作业3 分治法
- 格式:doc
- 大小:20.50 KB
- 文档页数:4
分治法的简单描述分治法是一种算法设计的思想,它将一个大问题分解为多个小问题,通过解决小问题来解决大问题。
这种思想的应用非常广泛,可以用来解决各种问题,比如排序、查找、计算等等。
下面我们来详细介绍一下分治法的基本原理和应用。
分治法的基本原理是将一个问题分解为多个独立的子问题,然后对每个子问题进行求解,最后将子问题的解合并起来得到原问题的解。
这种分解和合并的过程可以递归地进行,直到问题变得足够简单,可以直接求解为止。
在应用分治法解决问题时,需要满足以下三个条件:1.原问题可以分解为多个独立的子问题;2.子问题的结构与原问题相同,只是规模更小;3.子问题的解可以合并得到原问题的解。
接下来我们来看两个分治法的经典应用:归并排序和快速排序。
归并排序是一种经典的排序算法,它的基本思想就是使用分治法将一个无序的序列分解为多个有序的子序列,然后再将这些子序列合并起来得到一个有序的序列。
具体的步骤如下:1.将序列分成两个子序列,分别对这两个子序列进行归并排序;2.将两个有序的子序列合并成一个有序的序列。
归并排序的时间复杂度为O(nlogn),其中n是序列的长度。
它的空间复杂度为O(n),其中n是序列的长度。
快速排序是另一种经典的排序算法,它的基本思想也是使用分治法将一个无序的序列分解为多个有序的子序列,然后再将这些子序列合并起来得到一个有序的序列。
具体的步骤如下:1.从序列中选择一个元素作为基准值,将序列分成两个子序列,一个小于基准值,一个大于基准值;2.分别对这两个子序列进行快速排序;3.将两个有序的子序列合并成一个有序的序列。
快速排序的时间复杂度取决于基准值的选择,最坏情况下的时间复杂度为O(n^2),其中n是序列的长度。
但是平均情况下的时间复杂度为O(nlogn),空间复杂度为O(logn)。
除了排序问题,分治法还可以应用于其他一些问题,比如最大子数组和问题。
给定一个整数数组,找到一个具有最大和的连续子数组。
分治法解决问题的步骤一、基础概念类题目(1 - 5题)题目1:简述分治法解决问题的基本步骤。
解析:分治法解决问题主要有三个步骤:1. 分解(Divide):将原问题分解为若干个规模较小、相互独立且与原问题形式相同的子问题。
例如,对于排序问题,可将一个大的数组分成两个较小的子数组。
2. 求解(Conquer):递归地求解这些子问题。
如果子问题规模足够小,则直接求解(通常是一些简单的基础情况)。
对于小到只有一个元素的子数组,它本身就是有序的。
3. 合并(Combine):将各个子问题的解合并为原问题的解。
在排序中,将两个已排序的子数组合并成一个大的有序数组。
题目2:在分治法中,分解原问题时需要遵循哪些原则?解析:1. 子问题规模更小:分解后的子问题规模要比原问题小,这样才能逐步简化问题。
例如在归并排序中,不断将数组对半分,子数组的长度不断减小。
2. 子问题相互独立:子问题之间应该尽量没有相互依赖关系。
以矩阵乘法的分治算法为例,划分后的子矩阵乘法之间相互独立进行计算。
3. 子问题与原问题形式相同:方便递归求解。
如二分查找中,每次查找的子区间仍然是一个有序区间,和原始的有序区间查找问题形式相同。
题目3:分治法中的“求解”步骤,如果子问题规模小到什么程度可以直接求解?解析:当子问题规模小到可以用简单的、直接的方法(如常量时间或线性时间复杂度的方法)解决时,就可以直接求解。
例如,在求数组中的最大最小值问题中,当子数组只有一个元素时,这个元素既是最大值也是最小值,可以直接得出结果。
题目4:分治法的“合并”步骤有什么重要性?解析:1. 构建完整解:它将各个子问题的解组合起来形成原问题的解。
例如在归并排序中,单独的两个子数组排序好后,只有通过合并操作才能得到整个数组的有序排列。
2. 保证算法正确性:如果合并步骤不正确,即使子问题求解正确,也无法得到原问题的正确答案。
例如在分治算法计算斐波那契数列时,合并不同子问题的结果来得到正确的斐波那契数是很关键的。
简述分治法求解的基本步骤分治法是一种基本的求解算法,它可以帮助我们解决复杂问题并实现高效的解决方案。
简言之,分治法是一个非常强大的算法,可以帮助我们解决很多规模较大的复杂问题。
分治法是由三个基本步骤组成:分解、解决和结合。
首先,分解步骤是分治法的核心步骤,即将原问题划分为若干规模较小的子问题,以便进行求解。
这些子问题往往容易解决,而且与原问题有联系。
比如,在解决一个最大的问题的时候,可以分解为N 个子问题,每个子问题都可以轻松解决。
其次,解决步骤则是对这些已经分解的子问题求解。
决定求解哪种子问题,则取决于实际情况,最常用的也有暴力解法、递归法、动态规划法等。
如果每个子问题都可以得到一个最优解,那么分治法也可以求出原问题的最优解。
最后,结合步骤是将分解出来的子问题的解合并成原问题的解。
一般来说,如果子问题的解是一个最优解的集合,则可以将这些最优解合并成原问题的最优解。
有时候,我们也可以从子问题的最优解中构造出一个更优解用于满足原问题。
总结起来,分治法求解的基本步骤由分解、解决和结合三个基本步骤组成,其中,分解步骤是分治法的核心步骤,解决步骤是求解已经分解的子问题,结合步骤是将子问题的解合并成原问题的解。
在解决复杂问题的时候,分治法可以极大的提高算法的效率,并且简单易行,非常实用。
分治法在计算机科学中被广泛使用,它可以解决多种不同的问题,包括排序、搜索、图论、博弈、动态规划、最大流量问题等。
分治法可以大大提高算法的运行效率,使得解决复杂问题更加便捷。
因此,分治法是一种非常有效的算法,近年来得到了越来越多的应用。
综上所述,分治法是一种有效的算法,它可以帮助我们解决复杂的问题并得到最优解,它由三个基本步骤组成:分解、解决和结合。
在解决复杂问题的时候,应用分治法可以大大提高算法的效率,已较好地解决问题。
如何应用分治算法求解问题分治算法,英文名为Divide and Conquer Algorithm,是一种高效的算法设计策略,在计算机科学中有着广泛的应用。
该算法将一个大问题分解成多个小问题,各自独立地解决,再将结果合并起来得到最终结果。
在本文中,我们将阐述如何应用分治算法求解问题,并通过几个实例来具体说明该算法的应用。
一、分治算法的原理分治算法的核心思想是将一个大问题分解成若干个小问题来解决,然后将这些小问题的解组合起来生成大问题的解。
其具体步骤如下:1. 分解:将原问题划分成若干个规模较小的子问题。
2. 解决:递归地解决每个子问题。
如果子问题足够小,则直接求解。
3. 合并:将所有子问题的解合并成原问题的解。
分治算法的主要优点在于它可以有效地缩小问题规模,从而缩短整个算法的执行时间。
另外,该算法天然适用于并行计算,因为每个子问题都是独立求解的。
二、分治算法的应用分治算法在各种领域都有广泛应用,包括数学、自然科学、计算机科学等。
以计算机科学领域为例,分治算法常常用于解决以下类型的问题:1. 排序问题2. 查找问题3. 字符串匹配问题4. 最大子序列和问题5. 矩阵乘法问题6. 图形问题下面我们将一一讲解这些问题的分治算法实现。
1. 排序问题排序问题是在一组数据中将其按指定规律进行排列的问题。
在计算机科学中,排序算法是十分重要的一类算法。
其中,分治算法由于其高效性和可并行性被广泛应用。
常用的分治排序算法包括归并排序和快速排序。
归并排序的基本思想是将待排序元素以中心点为界分成两个序列,对每个序列进行排序,然后将两个序列合并成一个有序序列;而快速排序则利用了分割的思想,通过每次选取一个元素作为“轴点”,将数组分成小于轴点和大于轴点的两部分,对这两部分分别进行快速排序。
2. 查找问题查找问题是在一组数据中寻找某个元素的问题。
分治算法在查找问题中的应用主要体现在二分查找中。
在二分查找中,我们首先将已排序的数组分成两半,在其中一半中查找目标值。
分治算法课程思政引言:分治算法是一种重要的算法思想,它能够将复杂的问题分解为更小的子问题,并通过合并子问题的解来得到原问题的解。
在计算机科学领域中,分治算法被广泛应用于各种问题的求解,包括排序、搜索、图论等。
然而,分治算法不仅仅是一种技术,它也具有一定的思想内涵,与我们的思政课程有着紧密的关联。
一、分治算法的基本原理分治算法的基本原理可以概括为以下三个步骤:1. 分解:将原问题分解成若干个规模较小、相互独立且与原问题性质相同的子问题;2. 解决:递归地求解各个子问题。
如果子问题的规模足够小,则直接求解;3. 合并:将子问题的解合并成原问题的解。
二、分治算法的优势与应用1. 提高问题求解效率:通过将问题分解为更小的子问题,并利用子问题的解来解决原问题,分治算法能够提高问题的求解效率。
2. 并行计算:分治算法的特点是子问题之间相互独立,这使得分治算法能够很好地适应并行计算的需求。
3. 应用广泛:分治算法在各个领域都有广泛的应用,比如在排序算法中,快速排序和归并排序就是典型的分治算法;在图论中,最短路径算法和最小生成树算法也是基于分治思想。
三、分治算法与思政课程的关联1. 科学思维:分治算法能够帮助我们培养科学思维,通过将问题分解为更小的子问题,有助于我们理清问题的本质,形成系统化的思考方式。
2. 人文关怀:分治算法的思想也体现了人文关怀的一面。
通过将问题分解为更小的子问题,可以更加细致地对问题进行分析与解决,从而为人们提供更好的服务和保障。
3. 创新意识:分治算法的应用需要我们不断地创新和思考,通过将问题分解为更小的子问题,我们能够发现问题的更多解决思路,培养创新意识和创新能力。
4. 解决社会问题:分治算法在解决实际社会问题上具有重要意义。
通过将复杂的社会问题分解为更小的子问题,我们能够更好地理解和解决这些问题,为社会的发展和进步做出贡献。
结语:分治算法作为一种重要的算法思想,不仅具有技术的价值,更有着深刻的思想内涵。
分治算法主方法分治算法是一种算法设计策略,将问题分解成若干个规模较小且结构相似的子问题,然后递归地解决这些子问题,最后将子问题的解合并起来得到原问题的解。
分治算法主方法是指应用分治策略解决问题的通用模板,下面将详细介绍分治算法主方法的原理和应用。
一、原理分治算法主方法包含三个步骤:分解、解决和合并。
1. 分解:将原问题分解成若干个规模较小且结构相似的子问题。
分解的策略可以根据具体问题的特点来确定,通常是将原问题划分成两个或多个规模相等或相近的子问题。
2. 解决:递归地解决子问题。
当子问题的规模足够小时,可以直接求解。
否则,继续将子问题分解成更小的子问题,直到可以直接求解为止。
3. 合并:将子问题的解合并成原问题的解。
子问题的解可以通过递归得到,合并的操作可以根据具体问题的要求进行,通常是将子问题的解组合起来得到原问题的解。
二、应用分治算法主方法可以应用于解决各种问题,下面列举几个常见的应用场景。
1. 排序问题:如归并排序、快速排序等。
这些排序算法通过将待排序序列分解成若干个规模较小的子序列,然后递归地排序这些子序列,并将排好序的子序列合并起来得到最终的有序序列。
2. 查找问题:如二分查找。
二分查找通过将待查找的有序序列分解成两个规模相等的子序列,然后递归地在其中一个子序列中查找目标元素。
如果找到了目标元素,则返回其索引;如果未找到,则继续在另一个子序列中查找。
3. 求解最大子数组问题:给定一个整数数组,求其连续子数组中和最大的值。
最大子数组问题可以通过分治算法主方法求解。
将原数组分解成两个规模相等的子数组,分别求解左子数组和右子数组的最大子数组和,然后将其合并起来得到原数组的最大子数组和。
4. 求解最近对问题:给定平面上的n个点,求其中距离最近的两个点。
最近对问题可以通过分治算法主方法求解。
将平面上的点按照横坐标进行排序,然后将点集分解成两个规模相等的子集,分别求解左子集和右子集的最近对,然后将其合并起来得到原点集的最近对。
分治法的步骤分治法是一种常见的算法设计策略,它将问题分解成更小的子问题,然后递归地解决每个子问题,最后将这些子问题的解合并起来得到原问题的解。
下面将详细介绍分治法的步骤。
一、分治法的定义和基本思想分治法是一种算法设计策略,它将一个大问题分解成若干个相互独立且结构相同的小问题,递归地求解这些小问题,并将它们的结果组合起来得到原问题的解。
在实际应用中,分治法通常用于处理那些具有重复性质或者可以通过递归实现的计算任务。
二、分治法的步骤1. 分解:首先将原问题划分为若干个规模较小、结构相似且独立的子问题。
这个过程通常称为“分解”(divide)。
2. 解决:对每个子问题进行递归求解。
如果子问题足够小而可以直接求解,则直接求解。
这个过程通常称为“解决”(conquer)。
3. 合并:将所有子问题的结果合并成原问题的结果。
这个过程通常称为“合并”(combine)。
三、应用场景1. 排序算法:例如归并排序、快速排序等。
2. 查找算法:例如二分查找。
3. 图论算法:例如最大子数组、矩阵乘法、汉诺塔等。
四、分治法的优缺点1. 优点:分治法可以有效地解决一些具有重复性质或者可以通过递归实现的计算任务,具有较高的效率和可扩展性。
2. 缺点:分治法需要额外的空间来存储子问题的结果,而且在递归过程中可能会出现栈溢出等问题,需要进行合理的优化。
同时,如果分解得不够合理或者子问题之间存在依赖关系,则可能会导致算法效率下降。
五、总结分治法是一种常见的算法设计策略,它将一个大问题划分为若干个规模较小、结构相似且独立的子问题,并递归地求解这些子问题。
在实际应用中,分治法通常用于处理那些具有重复性质或者可以通过递归实现的计算任务。
虽然分治法具有较高的效率和可扩展性,但也存在额外空间开销和栈溢出等问题,需要进行合理优化。
分治法实验总结
分治法是一种常用的算法设计策略,它将问题分解成若干个子问题,然后递归地解决这些子问题,最后将子问题的解合并成原问题的解。
在本次实验中,我们通过实现归并排序和快速排序两个算法,深入理解了分治法的思想和实现方式。
我们实现了归并排序算法。
归并排序的基本思想是将待排序的序列分成若干个子序列,每个子序列都是有序的,然后再将子序列合并成一个有序的序列。
在实现过程中,我们采用了递归的方式,将序列不断地分成两半,直到每个子序列只有一个元素,然后再将这些子序列两两合并,直到最终得到一个有序的序列。
归并排序的时间复杂度为O(nlogn),是一种稳定的排序算法。
接着,我们实现了快速排序算法。
快速排序的基本思想是选择一个基准元素,将序列分成两个部分,一部分比基准元素小,一部分比基准元素大,然后递归地对这两个部分进行排序。
在实现过程中,我们选择了序列的第一个元素作为基准元素,然后使用两个指针分别从序列的两端开始扫描,将比基准元素小的元素放在左边,将比基准元素大的元素放在右边,最后将基准元素放在中间,然后递归地对左右两个部分进行排序。
快速排序的时间复杂度为O(nlogn),但是在最坏情况下,时间复杂度会退化为O(n^2)。
通过实现归并排序和快速排序两个算法,我们深入理解了分治法的
思想和实现方式。
分治法是一种非常重要的算法设计策略,可以用来解决很多复杂的问题,比如最近点对问题、矩阵乘法问题等。
在实际应用中,我们可以根据具体问题的特点选择合适的分治算法,以提高算法的效率和准确性。
分治法有哪些经典用途分治法是一种常见的算法思想,它的核心思想就是将一个问题分解成多个子问题,然后解决各个子问题,最后将各个子问题的结果合并,从而得到原问题的解决方案。
分治法一般可以分为三个步骤:分解问题、解决子问题、合并子问题结果。
分治法可以用来解决许多经典问题,下面将介绍一些常见的应用。
1. 排序排序可以说是计算机程序中最常见的问题之一,而分治法则是其中的一种经典算法思想。
经典的归并排序算法就是一种基于分治法的排序算法。
该算法将数组分解成两个子数组,分别进行递归排序,最后将两个子数组合并成一个有序数组。
2. 最大子序列和问题最大子序列和问题是一个在数组中寻找一个连续子序列,使得该子序列中的元素和最大的问题。
该问题可以使用分治法来解决。
将数组分成两半,分别计算左半边、右半边以及横跨两个子数组的最大子序列和。
最后将这些结果合并,找出最大的子序列和。
3. 二分搜索二分搜索是一种常见的查找算法,它可以在有序数组中快速查找指定元素。
该算法也是一个基于分治法的算法。
将数组分成两半后查看中间元素,如果中间元素等于指定元素,则查找结束。
如果中间元素大于指定元素,则在左边的子数组中查找。
如果中间元素小于指定元素,则在右边的子数组中查找。
4. 逆序对问题逆序对问题是一个在数组中寻找所有逆序对个数的问题。
逆序对指的是在一个数组中,如果i<j且a[i]>a[j],则称(a[i], a[j])是一个逆序对。
这个问题可以利用分治法来解决,将数组分成两个子数组,分别计算左半边、右半边以及跨越两个子数组的逆序对数。
最后将这些结果合并,得到所有逆序对的个数。
5. 矩阵乘法矩阵乘法是一个重要的数学问题,也是在计算机领域中广泛应用的问题之一。
分治法可以用来加快矩阵乘法的计算。
将两个矩阵分成四个子矩阵后,可以利用递归方式对每个子矩阵进行矩阵乘法计算,最后将结果合并得到最终的乘积矩阵。
6. 凸包问题凸包问题是计算机几何学中的一个经典问题,它的主要目标是求出一个点集的凸包,即包含给定点集的最小凸多边形。
2012级算法设计与分析作业3
分治法
1. 作业题
(1)求n个元素的数组中最大元素的位置。
请用分治法思想写出求解该问题的算法伪代码,并编写程序实现该算法。
并回答以下问题。
a. 如果数组中有多个最大元素,算法的输出应如何设计?
答:如果数组中有多个最大元素,记录每个最大元素在数组中的位置依次输出。
b. 建立元素比较次数的递推关系式,并求解?
答:递推关系式:
若n为偶数:(n/2-1)*2+1
若n为奇数且不为1:(n-1)/2-1+(n+1)/2
若n为1: 0
c. 如果不用分治法,而采用蛮力法来解决该问题,算法中的元素比较次数是多少?
答:若不适用分治法,算法中的元素比较次数为n-1。
源代码:
Int main()
{
int a[n]={0,6,1,2,3,5};
int mid=n/2;
int max1=0, max2=0;
for(int i=0;i<=mid;++i)
{
if(a[i]>max1)
max1=a[i];
}
for(int j=mid+1;j<n;++j)
{
if(a[j]>max2)
max2=a[j];
}
if(max1>=max2)
cout<<"数组中的最大元素: "<<max1<<endl;
else
cout<<"数组中的最大元素: "<<max2<<endl;
return 0;
}
(2)循环赛日程表问题
要求:写出算法思想、程序实现、以及算法复杂度分析。
(循环赛日程表)设有n=2k个运动员要参加网球循环赛,现要设计一个满足以下要求的比赛日程表:
a)每个选手必须与其他n-1个选手各赛一次;
b)每个选手一天只能赛一次;
c)循环赛一共进行n-1天。
例如:8个选手的比赛日程表如下
算法思想:
使用分治算法将n个运动员分为两个n/2人的组,分别比赛,然后两组间比赛。
代码实现:
#include<stdio.h>
#include<math.h>
void gametable(int k)
{
int a[100][100];
int n,temp,i,j,p,t;
n=2;
a[1][1]=1;a[1][2]=2;
a[2][1]=2;a[2][2]=1;
for(t=1;t<k;t++)
{
temp=n;n=n*2;
for(i=temp+1;i<=n;i++)
for(j=1;j<=temp;j++)
a[i][j]=a[i-temp][j]+temp;
for(i=1;i<=temp;i++)
for(j=temp+1;j<=n;j++)
a[i][j]=a[i+temp][(j+temp)%n];
for(i=temp+1;i<=n;i++)
for(j=temp+1;j<=n;j++)
a[i][j]=a[i-temp][j-temp];
}
printf("参赛人数为:%d\n(第i行第j列表示和第i个选手在第j天比赛的选手序号)\n",n);
for(i=1;i<=n;i++)
for(j=1;j<=n;j++)
{
printf("%d ",a[i][j]);
if(j==n)
printf("\n");
}
}
int main()
{
int k;
printf("比赛选手个数为n(n=2^k),请输入参数K(K>0):\n");
scanf("%d",&k);
if(k!=0)
gametable(k);
}
时间复杂度为:O(n^2)。