民在讲座前和讲座后问卷答题的正确率如下图:则( )A .讲座前问卷答题的正确率的中位数小于70%B .讲座后问卷答题的正确率的平均数大于85%C .讲座前问卷答题的正确率的标准差小于讲座后正确率的标准差D .讲座后问卷答题的正确率的极差大于讲座前正确率的极差3.设全集{2,1,0,1,2,3}U =--,集合{}2{1,2},430A B x x x =-=-+=∣,则()UA B =( )A .{1,3}B .{0,3}C .{2,1}-D .{2,0}-4.如图,网格纸上绘制的是一个多面体的三视图,网格小正方形的边长为1,则该多面体的体积为( )A .8B .12C .16D .20 5.函数()33cos x x y x -=-在区间ππ,22⎡⎤-⎢⎥⎣⎦的图像大致为( ) A . B .C .D .6.当1x =时,函数()ln bf x a x x=+取得最大值2-,则(2)f '=( ) A .1- B .12- C .12D .17.在长方体1111ABCD A B C D -中,已知1B D 与平面ABCD 和平面11AA B B 所成的角均为30︒,则( )A .2AB AD = B .AB 与平面11ABCD 所成的角为30︒C .1AC CB =D .1B D 与平面11BB C C 所成的角为45︒8.沈括的《梦溪笔谈》是中国古代科技史上的杰作,其中收录了计算圆弧长度的“会圆术”,如图,AB 是以O 为圆心,OA 为半径的圆弧,C 是AB 的中点,D 在AB 上,CD AB ⊥.“会圆术”给出AB 的弧长的近似值s 的计算公式:2CD s AB OA=+.当2,60OA AOB =∠=︒时,s =( )A .11332- B .1132- C .9332- D .932- 9.甲、乙两个圆锥的母线长相等,侧面展开图的圆心角之和为2π,侧面积分别为S 甲和S 乙,体积分别为V 甲和V 乙.若=2S S 甲乙,则=VV 甲乙( ) A 5 B .22 C 10 D 51010.椭圆2222:1(0)x y C a b a b+=>>的左顶点为A ,点P ,Q 均在C 上,且关于y 轴对称.若直线,AP AQ 的斜率之积为14,则C 的离心率为( )A .32 B .22 C .12 D .1311.设函数π()sin 3f x x ω⎛⎫=+ ⎪⎝⎭在区间(0,π)恰有三个极值点、两个零点,则ω的取值范围是( )A .513,36⎡⎫⎪⎢⎣⎭ B .519,36⎡⎫⎪⎢⎣⎭ C .138,63⎛⎤ ⎥⎝⎦ D .1319,66⎛⎤⎥⎝⎦12.已知3111,cos ,4sin 3244a b c ===,则( )A .c b a >>B .b a c >>C .a b c >>D .a c b >>二、填空题:本题共4小题,每小题5分,共20分。
全国2022年新高考I卷数学试题全国2022年新高考I卷数学试题及答案(图片版)考数学一定要小心,对于解答题中的容易题和中档题,要注意解题的规范化,关键步骤不能丢,以下是小编整理的全国2022年新高考I卷数学试题,希望可以提供给大家进行参考和借鉴。
全国2022年新高考I卷数学试题高考数学答题有什么策略1.调适心理,增强信心(1)合理设置考试目标,创设宽松的应考氛围,以平常心对待高考;(2)合理安排饮食,提高睡眠质量;(3)保持良好的备考状态,不断进行积极的心理暗示;(4)静能生慧,稳定情绪,净化心灵,满怀信心地迎接即将到来的考试。
2.悉心准备,不紊不乱(1)重点复习,查缺补漏。
对前几次模拟考试的试题分类梳理、整合,既可按知识分类,也可按数学思想方法分类。
强化联系,形成知识网络结构,以少胜多,以不变应万变。
(2)查找错题,分析病因,对症下药,这是重点工作。
(3)阅读《考试说明》和《试题分析》,确保没有知识盲点。
考场数学答题技巧1、进入考试先审题考试开始后,很多学生喜欢奋笔疾书;但切记:审题一定要仔细,一定要慢。
数学题经常在一个字、一个数据里边暗藏着解题的关键,这个字、这个数据没读懂,要么找不着解题的关键,要么你误读了这个题目。
你在误读的基础上来做的话,你可能感觉做得很轻松,但这个题一分不得。
所以审题一定要仔细,你只有把题意弄明白了,这个题目才有可能做对。
会做的题目是不耽误时间的,真正耽误时间的是在审题的过程中,在找思路的过程中,只要找到思路了,单纯地写那些步骤并不占用时间。
2、迅速摸透“题情”刚拿到试卷,一般心情比较紧张,不忙匆匆作答,可先从头到尾、正面反面通览全卷,尽量从卷面上获取最多的信息,为实施正确的解题策略作全面调查,一般可在十分钟之内做完三件事:1)顺利解答那些一眼看得出结论的简单选择或填空题(建议第一题做两遍,直至答案一致为止,一旦解出,情绪立即会稳定)。
2)对不能立即作答的题目,可一面通览,一面粗略分为甲、已两类:甲类指题型比较熟悉、估计上手比较容易的题目,乙类是题型比较陌生、自我感觉比较困难的题目。
2002年普通高等学校招生全国统一考试数学试卷(理科)及答案本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页.第II 卷3至9页.共150分.考试时间120分钟.第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页.第II 卷3至9页.共150分.考试时间120分钟.(1)圆1)1(22=+-y x 的圆心到直线y x =的距离是 (A )21(B )23 (C )1 (D )3(2)复数3)2321(i +的值是 (A )i - (B )i (C )1- (D )1 (3)不等式0|)|1)(1(>-+x x 的解集是(A )}10|{<≤x x (B )0|{<x x 且}1-≠x (C )}11|{<<-x x (D )1|{<x x 且}1-≠x (4)在)2,0(π内,使x x cos sin >成立的x 的取值范围是(A ))45,()2,4(ππππ (B )),4(ππ (C ))45,4(ππ (D ))23,45(),4(ππππ (5)设集合},412|{Z k k x x M ∈+==,},214|{Z k k x x N ∈+==,则(A )N M = (B )N M ⊂ (C )N M ⊃ (D )∅=N M(6)点)0,1(P 到曲线⎩⎨⎧==ty t x 22(其中参数R t ∈)上的点的最短距离为(A )0 (B )1 (C )2 (D )2(7)一个圆锥和一个半球有公共底面,如果圆锥的体积恰好与半球的体积相等,那么这个圆锥轴截面顶角的余弦值是 (A )43 (B )54 (C )53 (D )53- (8)正六棱柱111111F E D C B A ABCDEF -的底面边长为1,侧棱长为2,则这个棱柱侧面对角线D E 1与1BC 所成的角是(A )︒90 (B )︒60 (C )︒45 (D )︒30 (9)函数c bx x y ++=2(),0[+∞∈)是单调函数的充要条件是 (A )0≥b (B )0≤b (C )0>b (D )0<b (10)函数111--=x y 的图象是(11)从正方体的6个面中选取3个面,其中有2个面不相邻的选法共有 (A )8种 (B )12种 (C )16种 (D )20种 (12)据2002年3月5日九届人大五次会议《政府工作报告》:“2001年国内生产总值达到95933亿元,比上年增长7.3%”,如果“十•五”期间(2001年-2005年)每年的国内生产总值都按此年增长率增长,那么到“十•五”末我国国内年生产总值约为(A )115000亿元 (B )120000亿元 (C )127000亿元 (D )135000亿元第II 卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线. (13)函数xa y =在]1,0[上的最大值与最小值这和为3,则a = (14)椭圆5522=+ky x 的一个焦点是)2,0(,那么=k (15)72)2)(1(-+x x 展开式中3x 的系数是(16)已知221)(x x x f +=,那么)41()4()31()3()21()2()1(f f f f f f f ++++++=三、解答题:本大题共6小题,共74分,解答应写出文字说明、证明过程或演算步骤. (17)已知12cos cos 2sin 2sin 2=-+αααα,)2,0(πα∈,求αsin 、αtg 的值(18)如图,正方形ABCD 、ABEF 的边长都是1,而且平面ABCD 、ABEF 互相垂直点M 在AC 上移动,点N 在BF 上移动,若a BN CM ==(20<<a )(1)求MN 的长;(2)a 为何值时,MN 的长最小;(3)当MN 的长最小时,求面MNA 与面MNB 所成二面角α的大小(19)设点P 到点)0,1(-、)0,1(距离之差为m 2,到x 、y 轴的距离之比为2,求m 的取值范围(20)某城市2001年末汽车保有量为30万辆,预计此后每年报废上一年末汽车保有量的6%,并且每年新增汽车数量相同为保护城市环境,要求该城市汽车保有量不超过60万辆,那么每年新增汽车数量不应超过多少辆?(21)设a 为实数,函数1||)(2+-+=a x x x f ,R x ∈ (1)讨论)(x f 的奇偶性; (2)求)(x f 的最小值(22)设数列}{n a 满足:121+-=+n n n na a a , ,3,2,1=n (I )当21=a 时,求432,,a a a 并由此猜测n a 的一个通项公式; (II )当31≥a 时,证明对所的1≥n ,有 (i )2+≥n a n (ii )2111111111321≤++++++++n a a a a ADE参考答案(13)2 (14)1 (15)1008 (16)27 三、解答题(17)解:由12cos cos 2sin 2sin 2=-+αααα,得0cos 2cos sin 2cos sin 42222=-+ααααα0)1sin sin 2(cos 222=-+ααα 0)1)(sin 1sin 2(cos 22=+-ααα∵)2,0(πα∈∴01sin ≠+α,0cos 2≠=α ∴01sin 2=-α,即21sin =α ∴6πα=∴33=αtg (18)解(I )作MP ∥AB 交BC 于点P ,NQ ∥AB 交BE 于点Q ,连结PQ ,依题意可得MP ∥NQ ,且NQ MP =,即MNQP 是平行四边形∴PQ MN =由已知a BN CM ==,1===BE AB CB ∴2==BF AC ,a BQ CP 22== )20( 21)22( )2()21( )1(22222<<+-=+-==+-==a a a a BQ CP PQ MN(II )由(I )21)22( 2+-=a MN 所以,当22=a 时,22=MN 即当M 、N 分别为AC 、BF 的中点时,MN 的长最小,最小值为22(III )取MN 的中点G ,连结AG 、BG , ∵BN BM AN AM ==,,G 为MN 的中点∴MN BG MN AG ⊥⊥,,即AGB ∠即为二面角的平面角α又46==BG AG ,所以,由余弦定理有 31464621)46()46(cos 22-=⋅⋅-+=α 故所求二面角为31arccos -=πα(19)解:设点P 的坐标为),(y x ,依题设得2||||=x y ,即x y 2±=,0≠x 因此,点),(y x P 、)0,1(-M 、)0,1(N 三点不共线,得2||||||||=<-MN PN PM∵0||2||||||>=-m PN PM ∴1||0<<m因此,点P 在以M 、N 为焦点,实轴长为||2m 的双曲线上,故112222=--my m x 将x y 2±=代入112222=--m y m x ,并解得222251)1(mm m x --=,因012>-m 所以0512>-m 解得55||0<<m 即m 的取值范围为)55,0()0,55( -(20)解:设2001年末汽车保有量为1b 万辆,以后各年末汽车保有量依次为2b 万辆,3b 万辆,…,每年新增汽车x 万辆,则301=b ,x b b +⨯=94.012对于1>n ,有)94.01(94.0 94.0211x b xb b n n n ++⨯=+⨯=-+ 所以)94.094.094.01(94.0211nn n x b b +++++⨯=+x b nn06.094.0194.01-+⨯=n x x 94.0)06.030(06.0⨯-+= 当006.030≥-x,即8.1≤x 时 3011=≤≤≤+b b b n n当006.030<-x,即8.1>x 时 数列}{n b 逐项增加,可以任意靠近06.0x 06.0]94.0)06.030(06.0[lim lim 1x x x b n n n n =⨯-+=-+∞→+∞→ 因此,如果要求汽车保有量不超过60万辆,即60≤n b ( ,3,2,1=n )则6006.0≤x,即6.3≤x 万辆 综上,每年新增汽车不应超过6.3万辆(21)解:(I )当0=a 时,函数)(1||)()(2x f x x x f =+-+-=- 此时,)(x f 为偶函数当0≠a 时,1)(2+=a a f ,1||2)(2++=-a a a f ,)()(a f a f -≠,)()(a f a f --≠此时)(x f 既不是奇函数,也不是偶函数(II )(i )当a x ≤时,43)21(1)(22++-=++-=a x a x x x f 当21≤a ,则函数)(x f 在],(a -∞上单调递减,从而函数)(x f 在],(a -∞上的最小值为1)(2+=a a f .若21>a ,则函数)(x f 在],(a -∞上的最小值为a f +=43)21(,且)()21(a f f ≤. (ii )当a x ≥时,函数43)21(1)(22+-+=+-+=a x a x x x f若21-≤a ,则函数)(x f 在],(a -∞上的最小值为a f -=-43)21(,且)()21(a f f ≤-若21->a ,则函数)(x f 在),[+∞a 上单调递增,从而函数)(x f 在),[+∞a 上的最小值为1)(2+=a a f .综上,当21-≤a 时,函数)(x f 的最小值为a -43当2121≤<-a 时,函数)(x f 的最小值为12+a当21>a 时,函数)(x f 的最小值为a +43.(22)解(I )由21=a ,得311212=+-=a a a 由32=a ,得4122223=+-=a a a 由43=a ,得5133234=+-=a a a由此猜想n a 的一个通项公式:1+=n a n (1≥n ) (II )(i )用数学归纳法证明:①当1=n 时,2131+=≥a ,不等式成立. ②假设当k n =时不等式成立,即2+≥k a k ,那么3521)2)(2(1)(1+≥+=+-++≥+-=+k k k k k k a a a k k k .也就是说,当1+=k n 时,2)1(1++≥+k a k 据①和②,对于所有1≥n ,有2n a n ≥+.(ii )由1)(1+-=+n a a a n n n 及(i ),对2≥k ,有1)1(11++-=--k a a a k k k121)121(11+=++-+-≥--k k a k k a……1)1(2122211211-+=++++≥---a a a k k k k于是11211111-⋅+≤+k k a a ,2≥k2131212211121111111111121111=+≤+≤+=+++≤+∑∑∑=-=-=a a a a a nk k nk k nk k。