3.2.1古典概型公开课
- 格式:ppt
- 大小:679.50 KB
- 文档页数:16
3.2.1古典概型(教学设计)一、 教材分析(一) 教材地位、作用《古典概型》是高中数学人教A 版必修3第三章概率3.2的内容,教学安排是2课时,本节是第一课时。
是在随机事件的概率之后,几何概型之前,尚未学习排列组合的情况下教学的。
古典概型是一种特殊的数学模型,也是一种最基本的概率模型,它的引入避免了大量的重复试验,而且得到的是概率精确值,同时古典概型也是后面学习条件概率的基础,它有利于理解概率的概念,有利于计算一些事件的概率,有利于解释生活中的一些问题,起到承前启后的作用,所以在概率论中占有相当重要的地位。
(二)教材处理:学情分析:学生基础一般,但师生之间,学生之间情感融洽,上课互动氛围良好。
他们具备一定的观察,类比,分析,归纳能力,但对知识的理解和方法的掌握在一些细节上不完备,反映在解题中就是思维不慎密,过程不完整。
教学内容组织和安排:根据上面的学情分析,学生思维不严密,意志力薄弱,故而整个教学环节总是创设恰当的问题情境,引导学生积极思考,培养他们的逻辑思维能力。
通过对问题情境的分析,引出基本事件的概念,古典概型中基本事件的特点,以及古典概型的计算公式。
对典型例题进行分析,以巩固概念,掌握解题方法。
二、三维目标知识与技能目标:(1)正确理解古典概型的两大特点:1)试验中所有可能出现的基本事件只有有限个;2)每个基本事件出现的可能性相等;(2)理解古典概型的概率计算公式 :P (A )=总的基本事件个数包含的基本事件个数A (3)会用列举法计算一些随机事件所含的基本事件数及事件发生的概率。
过程与方法目标:根据本节课的内容和学生的实际水平,通过模拟试验让学生理解古典概型的特征:试验结果的有限性和每一个试验结果出现的等可能性,观察类比各个试验,归纳总结出古典概型的概率计算公式,体现了化归的重要思想,掌握列举法,学会运用分类讨论的思想解决概率的计算问题。
情感态度与价值观目标:通过各种有趣的,贴近学生生活的素材,激发学生学习数学的热情和兴趣,培养学生勇于探索,善于发现的创新思想;通过参与探究活动,领会理论与实践对立统一的辨证思想;结合问题的现实意义,培养学生的合作精神.三、教学重点与难点1、重点:理解古典概型的概念及利用古典概型求解随机事件的概率。
高中数学人教A版必修3第三章《3.2.1 古典概型》优质课公开课教案教师资格证面试试讲教案
1教学目标
1.了解基本事件的特点;
2.理解古典概型的概念及特点;
3.会应用古典概型概率公式解决简单的概率计算问题.
2新设计
填要点、记疑点
1.基本事件的特点
(1)任何两个基本事件是互斥的;
(2)任何事件(除不可能事件)都可以表示成基本事件的和.
2.古典概型的概念
如果某概率模型具有以下两个特点:
(1)试验中所有可能出现的基本事件只有有限个;
(2)每个基本事件出现的可能性相等;
那么我们将具有这两个特点的概率模型称为古典概率模型,简称古典概型.
3.古典概型的概率公式
对于任何事件A,P(A)=A包含的基本事件数/基本事件总数
3学情分析
本节知识简单实用,以身边的事情为例,引发学生思考,可激发学生兴趣
4重点难点
1.理解古典概型的概念及特点;
2..会应用古典概型概率公式解决简单的概率计算问题.
5教学过程
5.1第一学时
教学目标
1.了解基本事件的特点;。
3. 2.1古典概型【教学目标】1.能说出古典概型的两大特点:1)试验中所有可能出现的基本事件只有有限个;2)每个基本事件出现的可能性相等;2.会应用古典概型的概率计算公式:P (A )=总的基本事件个数包含的基本事件个数A 3.会叙述求古典概型的步骤;【教学重难点】教学重点:正确理解掌握古典概型及其概率公式教学难点:会用列举法计算一些随机事件所含的基本事件数及事件发生的概率【教学过程】前置测评1.两个事件之间的关系包括包含事件、相等事件、互斥事件、对立事件,事件之间的运算包括和事件、积事件,这些概念的含义分别如何?若事件A 发生时事件B 一定发生,则 .若事件A 发生时事件B 一定发生,反之亦然,则A=B.若事件A 与事件B 不同时发生,则A 与B 互斥.若事件A 与事件B 有且只有一个发生,则A 与B 相互对立.2。
概率的加法公式是什么?对立事件的概率有什么关系?若事件A与事件B互斥,则 P(A+B)=P(A)+P(B).若事件A与事件B相互对立,则 P(A)+P(B)=1.3.通过试验和观察的方法,可以得到一些事件的概率估计,但这种方法耗时多,操作不方便,并且有些事件是难以组织试验的.因此,我们希望在某些特殊条件下,有一个计算事件概率的通用方法.新知探究我们再来分析事件的构成,考察两个试验:(1)掷一枚质地均匀的硬币的试验。
(2)掷一枚质地均匀的骰子的试验。
有哪几种可能结果?在试验(1)中结果只有两个,即“正面朝上”或“反面朝上”它们都是随机的;在试验(2)中所有可能的试验结果只有6个,即出现“1点”“2点”“3点”“4点”“5点”“6点”它们也都是随机事件。
我们把这类随机事件称为基本事件综上分析,基本事件有哪两个特征?(1)任何两个基本事件是互斥的;(2)任何事件(除不可能事件)都可以表示成基本事件的和.例1:从字母a,b,c,d中任意取出两个不同字母的试验中,有哪些基本事件?分析:为了得到基本事件,我们可以按照某种顺序,把所有可能的结果都列出来。
第一课时 3.2.1 古典概型教学要求:通过实例,理解古典概型及其概率计算公式,会用列举法计算一些随机事件所含的基本事件数及事件发生的概率.教学重点:理解基本事件的概念、理解古典概型及其概率计算公式.教学难点:古典概型是等可能事件概率.教学过程:一、复习准备:1. 回忆基本概念:必然事件,不可能事件,随机事件(事件).(1)必然事件:必然事件是每次试验都一定出现的事件.不可能事件:任何一次试验都不可能出现的事件称为不可能事件.(2)随机事件(事件):随机试验的每一种结果或随机现象的每一种表现称作随机事件,简称为事件.二、讲授新课:1.教学:基本事件(要正确区分事件和基本事件)定义:一个事件如果不能再被分解为两个或两个以上事件,称作基本事件.基本事件的两个特点:(1)任何两个基本事件是互斥的;(2)任何事件(除不可能事件)都可以表示成基本事件的和.例1:字母a,b,c,d中任意取出两个不同字母的试验中,有哪些基本事件?分析:为了得到基本事件,我们可以按照某种顺序,将所有的结果都列出来.2. 教学:古典概型的定义古典概型有两个特征:(1)试验中所有可能出现的基本事件只有有限个;(2)各基本事件的出现是等可能的,即它们发生的概率相同.我们称具有这两个特征的概率称为古典概率模型(classical models of probability)简称古典概型注意:在“等可能性”概念的基础上,很多实际问题符合或近似符合这两个条件,可以作为古典概型来看待.例2:掷两枚均匀硬币,求出现两个正面的概率.取样本空间:{甲正乙正,甲正乙反,甲反乙正,甲反乙反}. 这里四个基本事件是等可能发生的,故属古典概型.n=4, m=1, P=1/ 4 对于古典概型,任何事件的概率为: A P(A)=包含的基本事件的个数基本事件的总数P 120例2:(关键:这个问题什么情况下可以看成古典概型的)P 120例3:(要引导学生验证是否满足古典概型的两个条件)3. 小结:古典概型的两个特点:有限性和等可能性三、巩固练习:1. 练习:在10件产品中,有8件是合格的,2件是次品,从中任意抽2件进行检验,计算:(1)两件都是次品的概率;(2)2件中恰好有一件是合格品的概率;(3)至多有一件是合格品的概率(分析:这里出现的结果是等可能性的,因此可以用古典概型.)2. 连续向上抛掷两次硬币,求至少出现一次正面的概率.(分析:这一个不是等可能的.)3. 一次投掷两颗骰子,求出现的点数之和为奇数的概率.4 作业:①教材P 127第2题 ,②教材P 128.第4题第二课时 3.2.2 (整数值)随机数(randon numbers)的产生教学要求:让学生学会用计算机产生随机数.教学重点:初步体会古典概型的意义.教学难点:设计和运用模拟方法近似计算概率.教学过程:一、复习准备:回忆古典概型的两个特征:有限性和等可能性.二、讲授新课:1. 教学:例题P122例4:假设储蓄卡的密码由4位数组成,每个数字可以是0,1,2,……,9十个数字中的任意一个,假设一个人完全忘记了自己的密码,问他到自动取款机上试一次密码就能取到钱的概率是多少?P122例5:某种饮料每箱装配听,如果其中有2听不合格,问质检人员从中随机抽出2听,检测出不合格产品的几率有多大?2. 教学:随机数的产生(教师带着学生用计算器操作)①如何用计算器产生随机数:随机函数:REND(a,b)产生从整数a到整数b的取整数值的随机数.②如何用计算机产生随机数:在Excel 执行RANDBETWEEN函数或者查看P95的随机数表.P126例6,天气预报说,在今后的三天中,每一天下雨的概率均为040。