35KV输电线路防雷保护措施
- 格式:doc
- 大小:28.50 KB
- 文档页数:2
35KV—110KV输电线路防雷措施摘要:随着经济的快速发展,对电网供电可靠性的要求越来越高。
同时在电网的发展中,电网中的事故又以输电线路的故障占大部分,输电线路的故障又以雷击跳闸占的比重较大,尤其是在多雷、土壤电阻率高、地形复杂的山区,雷击输电线路引起的事故率更高,带来巨大的经济损失。
要保障线路安全运行,应对雷害原因进行有效的分析,确定雷击性质,并采取相应有效的防雷措施。
关键词:35kv-110kv输电线路;防雷措施1 雷害原因分析输电线路雷击闪电是由雷云放电造成的过电压通过线路杆塔建立放电通道,导致线路绝缘击穿,这种过电压也称为大气过电压,可分为直击雷过电压和感应雷过电压。
雷击主要是通过建立一个放电泄流通道,从而使大地感应电荷中和雷云中的异种电荷,因此雷击和接地装置的完好性有直接的关系。
输电线路感应雷过电压,对35KV及以下线路绝缘威胁很大,但对于110kV及以上线路绝缘威胁很小,110kV及以上输电线路雷击故障多由直击雷引起,并且同接地装置的完好性有直接的关系。
直击雷又分为反击和绕击,都严重危害线路安全运行。
在采取各种防雷措施之前,应该对雷击性质进行有效分析,准确分析每次线路故障的闪络类型,采用针对性强的防雷措施,才能达到很好的防雷效果。
反击雷过电压是雷击杆顶和避雷线出现的雷过电压,主要与绝缘强度和杆塔接地电阻有关,一般发生在绝缘弱相,无固定闪络相别,所以对于反击雷过电压应采取降低杆塔接地电阻,加强绝缘,提高耐雷水平。
绕击雷过电压是雷电绕过避雷线直接击中导线而出现的雷过电压,主要与雷电流幅值,线路防雷保护方式,杆塔高度,特殊地形有关,主要发生在两边相。
目前对绕击雷过电压采取的主要措施是减少避雷线保护角,安装避雷器等。
实际运行经验表明:山区线路由于地形因素的影响和有效高度的增加,绕击率较高,平原、丘陵地区的线路则以反击为主。
山区线路选择良好的防雷走廊,减小避雷线保护角,加强绝缘是最有效的防雷措施。
35kV输电线路防雷措施发布时间:2022-08-17T06:53:08.324Z 来源:《福光技术》2022年17期作者:郭晓东[导读] 雷击是导致高压线路跳闸停电事故的最重要因素,雷击线路还会产生雷电过电压波,经过高压线路输入到变电所,严重危害变电所设备安全运行。
因此,输电线路的雷击过电压及其防护问题不容忽视。
加强高压输电线路的防雷措施可以有效减少输电线路遭遇雷击导致跳闸的概率,是保障电力系统安全稳定运行的重要环节。
长庆油田分公司清洁电力开发项目部陕西省西安市 717600摘要:雷击是导致高压线路跳闸停电事故的最重要因素,雷击线路还会产生雷电过电压波,经过高压线路输入到变电所,严重危害变电所设备安全运行。
因此,输电线路的雷击过电压及其防护问题不容忽视。
加强高压输电线路的防雷措施可以有效减少输电线路遭遇雷击导致跳闸的概率,是保障电力系统安全稳定运行的重要环节。
关键词:输电线路;防雷;感应雷电压一、35kV输电线路雷击问题形成的原因1.1雷击地面问题形成原因雷击地面造成电网跳闸的主要原因是因为产生雷击感应的电压,针对35kV以及以下输电线路来说是很大的,在此基础之上自然也就会引发线路跳闸的问题。
之所以会产生感应电压是因为雷击大地问题发生的基础上会使线路相互之间产生感应过电压,但是笔者提及的这种感应过电压对高压输电线路并不会造成很大的影响。
1.2雷击电线杆雷击电线杆一般情况之下是在荒野当中发生的,电线杆的高度是要比周围的地势高出一些的,在此基础之上更为容易受到雷击放电问题的影响,自然也就会引发雷击问题;雷击电线杆的情况之下是会产生过大的电流,除去一小部分经由电线杆之上的避雷针进行倒流之外,其余的就是在对杆塔以及附属接地电阻具体构成结构加以一定程度的应用的基础上进入到大地当中,从而也就会在接地电阻领域中产生巨大的电压降,引发超出杆塔绝缘子串50%的放电电压的基础上是会引发绝缘子闪络问题以及反击过电压问题,在此基础之上自然也就会引发跳闸这样一种问题。
35kV架空输电线路与防雷措施XueshuJiaoliu◆学术交流l35kV架空输电线路与防雷措施叶开芳(福建省尤溪县供电有限公司,福建尤溪365100)摘要:结合35kV架空输电线路与防雷的实践经验,分析,总结多种防雷措施;在雷电活动频繁的"易击段,易击点及易击相"以及山区和高土壤电阻率地区,采用综合防雷措施,能使线路投资省,改造快,效果好,是值得推广的技术.关键词:35kV;架空输电线路;防雷措施我国电力工业的高速发展对电网输电线路运行的安全可靠性要求也越来越高.停电不仅影响人们的正常工作和生活,还会造成巨大的经济损失和社会影响.据统计,由雷电引起的跳闸事故占总跳闸次数的70%~80%,尤其是在多雷,土壤电阻率高,地形复杂的区域,架空输电线路遭受雷击的概率更高,严重威胁着电网安全和可靠运行.目前,我国电力行业的常规做法:66kV及以上的架空输电线路,沿全线架设避雷线;220kV及以上的架空输电线路,设置双避雷线.然而,对于35kV的架空输电线路,由于历史,经济等方面的原因,没有采用沿全线架设避雷线的方法,一般只在变电站和发电厂的进出线段架设1--2km的避雷线.35kV单回输电线路,途经高山多雷地带,年雷电日55天以上,雷击故障频繁.为了提高电网运行的安全可靠性,我们采取在变电站进出线段架设1~2km架空避雷线和安装线路型避雷器等综合防雷措施,取得了良好效果.1架设避雷线架空避雷线是高压输电线路最基本的防雷措施,其主要作用:(1)接闪作用,防止雷直击导线.(2)雷击塔顶时,分流雷电流,降低塔顶电位.(3)对导线的耦合作用,降低雷击杆塔时塔头绝缘(绝缘子串和空气间隙)上的电压.(4)对导线的屏蔽作用,降低导线上的感应过电压.35kv架空避雷线的技术要求:(1)杆塔上避雷线对边导线的保护角越小,其遮蔽效果也越好,一般采用2O.左右,山区单避雷线线路采用25.左右. (2)杆塔上两根避雷线之间的距离,不应超过避雷线与导线间垂直距离的5倍.(3)线路档距中央导线与避雷线间的最小距离,按雷击档距中央避雷线时不使二者问的问隙击穿来确定.一般档距按规程SDJ一79推荐的经验公式计算:S≥0.012L+1式中,S为导线与避雷线间的距离(m);L为档距(m).2安装避雷针用避雷针来保护架空输电线路是不经济的,一般较少采用.当遇有下列情况时,可考虑使用避雷针.(1)在雷害情况特别严重而又不能架设避雷线的线路段上,像杆塔机械强度不够等情况下.(2)变电站进出线段未设置避雷保护线,而该段线路经过地区的土壤电阻率又不高时.(3)旋转电机的直配线路.3降低杆塔接地电阻对于一般的杆塔,改善其接地方式,降低其接地电阻,是架空输电线路抗击雷电,防止跳闸事故最经济而有效的措施.因接地不良而形成的较高接地电阻,会使雷电流泄放通道受阻,提升了杆塔的电位.因此,必须加强接地网的改造工作,认真处理好接地系统的薄弱环节,使避雷线与接地体有可靠的电气连接.有避雷线的线路杆塔不接避雷线时的工频接地电阻,在雷季干燥时,不宜超过表1所列数值.表1土壤电阻率及接地电阻如果土壤电阻率很高,接地电阻难以达N30Q时,可采用6~8根总长不超过500m的放射形接地体或连续伸长接地体,这时其接地电阻可不受限制.当土壤电阻率(p)过高,为了达到规定的接地电阻,降低土壤电阻率比增加接地体数量或面积而更有利时,可用人工处理方法来降低土壤电阻率.该方法是使用价廉,腐蚀性弱的盐类或电阻率较低的物质与土壤相混合,或将其埋于接地体附近.也可因地制宜,安装引外接地体,把接地体敷设在土壤电阻率较低的地区,或采用井式或深钻式接地体.4加强线路外绝缘增加绝缘子串片数,可提高架空输电线路的防雷性能.绝缘子片数越多,其耐雷击的能力也越强.但是,绝缘子片数的增加受杆塔塔头结构及投资的限制,一般杆塔只可增加2~3片.另外,增加绝缘子片数对改善线路整体的防雷效果不是十分明显.5安装线路型避雷器各地实践表明,避雷线的防雷效果在平原地区很好,而在山区,因地形,地貌的影响,经常出现绕击,侧击等现象,使得避雷线屏蔽作用失效.而35kV及以下线路,按规程一般只在发电厂,变电站的进出线段架设1~2km(下转第159页)机电信息2009年第36期总第246期1575RB试验及其参数5.1送风机RB试验5.1.1送风机R_B试验时的机组条件机组负荷稳定在245MW以上;所有辅机运行状态良好,备用可靠;锅炉燃油系统备用良好;最少4台以上磨煤机运行:风烟系统两侧均运行;锅炉MFT各项保护投入;汽机ETS各项保护投入;所有辅机的保护根据实际运行状态投入:CCS方式投入,磨煤机,给煤机在自动调节状态,风量在自动调节状态,过热汽温,再热汽温在自动调节投入,除氧器水位,炉膛负压,氧量,一次风压等主要自动投入.5.1.2送风机Pd3试验需进行的操作及要求关注的问题热控人员检查Pd3逻辑状态,参数设置情况是否正确;确认DCS系统R.B功能投入;确认DEH系统1LB功能投入;运行人员需根据辅机运行状态选择一台送风机手动跳闸;然后,检查1t13报警状态;检查跳闸送风机的动叶应联锁关闭;检查跳闸送风机的出口挡板应联锁关闭;检查运行送风机的动叶以较快速度开启;检查磨煤机自动停止动作情况,应保留3台磨煤机运行;检查对应给煤机自动停止情况;检查对应磨煤机进出口风门挡板情况;检查运行磨煤机的给煤量应为23.33t/h,并保持60s内不能操作;检查总燃料量应在79.6t/h左右;检查给水流量应有较快的下降趋势;检查油枪自动投入动作情况;CCS控制方式应为TF状态;检查压力控制方式应为滑压状态:观察主汽压力,机组负荷下降趋势;分屏观察给水,汽温,风烟,负荷中心画面上参数控制情况;观察其他辅机运行情况;待机组负荷下降N2ooMw左右,机组进入稳定运行后,运行人员启动跳闸的送风机.之后,在CCS画面上调出Pd3复位按钮,复位RB状态,重新投入RB功能.5.1.3送风机P.J3试验安全注意事项发生油枪未正常投入时,运行人员手动启动相应的油层程序,投入油枪:除非剩余磨煤机不足3台,否则不得投入其他油枪;如果负压自动设定与测量值偏差大于等于正负800Pa并XueshuJiaoliu◆学术交流无回头迹象时,运行人员切除负压自动,采用手动控制:若风量自动设定与测量值偏差大于等于正负250t/h并无回头迹象时,运行人员切除风量自动,采用手动控制;如果一次风压自动设定与测量值偏差大于等于正负5kPa并无回头迹象时,运行人员切除一次风压自动,采用手动控制;如果给水流量水煤比低于5或大于12并无回头迹象时,运行人员切除给水调节自动,采用手动控制;发生汽机ETSt~闸时,按照运行规程处理等程序进行操作;发生锅炉MFT跳闸时,按照运行规程处理程序进行操作;本R_13试验重点关注风烟系统自动,汽温自动. 5.2一次风机及l风机RB试验一次风机Pd3试验时机组条件与送风机试验条件基础上,将一次风量保护增加15s延时,尽量维持机组运行,以观察各项参数变化情况.一次风机RB试验需进行的操作及要求关注的问题也与上个试验基本相同,只是复位时,要待负荷降至175MW以下.安全注意事项,同送风机试验时一样.引风机R_B试验与上述辅机跳闸试验步骤及关注事项基本一样, 不再重述.6结语(1)350Mw超临界直流炉发生RB时,其共性关键点在于控制合适的水煤比,以避免机组出现水冷壁超温或汽温下降过快,幅度过大等现象.这就要求机组燃料,给水控制回路的设计应充分考虑不同工况下机组对燃料,给水扰动的动态响应特性差异,以实现合理解耦.(2)通过对350MW超临界机组Pd3控制策略优化,完善,现场各工况下的Pd3动态试验证明只要机组相关设计合理,严谨,350MW超临界机组就能够成功投运Pd3功能,并将有利于机组及电网的安全运行.窭收稿日期:2009—12—03作者简介:文兵(1976一),男,本科,助工,从事火电厂热力过程自动化专业维护工作,主要负责机组MCS控制系统.(上接第157页)避雷线,并不沿全线架设.因此,35kV及以下线路因雷击而跳闸的事故非常频繁,电网的运行安全受到很大威胁.我们通过多年实践证明在线路上安装线路型复合外套金属氧化物避雷器,可极大地提高架空输电线路的抗雷击性能,降低线路雷击跳闸率.我公司从2007年开始,安排大量大修资金,对所有35kV架空输电线路进行防雷改造,在各杆塔增补接地的同时,在每条线路地处高山,多雷区,易击段等安装使用6~12组不等避雷器,运行情况良好,有力地保障了线路运行的安全与可靠性.6结语总之,架设避雷线,对提高反击耐雷有重要作用,但存在绕击或侧击现象;加强外绝缘,受杆塔尺寸及投资的限制,无法有效地降低雷击的跳闸率;装设避雷针,投资较大,一般极少采用;降低杆塔接地电阻,对减少雷击反击跳闸率有决定性作用,但高土壤电阻率地区难以降阻,并且超过耐雷水平的雷电流仍将引起线路跳闸.所以,高山多雷区地带没有全线架设避雷线的35kV及以下架空输电线路,安装线路型避雷器是较合适的选择,它具有安装方便,性能可靠,维护简单,体积小,重量轻等优点. 安装线路型避雷器与全线架设避雷线的杆塔比较,能降低杆塔的高度及机械强度,降低施工难度,具有加快工程施工速度,节约投资,避免绝缘子闪络,减少跳闸停电等优点.35kV 架空输电线路的防雷实践表明,在雷电活动严重的"易击段, 易击点及易击相"以及山区或高土壤电阻率地区,采用综合防雷措施,投资省,改造快,效果好,很有推广价值.圜收稿日期:2009—1卜10机电信息2009年第36期总第246期159。
高压输电线路雷害特点及防雷措施
高压输电线路雷害是我国重要的天气灾害之一,每年造成巨大损失,伤害社会公共利益。
因此,采取有效的防雷措施非常重要。
高压输电线路雷害的特点是非常危险,可能导致失电、火灾、漏电、电击等严重后果。
雷电有特殊的能量特性,可以高能量地击中线路,破坏线路设备。
另外,雷电的流量大,瞬间可以达到数千安培,而普通电流只有几安培,这是极其危险的。
针对线路雷害,有以下防雷措施:
1、安装防雷装置。
防雷装置可以将闪电的能量和过热的能量分离,使线路免受雷击而不受损。
2、安装耐雷护栏。
耐雷护栏可以将高电压线路隔离,防止雷电攻击设备。
3、检查线路储备条件。
通过定期检查线路,消除任何隐患,减少雷焰扩散的可能性。
4、改善线路绝缘性能。
线路绝缘是保护电力系统安全避免雷击的关键,应加强绝缘检查,采取改善绝缘性能的措施。
5、进行警戒检查。
应定期进行警戒性检查,检查路线上的破坏,查明隐患,此外,还可以采取抢修方法,以便及时采取措施。
综上所述,高压输电线路雷害的特点十分危险,防雷措施也必不可少。
为了避免雷害,各方都应该采取有效的防雷措施,确保线路安全运行。
35kV输电线路雷击跳闸分析及预防措施摘要:近几年来,因雷电而引发的输电线路掉落以及跳闸问题频频出现,不仅大大影响了用电设备运行的安全性,同时也在很大程度上对人们的日常工作生活造成了不良影响。
根据相关资料显示,全国各地每年都会发生多起因雷击造成的线路掉落和跳闸问题。
前几年,这一现象主要集中于山区,近些年则表现出了向平原地区转移的发展趋势。
可以说,雷击已成为影响输变电线路运行安全性和稳定性的主要因素。
关键词:35kV;输电线路;雷击跳闸;预防措施1 35kV输电线路运行的现状及雷击跳闸的类型1.1 35kV输电线路运行的现状35kV输电线路是电力系统中非常重要的组成部分,从目前情况来看,35kV输电线路运行过程中还存在如下几方面较为薄弱的环节:很大一部分35kV输电线路运行的时间过长,线路存在严重老化的问题,有些输电线路运行时间达到10年以上,甚至有的运行了30年以上,非常不利于线路运行的安全性和稳定性;某些输电线路没有进行避雷线的架设,缺少避雷线的屏蔽作用,这就造成了杆塔和线路全都暴露在雷电的打击范围内;一般情况下35kV 输电线路都只装设3~4片的绝缘子,这就造成线路的抗雷击能力比较低,不管是哪种雷击方式(主要有反击雷、感应雷以及绕击雷等等)都非常容易造成跳闸问题;对于输电线路来说,绝大部分都是布设在相对偏远的地区,例如山顶、半山坡以及丘陵地区相对比较突出的点,这些位置都非常容易遭到雷电的打击,从而引发跳闸事故。
1.2雷击跳闸的类型1.2.1反击类跳闸其主要特点为:故障点的接地电阻不符合标准要求,故障点主要是一基多相或者多基多相,在发生跳闸故障时在故障点会出现比较大的雷电流,一般情况下故障相是水平排列的中相或者垂直排列的中、下相。
1.2.2绕击类跳闸其主要特点为:输电线路架设有架空避雷线,故障点的接地电阻符合标准要求,故障点属于单基单相或者相邻两基同相,在发生跳闸故障时在故障点会出现比较小的雷电流,故障点发生的位置大都是在山顶边坡等容易绕击的区域,故障相大都是水平排列的边相或者垂直排列的上相。
35kV架空输电线路防雷措施摘要:随着城乡现代化的推进和农村经济的发展,农村对电力的依赖程度越来越高,对供电可靠性的要求也越来越高。
生产过程中突然停电,不仅会给企业带来巨大的经济损失,还会给当地供电部门带来直接的经济效益,损害企业形象。
目前,由于农村35kV配电线路绝缘水平低,防雷措施不完善,技术管理和运行维护存在一定缺陷,防雷仍存在一定局限性。
关键词:35kV;架空输电线路;防雷措施前言:在电力系统运行过程中,一旦遭遇雷击就会带来严重后果,因此要积极开展防雷技术研究,分析35kV架空线路特点,弄清楚雷击原因、类型、危害等,在此基础上开展防雷措施,可以起到线路保护作用。
因此,我们要树立起创新意识,不断提升防雷技术应用水平,为35kV架空线路安全运行提供保障,促进我国电力事业的可持续发展。
1由雷击引起跳闸的主要因素1.1线路杆塔的接地电阻值雷击档距中避雷线时,一般情况下空气间隙不会发生闪络,而雷电流在向两边杆塔传播时,由于强烈的电晕,当传播到杆塔时,幅值已大为降低,如果杆塔的接地电阻不高,杆塔的电位的升高不足以引起绝缘子串发生闪络。
雷击杆塔引起反击过电压时,绝缘子串能否闪络,与杆塔冲击接地电阻值有直接关系,接地电阻越大,塔顶电位越高,绝缘子串上的电位差越高,容易造成绝缘子串的闪络,甚至造成多串绝缘子串的同时闪络,导致相间短路,引起跳闸。
1.2消弧线圈的整定情况消弧线圈的设置如果不准确,输电线路因为雷击容易引起导线当单相对地短路,此时的消弧线圈补偿是不够的,如果35千伏线路单相接地短路电流对电容电流,当消弧线圈补偿过大,单相接地短路电流感应电流。
如果当单相接地短路电流大于10A时,单相接地将发生在形式的电弧形成稳态短路电流将不出去,但也不会形成稳定的短路电流,此时弧长的时间消耗较大,然后最后导致系统产生电弧过压引发跳闸。
2关于35kV架空线路防雷措施2.1架设避雷线对于线路防雷,架设避雷线是一种有效方式,在实际应用中可以取得良好成效。
输电线路的防雷措施输电线路防雷设计的目的是提高线路的防雷性能,降低线路的雷击跳闸率。
在确定线路防雷的方式时,应综合考虑系统的运行方式、线路电压等级和重要程度、线路经过地区雷电活动的强弱、地形地貌特点、土壤电阻率等自然条件,并参考当地原有线路的运行阅历,经过技术经济比较,实行合理的爱护措施。
除架设避雷线措施之外,还应留意做好以下几项措施。
1.接地装置的处理(1)高压输电线路耐雷水平随杆塔接地电阻的增加而降低。
电压等级越高,降低杆塔接地电阻的作用将变得更加重要。
对土壤电阻率较高地区,应选择更换接地网形式和置换土壤的方法,达到降阻。
在雷击多发区域,主网线路杆塔接地电阻应保证小于10Ω,山区也应小于15Ω。
在雷雨季节前,对雷击多发区域线路应按规程要求的方法,进行杆塔接地电阻测量。
(2)接地装置埋深,要求大干0.6 m,采纳增大截面的接地引下线,引下线(热镀锌)表面要进行防腐处理。
严格根据规程执行接地装置的开挖检查制度。
重点检查接地装置的埋深、接头和截面的测量,对不合格的准时进行处理。
(3)降低杆塔接地电阻,还需要确保架空地线、接地引下线、地网相互之间的良好连接。
2.减小外边相避雷线的爱护角或者采纳负角爱护在以往进行防雷设计时,只要求遵照规程规定满意杆塔避雷线爱护角的要求就行了,忽视了山坡对防雷爱护角的影响,则造成了杆塔防雷爱护角不能满意防雷设计的实际要求,增加了线路闪络次数,影响了电网平安运行。
针对山区运行线路简单受绕击的状况,建议采纳有效屏蔽角公式计算校验杆塔有效爱护角,以便设计时针对爱护角偏大状况实行相应措施削减雷电绕击概率。
3.加强绝缘和采纳不平衡绝缘方式在雷电活动剧烈地段、大跨越高杆塔及进线段,应增加绝缘子片数。
由于这些地方落雷机会较多,塔顶电位高,感应过电压大,受绕击的概率也较大,通过适当增加绝缘子片数,增大导线和避雷线间的距离,达到加强绝缘的目的。
规程规定:全超群过40m的有地线杆塔,每增高10m应增加一片绝缘子。
探讨35kV输电线路防雷措施35kV输电线路是电力系统中较高电压的输电线路之一,需要特别注意防雷措施。
以下是对35kV输电线路防雷措施的探讨。
1. 地线防雷:地线是输电线路中的一部分,其主要作用是将感应到的雷电能量迅速引入大地,减少对其他设备的干扰。
对于35kV输电线路,地线的导体应采用符合规定标准的裸导线,以确保良好的接地效果。
还需注意地线的布设,尽量减少接地电阻,提高抗雷击能力。
2. 减少结构突出部分:为了减小35kV输电线路遭受雷击的风险,可尽量减少结构部件的突出部分,如减少绝缘子串数量,降低杆塔高度等。
这样可减少雷电击中的可能性,提高线路的抗雷击能力。
3. 良好的绝缘性能:35kV输电线路的绝缘设计需符合相关标准和规范要求,以确保绝缘性能良好。
绝缘子的选择应遵循正常工作电压和附加电压等要求,防止中间相间隙电晕放电和绝缘子表面电晕放电产生,从而提高绝缘系数和耐电气击穿性能。
4. 防雷接地装置:35kV输电线路应配备有效的防雷接地装置。
这些装置包括避雷针、防雷带、防雷网等,通过引雷和集流放电的作用,将雷电能量迅速引入大地,保护线路设备。
5. 防雷检测:定期进行防雷设备的检测和维护工作,对电力线路的防雷设备进行定期的巡检和测试,发现问题及时处理,确保防雷设备的有效性。
6. 防雷杆塔绝缘和绝缘子串绝缘:对于35kV输电线路的钢管杆塔,应对其表面进行绝缘处理,以防止雷击短路。
绝缘子串在安装时应满足规范要求,确保良好的绝缘性能。
35kV输电线路的防雷措施需要从多个方面综合考虑,包括地线防雷、减少突出部分、良好的绝缘性能、防雷接地装置、防雷检测以及杆塔绝缘和绝缘子串绝缘等。
通过合理的设计和配备有效的防雷设备,能够有效提高35kV输电线路的抗雷击能力,确保电力系统的稳定运行。
探讨35kV输电线路防雷措施35kV输电线路是输送高压电能的主要方式之一,但在日常的使用过程中,雷击是35kV 输电线路最为严重的威胁之一。
雷击经常造成设备的损坏和维修,甚至事故。
因此,必须采取一系列的防雷措施来确保35kV输电线路的稳定、可靠和安全的运行。
此外,由于35kV输电线路的特殊性质,防雷措施应该优先考虑线路参数、线缆布置方式等因素,同时也需要对各种防雷设备和材料进行严格的选型,保证防雷措施的实用性和经济性。
下面将从防雷设备选型、地线的设置、避雷针选型等方面,介绍35kV输电线路防雷措施的实现方法。
一、防雷设备选型防雷设备是35kV输电线路防雷的基础,通过防雷设备的选择和配置,可以有效降低雷击风险,提高输电线路的可靠性和安全性。
① 避雷器:35kV输电线路避雷器的选型应根据线路电压等级、雷电密度、安装环境等因素而定。
避雷器要具有较高的耐受能力,可在雷击时及时起到隔离、放电的作用,防止电力设备受到击穿和损坏。
② 接地装置:35kV输电线路接地装置是防雷的重要组成部分。
地下的根据土壤电阻率、用电设备规模等因素选取的地网应符合地面的形状、材料和安装形式等方面的要求。
地网的形状和安装方式应符合地形、气候和土壤类型的特点,以确保地电位的稳定和可靠性。
③避雷针:35kV输电线路避雷针的选型应优先考虑避雷针的输出电流和爬升时间。
因此,需要选择质量较高、适用性强、防雷效果显著且使用寿命长的避雷针,以确保防雷措施的有效性。
二、地线的设置地线是35kV输电线路防雷的关键组成部分。
对于地线的设置,应遵循以下几个原则:① 避免严重扭曲地线、地线过长等问题,以避免地电位的不稳定性。
② 地线应设置在地下,不要设置在空中,以避免影响可靠性和稳定性。
③ 地线的形状和构造应优先考虑操作性和安全性,以确保维修和调试的方便和安全性。
④ 应选择质量可靠、材料优良的地线,以确保地电位的稳定和连续性。
三、避雷针选型避雷针是35kV输电线路的一种主要防雷设备。
35KV输电线路防雷保护措施
雷云放电现象是很常见的,雷云放电落于电力设备上时可产生大气过流电压,如无特殊保护时,由于雷云放电电能产生数百万伏过电压电波,这种过电压足以使任何额定电压的设
备发生绝缘击穿或闪络。
在电力系统中,大气过流电压以电波的形式传播并侵袭于电力系统的所有设备,特别是的器或变压器的线圈。
因此,防止大气过电压的保护,是电力系统安全运行不可缺少的要素。
在确定电力线路防雷保护方式时,应考虑线路的负荷性质,系统方式运行,线路经过地区雷电活动的强弱,地形地貌特征。
土壤电阻率高低等条件,并结合当地已有线路的运行经验,经行全面技术比较,从而确定合理的防雷保护措施。
一、输电线路防雷保护措施。
(一)、架设避雷线。
避雷线是输配电线路最基本防雷措施之一。
它在防雷方面有以下功能。
(1)防止雷电直击导线造成导线破损。
(2)雷击杆塔顶端时,对雷电电流有分流作用。
减少雷电流入杆塔,使杆塔顶端点位降低。
(3)对导线有耦合作用,降低雷击杆塔时塔头绝缘上(绝缘子串和空间隙)的电压。
(4)对导线有屏蔽作用,降低导线上感应过电压。
(二)、降低杆塔接地电阻
杆塔接地装置是同避雷线连接的,主要是用来向大地导泄扩散雷电电流。
以保持线路有一定的耐雷水平。
接地装置的接地电阻的大小是防止雷击闪络的关键。
从过去一些统计资料表明,不同的接地电阻值对雷击闪络次数相差很大。
当接地电阻大于20欧时的杆塔雷击闪络率,为接地电阻在10欧以下的杆塔雷击闪络率达几十倍。
这说明接地电阻大于20欧时,线路运行情况显著恶化。
因此,对一般高度的杆塔降低接地装置的工频接地电阻是提高线路耐雷水平,防止反击有效措施。
如接地条件不良,接地电阻太大,就会在杆塔引下线处产生很高的反击电压(反击电压就是雷电流流过接地装置时,由于接地电阻引起的电压),它
的数值等于雷电流乘接地电阻值。
对每基杆塔工频接地电阻值的要求,是按不同的土壤电阻率,确定不同的接地电阻值。
,在现行部颁《电力设备过电压保护设计技术规程》(SDJ——79)及《电力设备接地设计技术规
程》(SDJ8——79)中有规定。
降低杆塔接地电阻,一般可采用接地装置(带、管),采用因外接地装置或连续伸长接地线。
连续伸长接地体是沿线路在地中埋设1~2根接地线,并可与下一基杆塔接地装置相连,但接地线总长不超过500m,此时对工频接地电阻不受限制。
国内外的运行经验证明。
它是降低高土壤电阻率地区杆塔接地电阻有效措施之一。
( 三)、架设耦合地线
为了提高线路的防雷性能,减少线路雷击跳闸率,可采用在导线下面(或其附近)架设耦合线(即架空地线)的办法。
虽不能减少绕击率,但能在雷击杆塔时起分流作用和耦合作用,降低杆塔绝缘上所承受的电压,提高线路耐雷水平。
(四)、加强杆塔绝缘
在塔头尺寸允许下增加杆塔绝缘子片数,可提高一些耐雷水平。
但这样不仅增加了绝缘费用,也降低了对地的安全距离,一般不宜采用这种办法。
只是在雷电活动强烈地段和高海拔地区,可以考虑适当加强绝缘。
另外规程《SDJ7——79》规定;全高超过40m有避雷线杆塔,每增高10m应增加一片绝缘子。
同时该塔接地电阻,应降低50%。
二、线路防雷保护对路径选择的要求
大量运行经验表明:线路遭受雷击往往集中于线路的某些地段,称为雷区。
在选择路径时,若能避开易受雷区,或对该区线段加强防雷保护。
侧是防止雷害的根本措施。
实践表明,
下列地段遭受雷击。
(1)、易暴走廊,如山区分口以及顺风的河谷或峡谷等处。
(2)、四周是山丘的潮湿盆地,如杆塔周围有鱼塘、湖泊、水库、沼泽、森林或灌
木,附近又蜿蜒起伏的山岳等处。
(3)、土壤电阻率有突变的地带、岩石与土壤、山坡与稻田交界区,岩石山脚下有
小河的山谷等地,雷易击于低土壤电阻率处。
(4)、地下有导电性矿的地面和地下水位较高处。
(5)、当土壤差别不大时,例如有良好的土层和植被的山丘,雷易击于突出的山顶,
山的向阳坡等。
收藏分享评分
:GB50169-2006《电气装置安装工程接地装置施工及验收规范》。