单项式乘以多项式
- 格式:docx
- 大小:17.25 KB
- 文档页数:1
《单项式乘以多项式》典型例题例1 计算: (1))123()4(2-+⋅xy x xy(2))478()21(3+-⋅-x x x(3))47(2)24(3)(22222b ab a b b a ab b ab a a +-+----例2 计算题:(1))1944)(3(22+--x x x ; (2)ab b a ab m m 32)1353(11⋅++--.例3 求值:)43(3)129(1n n n n y y y y y ---++,其中2,3=-=n y .例4 化简(1))323(5132n n n n n n y y x y x y x +-⋅--++; (2)])2(3)2[(2222ab b ab b ab ab -+-.例5 设012=-+m m ,求2000223++m m 的值.例6 计算: (1))123()4(2-+⋅xy x xy(2))478()21(3+-⋅-x x x(3))47(2)24(3)(22222b ab a b b a ab b ab a a +-+---- 例7 计算题:(1))1944)(3(22+--x x x ; (2)ab b a ab m m 32)1353(11⋅++--。
例8 求值:)43(3)129(1n n n n y y y y y ---++,其中2,3=-=n y 。
例9 化简(1))323(5132n n n n n n y y x y x y x +-⋅--++; (2)])2(3)2[(2222ab b ab b ab ab -+-。
例10 设012=-+m m ,求2000223++m m 的值。
参考答案例1 解:(1)原式)1(424342-⋅+⋅+⋅=xy xy xy x xy xy y x y x 4812223-+=(2)原式4)21()7()21(8)21(3⋅-+-⋅-+⋅-=x x x x xx x x 227424-+-=(3)原式322222232814612222b ab b a ab b a ab b a a +-++---= 323242b ab a +-=说明:单项式乘以多项式,积仍是一个多项式,其项数与所乘多项式的项数相等,要注意积的各项符号的确定.若是混合运算,运算顺序仍然是先乘方,再乘除,运算结果要检查,如有同类项要合并,结果要最简.例2 分析:(1)中单项式为23x -,多项式里含有24x ,x 94-,1,乘积结果为三项,特别是1这项不要漏乘.(2)中指数为字母,计算时要注意底数幂相乘底数不变指数相加.解:(1)原式1)3()94()3(432222⋅-+⋅-+⋅-=x x x x x24433412x x x -+-=(2)ab ab b a ab m m 3232)1353(11+⋅++--.322523232332532211ab b a b a ab ab b a ab ab m m m m ++=+⨯+⨯=--说明:单项式与多项式的第一项相乘时,要注意积的各项符号的确定;同号相乘得正,异号相乘得负.例3 解:原式n n n n n y y y y y 129129112+--+=++ n y 2=当2,3=-=n y 时,81)3()3(4222=-=-=⨯n y说明:求值问题,应先化简,再代入求值.例4 分析:在计算单项式乘以多项式时,仍应按有理数的运算法则,先去小括号2)2(ab 和)(32b a ab b +,再去中括号.解:(1)原式)35()2)(5(3521232n n n n n n n n n n y y x y x y x y x y x --+--+⋅-=+-+++ 22122332151015++++-+-=n n n n n n y x y x y x (2)原式])3()3(4[22222ab b a b ab b b a ab --+-+=323322222222222282)4(22]4[2]334[2b a b a ab ab b a ab ab b a ab ab b a ab b a ab -=-+⋅=-=---=例5 分析:由已知条件,显然12=+m m ,再将所求代数式化为m m +2的形式,整体代入求解.解: 2000223++m m2000223+++=m m m20012000120002000)(200022222=+=++=+++=++⋅+⨯=m m m m m m m m m m m说明:整体换元的数学方法,关键是识别转化整体换元的形式. 例6 解:(1)原式)1(424342-⋅+⋅+⋅=xy xy xy x xy xy y x y x 4812223-+=(2)原式4)21()7()21(8)21(3⋅-+-⋅-+⋅-=x x x x xx x x 227424-+-=(3)原式322222232814612222b ab b a ab b a ab b a a +-++---= 323242b ab a +-=说明:单项式乘以多项式,积仍是一个多项式,其项数与所乘多项式的项数相等,要注意积的各项符号的确定。
《单项式乘以多项式》典型例题例1 计算:(1))123()4(2-+⋅xy x xy(2))478()21(3+-⋅-x x x (3))47(2)24(3)(22222b ab a b b a ab b ab a a +-+----例2 计算题:(1))1944)(3(22+--x x x ; (2)ab b a ab m m 32)1353(11⋅++--. 例3 求值:)43(3)129(1n n n n y y y y y ---++,其中2,3=-=n y .例4 化简(1))323(5132n n n n n n y y x y x y x +-⋅--++;(2)])2(3)2[(2222ab b ab b ab ab -+-.例5 设012=-+m m ,求2000223++m m 的值.例6 计算:(1))123()4(2-+⋅xy x xy(2))478()21(3+-⋅-x x x (3))47(2)24(3)(22222b ab a b b a ab b ab a a +-+----例7 计算题:(1))1944)(3(22+--x x x ; (2)ab b a ab m m 32)1353(11⋅++--。
例8 求值:)43(3)129(1n n n n y y y y y ---++,其中2,3=-=n y 。
例9 化简(1))323(5132n n n n n n y y x y x y x +-⋅--++;(2)])2(3)2[(2222ab b ab b ab ab -+-。
例10 设012=-+m m ,求2000223++m m 的值。
参考答案例1 解:(1)原式)1(424342-⋅+⋅+⋅=xy xy xy x xyxy y x y x 4812223-+=(2)原式4)21()7()21(8)21(3⋅-+-⋅-+⋅-=x x x x x x x x 227424-+-= (3)原式322222232814612222b ab b a ab b a ab b a a +-++---=323242b ab a +-=说明:单项式乘以多项式,积仍是一个多项式,其项数与所乘多项式的项数相等,要注意积的各项符号的确定.若是混合运算,运算顺序仍然是先乘方,再乘除,运算结果要检查,如有同类项要合并,结果要最简.例2 分析:(1)中单项式为23x -,多项式里含有24x ,x 94-,1,乘积结果为三项,特别是1这项不要漏乘.(2)中指数为字母,计算时要注意底数幂相乘底数不变指数相加.解:(1)原式1)3()94()3(432222⋅-+⋅-+⋅-=x x x x x 24433412x x x -+-= (2)ab ab b a ab m m 3232)1353(11+⋅++-- .322523232332532211ab b a b a ab ab b a ab ab m m m m ++=+⨯+⨯=-- 说明:单项式与多项式的第一项相乘时,要注意积的各项符号的确定;同号相乘得正,异号相乘得负.例3 解:原式n n n n n y y y y y 129129112+--+=++n y 2=当2,3=-=n y 时,81)3()3(4222=-=-=⨯n y说明:求值问题,应先化简,再代入求值.例4 分析:在计算单项式乘以多项式时,仍应按有理数的运算法则,先去小括号2)2(ab 和)(32b a ab b +,再去中括号.解:(1)原式)35()2)(5(3521232n n n n n n n n n n y y x y x y x y x y x --+--+⋅-=+-+++ 22122332151015++++-+-=n n n n n n y x y x y x(2)原式])3()3(4[22222ab b a b ab b b a ab --+-+=323322222222222282)4(22]4[2]334[2b a b a ab ab b a ab ab b a ab ab b a ab b a ab -=-+⋅=-=---=例5 分析:由已知条件,显然12=+m m ,再将所求代数式化为m m +2的形式,整体代入求解.解: 2000223++m m2000223+++=m m m20012000120002000)(200022222=+=++=+++=++⋅+⨯=m m m m m m m m m m m说明:整体换元的数学方法,关键是识别转化整体换元的形式.例6 解:(1)原式)1(424342-⋅+⋅+⋅=xy xy xy x xyxy y x y x 4812223-+=(2)原式4)21()7()21(8)21(3⋅-+-⋅-+⋅-=x x x x x x x x 227424-+-= (3)原式322222232814612222b ab b a ab b a ab b a a +-++---=323242b ab a +-=说明:单项式乘以多项式,积仍是一个多项式,其项数与所乘多项式的项数相等,要注意积的各项符号的确定。
单项式与多项式相乘教学建议一、知识结构二、重点、难点分析本节教学的重点是掌握单项式与多项式相乘的法则.难点是正确、迅速地进行单项式与多项式相乘的计算.本节知识是进一步学习多项式乘法,以及乘法公式等后续知识的基础。
1.单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加,即其中,可以表示一个数、一个字母,也可以是一个代数式.2.利用法则进行单项式和多项式运算时要注意:(1)多项式每一项都包括前面的符号,例如中的多项式,共有两项,就是.运用法则计算时,一定要强调积的符号.(2)单项式必须和多项式中的每一项相乘,不能漏乘多项式中的任何一项.因此,单项式与多项式相乘的结果是一个多项式,其项数与因式中多项式的项数相同.(3)对于混合运算,要注意运算顺序,同时要注意:运算结果如有同类项要合并,从而得出最简结果.3﹒根据去括号法则和多项式中每一项包含它前面的符号,来确定乘积每一项的符号;4﹒非零单项式乘以不含同类项的多项式,乘积仍然是多项式;积的项数与所乘多项式的项数相等;5﹒对于含有乘方、乘法、加减法的混合运算的题目,要注意运算顺序;也要注意合并同类项,得出最简结果.三、教法建议1.单项式与多项式相乘的基本依据是乘法分配律,故在本课开始先讲述乘法分配律,由有理数过渡到字母.2.由乘法分配律过渡到单项乘多项式的法则时,也可以采用以下代换的方法,如计算:(-4x2)·(2x2+3x-1).设m=-4x2,a=2x2,b=3x,c=-1,∴ (-4x2)·(2x2+3x-1)=m(a+b+c)=ma+mb+mc=(-4x2)·2x2+(-4x2)·3x+(-4x2)·(-1)=-8x4-12x3+4x2.这样过渡较自然,同时也渗透了一些代换的思想.3.单项式与多项式相乘,积仍是多项式,它的项数与多项式的项数相同.这是单项式与多项式相乘的结果,这个结果也是我们掌握法则的关键.一般说来,对于一个运算法则的掌握应从分析结果开始,分析结果的结构,分析结果与各算式的关系,这样才能较好地掌握法则.教学设计示例一、教学目标1.理解和掌握单项式与多项式乘法法则及推导.2.熟练运用法则进行单项式与多项式的乘法计算.3.培养灵活运用知识的能力,通过用文字概括法则,提高学生数学表达能力.4.通过反馈练习,培养学生计算能力和综合运用知识的能力.5.渗透公式恒等变形的数学美.二、学法引导1.教学方法:讲授法、练习法.2.学生学法:学习单项式与多项式相乘的运算法则是运用了“转化”的数学思想方法,利用分配律把单项式乘以多项式问题转化为前面学过的单项式与单项式相乘;最后再合并同类项,故在学习中应充分利用这种方法去解题.三、重点·难点·疑点及解决办法(一)重点单项式与多项式乘法法则及其应用.(二)难点单项式与多项式相乘时结果的符号的确定.(三)解决办法复习单项式与单项式的乘法法则,并注意在解题过程中将单项式乘多项式转化为单项式乘单项式后符号确定的问题.四、课时安排一课时.五、教具学具准备投影仪、胶片.六、师生互动活动设计1.设计一道可运用乘法分配律进行简便运算的题目,让学生复习乘法分配律,并为引入单项式与多项式的乘法法则打下良好的基础.2.通过面积分割法,形象直观地引入单项式与多项式的乘法法则,并引导学生用文字语言概括出其结论.3.通过举例,教师分析、讲解并示范板书全过程,让学生规范解题过程,再通过反复的练习巩固所学过的法则.七、教学步骤(一)明确目标本节课重点学习单项式与多项式的乘法法则及其应用.(二)整体感知单项式乘以多项式的乘法运算主要是将它转化为单项式与单项式的乘法运算,放首先应适当复习并掌握单项式与单项式的乘法运算方法,再在计算过程中注意单项式与多项式相乘后的符号问题.(三)教学过程1.复习导入复习:(1)叙述单项式乘法法则.(单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.)(2)什么叫多项式?说出多项式的项和各项系数.2.探索新知,讲授新课简便计算:引申:计算,基中m、a、b、c都是单项式,因为式中字母都表示数,故分配律对代数式也适用,则引导学生用学过的长方形面积知识加以验证,把宽为m,长分别是a、b、c的三个小长方形拼成大长方形,研究图形面积的整体与部分关系.由该等式,你能说出单项式与多项式相乘的法则吗?单项式与多项式乘法法则:单项式与多项式相乘,就是用单项式乘多项式的每一项,再把所得的积相加.例1 计算:(1)(2)说明:计算按课本,讲解时,要紧扣法则:①用单项式遍乘多项式的各项,不要漏乘.②要注意符号,多项式的每一项包括它前面的符号.③“把所得积相加”时,不要忘了加上加号.例2 化简:化简按课本,化街时直接写成省略加号的代数和,注意正确表达,做完乘法后,要合并同类项.练习:错例辨析(1)(2)(2)错在单项式与多项式的每一项相乘之后没有添上加号,故正确答案为(四)总结、扩展1.由学生叙述单项式与多项式相乘法则,并回答积仍是多项式,积的项数与多项式因式的项数相同.2.考点剖析:单项式乘以多项式这一知识点在中考试卷中都是以与其他知识综合命题的形式考查的.但它是多项式乘法、因式分解、分式通分、解分式方程等知识的重要基础.故必须掌握好.如(99,河北)下列运算中,不正确的为()A. B.C. D.八、布置作业P112 A组 1.(2)(4)(6)(8),2,3.(2)参考答案:略单项式与多项式相乘。
课题: 15.1.4 整式的乘法(二)单项式乘以多项式§15.1.4整式的乘法第2课时共3课时教学目标1.使学生探索并了解单项式与多项式相乘的法则;会运用法则进行简单计算.2. 使学生进一步理解数学中“转化”、“换元”的思想方法,即把单项式与多项式相乘转化为单项式与单项式相乘.3. 逐步形成独立思考、主动探索的习惯,培养思维的批评性、严密性和初步解决问题的愿望和能力.重点单项式与多项式相乘的法则及其运用.难点单项式与多项式相乘去括号法则的应用.教学方法多媒体教学教具准备多媒体课件施教时间2010年12月30日教学过程(师生活动)复习引新一知识回顾:1. 回忆幂的运算性质:a m·a n=a m+n(m,n都是正整数) 底数幂相乘,底数不变,指数相加.(a m)n=a mn(m,n都是正整数) 幂的乘方,底数不变,指数相乘.(ab)n=a n b n(n为正整数) 积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.2.单项式与单项式相乘法则:单项式与单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。
3.练一练:判断正误(如果不对应如何改正)(1)4a2·2a3=8a6()(2)(ab)2(ab3)=a3b5()(3)(-2x2)3xy2=8x7y2()点拨:(1)错误,应该为8a5 (2)正确(3)错误,应该为-8x7y2创设情境引入新课问题:三家连锁店以相同的价格m(单位:元/瓶)销售某种商品,它们在一个月内的销售量(单位:瓶)分别是a,b、c.你能用不同的方法计算它们在这个月内销售这种商品总收入吗?探究新知1.让学生分析题意,得出两种解法:解法(一):先求三家连锁店的总销量,再求总收入,即总收入(单位:元)为:m(a+b+c) ①解法(二):先分别求三家连锁店的收入,再求它们的和,即总收入(单位:元)为:ma+mb+mc ②请学生探究①和②是否表示的结果一致?由于①和②表示同一个量,所以:m(a+b+c)=ma+mb+mc 。
专题3.10 单项式乘以多项式(知识讲解)【学习目标】1. 会进行单项式与多项式的乘法计算;2. 掌握整式的加、减、及单项式乘以单项式及单项式与多项式相乘的的混合运算,并能灵活地运用运算律简化运算.【要点梳理】单项式与多项式相乘的运算法则单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加. 即.特别说明:(1)单项式与多项式相乘的计算方法,实质是利用乘法的分配律将其转化为多个单项式乘单项式的问题.(2)单项式与多项式的乘积仍是一个多项式,项数与原多项式的项数相同.(3)计算的过程中要注意符号问题,多项式中的每一项包括它前面的符号,同时还要注意单项式的符号.(4)对混合运算,应注意运算顺序,最后有同类项时,必须合并,从而得到最简的结果.【典型例题】类型一、单项式乘以单项式➽➼化简✭✭求值1.化简(1)2(1)3(25)x x x x x x -++--. 【答案】2316x x -+【分析】先根据单项式乘多项式运算法则展开,再合并同类项即可.解:(1)2(1)3(25)x x x x x x -++--22222615x x x x x x =-++-+22226215x x x x x x =+--++2316x x =-+【点拨】本题考查了整式的混合运算,熟练掌握运算法则是解题的关键. 举一反三:【变式1】计算:(1)3(52)a a b ; (2)(3)(6)x y x --.【答案】(1)2156a ab ;(2)2618x xy -+.【分析】根据多项式乘单项式的运算法则计算即可.解:(1)()352a a b -()m a b c ma mb mc ++=++3532a a a b =⋅-⋅2156a ab =-(2)()()36x y x --663x x x y =-⋅+⋅ 2618x xy =-+【点拨】本题考查了多项式乘单项式,熟练掌握运算法则是解题的关键.【变式2】计算:(1)()2222433x y xy xy ⎛⎫--⋅ ⎪⎝⎭ (2)()2213233a ab b ab ⎛⎫-+⋅- ⎪⎝⎭.2.计算:(1) ()()3222346a b b a -⋅-+; (2) 221(2)534m m m ⎛⎫-⋅-- ⎪⎝⎭.举一反三:【变式1】计算下列各式(1)22412332ab ab b ab ⎛⎫-+⋅ ⎪⎝⎭;(2) (2)()111223n n n n y y y y -+-⋅+-.【点拨】本题考查整式的乘法,涉及单项式乘多项式、单项式乘单项式、同底数幂的乘法等知识,熟练掌握这些知识的运算法则是解答的关键.【变式2】计算:22232(2)()53a bc ab ac ac -+-⋅-.类型二、单项式乘以单项式➽➼化简求值 ✭✭求参数✭✭应用3.先化简,再求值:2(1)(2)26x x x x x --+-,其中53x =.举一反三:【变式1】先化简,再求值:3a(2a 2- 4a + 3)- 2a 2 (3a + 4) ,其中a =-2 .【答案】-98【分析】首先根据单项式与多项式相乘的法则去掉括号,然后合并同类项,最后代入已知的数值计算即可.解:3a(2a2−4a+3)−2a2(3a+4)=6a3−12a2+9a−6a3−8a2=−20a2+9a,当a=−2时,原式=−20×4−9×2=−98.【点拨】此题考查单项式乘多项式,解题关键在于掌握运算法则.【变式2】阅读下列文字,并解决问题.已知x2y=3,求2xy(x5y2-3x3y-4x)的值.分析:考虑到满足x2y=3的x,y的可能值较多,则不能逐一代入求解,故考虑整体思想,将x2y=3整体代入.解:2xy(x5y2-3x3y-4x)=2x6y3-6x4y2-8x2y=2(x2y)3-6(x2y)2-8x2y=2×33-6×32-8×3=-24.请你用上述方法解决问题:已知ab=3,求(2a3b2-3a2b+4a)·(-2b)的值.【答案】-78【分析】根据单项式乘多项式,可得一个多项式,根据把已知代入,可得答案.解:(2a3b2-3a2b+4a)·(-2b)=-4a3b3+6a2b2-8ab=-4(ab)3+6(ab)2-8ab=-4×33+6×32-8×3=-108+54-24=-78.【点拨】本题考查了单项式乘多项式,整体代入是解题关键.4.已知()223531062-+=-+ax x x y by x x y xy ,求a ,b 的值. 【答案】a =2,b =1【分析】根据整式的乘法展开,分别得到a ,b 的关系式,故可求解.解:∵()3222353531062ax x x y by ax ax y abxy x x y xy -+=-+=-+∵5a =10,-3a =-6,ab =2∵a =2,b =1.【点拨】此题主要考查整式运算的应用,解题的关键是熟知整式乘法的运算法则. 举一反三:【变式1】若23()3265x x a x b x x -+-=-+成立,请求出a 、b 的值.【变式2】先化简,再求值:A =3a 2b ﹣ab 2,B =ab 2+3a 2b ,其中a =12,b =13.求5A ﹣B 的值.5.若n 为自然数,试说明整式(21)2(1)+--n n n n 的值一定是3的倍数. 【答案】见分析【分析】先把n (2n +1)−2n (n −1)进行计算,然后合并同类项,即可得出n (2n +1)−2n (n −1)的值一定是3的倍数.解:∵n (2n +1)−2n (n −1)=2n 2+n −2n 2+2n =3n ,n 为自然数,∵3n 是3的倍数,∵n (2n +1)−2n (n −1)的值一定是3的倍数.【点拨】此题考查了整式乘法的应用,解题的关键是把所求的式子进行计算,然后进行整理,得到3n ,n 为自然数,说明一定是3的倍数.举一反三:【变式1】某中学扩建教学楼,测量地基时,量得地基长为2m a 宽为()224m a -,试用a 表示地基的面积,并计算当25a =时地基的面积.【答案】()22448m a a -,13002m . 【分析】根据题意可直接利用长×宽进行求解面积,然后把25a =代入求解即可. 解:根据题意得:地基的面积是:()()222224448m a a a a -=-,当25a =时,地基面积为:()22244842548251300m a a -=-=⨯⨯.【点拨】本题主要考查整式的乘除的应用,熟练掌握整式的乘法是解题的关键.【变式2】一块长方形硬纸片,长为(5a 2+4b 2)m ,宽为6a 4m ,在它的四个角上分别剪去一个边长为32a 3m 的小正方形然后折成一个无盖的盒子,请你求这个无盖盒子的表面积.。
第2课时单项式乘以多项式
姓名:
01基础题
知识点1直接运用法则计算
1.(湖州中考)计算2x(3x2+1),正确的结果是( ) A.5x3+2x B.6x3+1
C.6x3+2x D.6x2+2x
2.计算x(y-z)-y(z-x)+z(x-y),结果正确的是( ) A.2xy-2yz B.-2yz
C.xy-2yz D.2xy-xz 3.计算:a(a-1)-a2=.
4.计算:
(1)(2xy2-3xy)·2xy;
.
(2)-x(2x+3x2-2);
(3)-2ab(ab-3ab2-1).
.
知识点2运用法则解决问题
5.若一个长方体的长、宽、高分别为2x,x,3x-4,则长方体的体积为( )
A.3x3-4x2B.6x2-8x
C.6x3-8x2D.6x3-8x
6.今天数学课上,老师讲了单项式乘以多项式,放学回到家,小明拿出课堂笔记复习,发现一道题:-3xy(4y -2x-1)=-12xy2+6x2y+□,□的地方被钢笔水弄污了,你认为□内应填写( )
A.3xy B.-3xy
C.-1 D.1
7.要使x(x+a)+3x-2b=x2+5x+4成立,则a,b的值分别为( )
A.a=-2,b=-2 B.a=2,b=2
C.a=2,b=-2 D.a=-2,b=2 8.化简求值:3a(a2-2a+1)-2a2(a-3),其中a=2.02中档题
9.(北京中考)图中四边形均为长方形,根据图形,写出一个正确的等式:.
10.方程3x(7-x)=18-x(3x-15)的解为.11.计算:
(1)(-
1
2ab)(
2
3ab2-2ab+
4
3b+1);
(2)3ab(a2b-ab2-ab)-ab2(2a2-3ab+2a).12.已知ab2=-1,求(-ab)(a2b5-ab3-b)的值.
03综合题
13.某同学在计算一个多项式乘以-3x2时,算成了加上-3x2,得到的答案是x2-
1
2x+1,那么正确的计算结果是多少?。