初中数学浙教版 正方形模拟考题模拟考试卷考点.doc
- 格式:doc
- 大小:136.00 KB
- 文档页数:6
2024-2025学年浙教版中考数学模拟试卷班级:____________________ 学号:____________________ 姓名:____________________一、单选题(每题3分)1.若函数y=2x+1与直线y=−x+5相交,则交点的坐标是:A.(2,5)B.(1,3)C.(3,7)D.(−1,−1)答案:BBC,连接AE并延长至F,使2.已知正方形ABCD的边长为a,点E在BC上,且BE=13EF=AE。
则△AEF的面积与正方形ABCD面积之比为:A.1:2B.1:3C.1:4D.1:6答案:D3.下列哪个数是方程x2−9x+20=0的一个根?A. 4B. 5C. 6D. 7答案:B4.若tanθ=3,则sin2θ的值为:4A.2425B.1225C.1625D.725答案:A5.在半径为r的圆中,弦AB的长度为r,则∠AOB(O为圆心)的度数为:A. 30°B. 45°C. 60°D. 90°答案:C二、多选题(每题4分)1.【函数】问题描述:这里是关于函数的一个问题…•选项A: 描述A•选项B: 描述B•选项D: 描述D•选项E: 描述E答案:选项A: 描述A, 选项B: 描述B2.【几何】问题描述:这里是关于几何的一个问题…•选项E: 描述E•选项D: 描述D•选项A: 描述A•选项C: 描述C•选项B: 描述B答案:选项C: 描述C, 选项B: 描述B3.【几何】问题描述:这里是关于几何的一个问题…•选项E: 描述E•选项C: 描述C•选项A: 描述A•选项D: 描述D答案:选项B: 描述B, 选项A: 描述A, 选项C: 描述C4.【函数】问题描述:这里是关于函数的一个问题…•选项C: 描述C•选项E: 描述E•选项D: 描述D•选项A: 描述A•选项B: 描述B答案:选项A: 描述A, 选项C: 描述C5.【概率统计】问题描述:这里是关于概率统计的一个问题…•选项B: 描述B•选项D: 描述D•选项A: 描述A•选项C: 描述C•选项E: 描述E答案:选项A: 描述A, 选项B: 描述B, 选项C: 描述C三、填空题(每题3分)1.若一个正方形的对角线长为(8√2)厘米,则该正方形的面积为________平方厘米。
一、选择题1.正方形A 1B 1C 1O ,A 2B 2C 2C 1,A 3B 2C 3C 2,…按如图所示的方式放置,点A 1,A 2,A 3,…和点C 1,C 2,C 3,…分别在直线y =x +1和x 轴上,已知点B 1(1,1),B 2(3,2),则B n 的坐标是( )A .(2n ﹣1,2n ﹣1)B .(2n ﹣1,2n ﹣1)C .(2n ﹣1,2n ﹣1)D .(2n ﹣1,2n ﹣1) 2.点A 到x 轴的距离是3,到y 轴的距离是6,且点A 在第二象限,则点A 的坐标是( )A .(-3,6)B .(-6,3)C .(3,-6)D .(8,-3) 3.在平面直角坐标系中,点Q 的坐标是()35,1m m -+.若点Q 到x 轴的距离与到y 轴的距离相等,则m 的值为( )A .3B .1C .1或3D .2或3 4.一个图形的各点的纵坐标乘以2,横坐标不变,这个图形发生的变化是( ) A .横向拉伸为原来的2倍B .纵向拉伸为原来的2倍C .横向压缩为原来的12 D .纵向压缩为原来的125.观察下列各等式: 231-+=-5-6+7+8=4-10-l1-12+13+14+15=9-17-18-19-20+21+22+23+24=16……根据以上规律可知第11行左起第11个数是( )A .-130B .-131C .-132D .-133 6.已知实数a 的一个平方根是2-,则此实数的算术平方根是( ) A .2±B .2-C .2D .4 7.下列各式中,正确的是( ) A 16B .16C 3273-=-D 2(4)4-=- 8.85 )A .4B .5C .6D .79.下列命题:①相等的角是对顶角;②同角的余角相等;③垂直于同一条直线的两直线互相平行;④在同一平面内,如果两条直线不平行,它们一定相交;⑤同位角相等;⑥如果直线a ∥b ,b ⊥c ,那么a ⊥c ,其中真命题的个数是( )A .4个B .3个C .2个D .以上都不对 10.下列说法正确的是( )A .命题一定是正确的B .定理都是真命题C .不正确的判断就不是命题D .基本事实不一定是真命题 11.如图,1∠与2∠是同位角的共有( )个A .1个B .2个C .3个D .4个 12.如图,ABC 面积为2,将ABC 沿AC 方向平移至DFE △,且AC=CD ,则四边形AEFB 的面积为( )A .6B .8C .10D .12二、填空题13.已知点M 在y 轴上,纵坐标为4,点P (6,﹣4),则△OMP 的面积是__. 14.把所有正整数从小到大排列,并按如下规律分组:(1)、(2,3)、(4,5,6)、(7,8,9,10)、……,若A n =(a ,b )表示正整数n 为第a 组第b 个数(从左往右数),如A 7=(4,1),则A 20=______________.15.已知a 、b 2|3|0a b -++=,则(a +b )2021的值为________.16.求下列各式中的x :(1)29(1)25x -=(2)3548x += 17.已知1a -的平方根是2±,则a 的值为_______.18.已知:如图,12354∠=∠=∠=︒,则∠4的度数是___________.19.如图,1∠与2∠是对顶角,110α∠=+︒,250∠=︒,则α=______.20.如图,已知AB ∥DE ,∠ABC =76°,∠CDE =150°,则∠BCD 的度数为__°.三、解答题21.在如图的直角坐标系中,将三角形ABC 平移后得到三角形111A B C ,他们的对应点坐标如下表所示:ABC(,0)A a (3,0)B (5,5)C 111A B C △ 1(4,2)A 1(7,)B b1(,)C c d .(2)在坐标系中画出两个三角形.(3)求出111A B C △面积.22.如图1,已知直角梯形ABCO 中,∠AOC =90°,AB ∥x 轴,AB =6,若以O 为原点,OA ,OC 所在直线为y 轴和x 轴建立如图所示直角坐标系,A(0,a),C(c ,0)中a ,c 满足|a+c ﹣10|+7c -=0(1)求出点A 、B 、C 的坐标;(2)如图2,若点M 从点C 出发,以2单位/秒的速度沿CO 方向移动,点N 从原点出发,以1单位/秒的速度沿OA 方向移动,设M 、N 两点同时出发,且运动时间为t 秒,当点N 从点O 运动到点A 时,点M 同时也停止运动,在它们的移动过程中,当2S △ABN ≤S △BCM 时,求t 的取值范围:(3)如图3,若点N 是线段OA 延长上的一动点,∠NCH =k ∠OCH ,∠CNQ =k ∠BNQ ,其中k >1,NQ ∥CJ ,求HCJABN ∠∠的值(结果用含k 的式子表示).23.求下列各式中的x :(1)29(1)25x -=(2)3548x +=24.求出x 的值:()23227x +=25.己知:线段a 如图所示.求作:正方形ABCD ,使得AB a .26.如图,直线AB 、CD 相交于点O ,OE 平分BOD ∠,72AOC ∠=︒,OF CD ⊥.(1)与BOF ∠互余的角是______;(2)求EOF 的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】由123B B B ,,的规律写出n B 的坐标.【详解】∵点B 1的坐标为(1,1),点B 2的坐标为(3,2),∴点B 3的坐标为(7,4),∴Bn 的横坐标是:2n ﹣1,纵坐标是:2n ﹣1.则B n 的坐标是(2n ﹣1,2n ﹣1).故选:D .【点睛】本题考查点的坐标规律探索,观察图形前面某些点的坐标,找出规律后再写出图形一般点的坐标.2.B解析:B【分析】根据点到x 轴的距离等于纵坐标的长度,到y 轴的距离等于横坐标的长度以及第二象限内点的坐标特征解答.【详解】∵点A 位于第二象限∴横坐标为负,纵坐标为正∵点A 到x 轴的距离为3,到y 轴的距离为6∴点A 的坐标为(-6,3)故答案为:B .【点睛】本题考查点的坐标和象限的特征,解题的关键是掌握点的坐标和象限的特征.3.C解析:C【分析】根据点A 到x 轴的距离与到y 轴的距离相等可得3m-5=m+1或3m-5=-(m+1),解出m 的值.【详解】解:∵点A到x轴的距离与到y轴的距离相等,∴3m-5=m+1或3m-5=-(m+1),解得:m=3或1,故选:C.【点睛】本题考查了点的坐标,关键是掌握到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值.4.B解析:B【分析】根据横坐标不变,纵坐标变为原来的2倍得到整个图形将沿y轴变长,即可得出结论.【详解】如果将一个图形上各点的横坐标不变,纵坐标乘以2,则这个图形发生的变化是:纵向拉伸为原来的2倍.故选B.【点睛】本题考查了坐标与图形性质:利用点的坐标计算相应的线段的长和判断线段与坐标轴的关系.5.C解析:C【分析】通过观察发现:每一行等式右边的数就是行数的平方,故第n行右边的数就是n的平方,而左起第一个数的绝对值比右侧的数大1,并且左边的项数是行数的2倍,前一半的符号为负,后一半的符号为正.【详解】解:第一行:211=;第二行:224=;=;第三行:239=;第四行:2416……第n行:2n;∴第11行:2=.11121∵左起第一个数的绝对值比右侧的数大1,并且左边的项数是行数的2倍,前一半的符号为负,后一半的符号为正.∴第11行左起第1个数是-122,第11个数是-132.故选:C.【点睛】此题主要考查探索数与式的规律,正确找出规律是解题关键.6.C解析:C【分析】根据平方根的概念从而得出a的值,再利用算术平方根的定义求解即可.【详解】∵-2是实数a的一个平方根,a=,∴4∴4的算术平方根是2,故选:C.【点睛】本题主要考查了平方根以及算术平方根,在解题时要注意一个正数有两个平方根,它们互为相反数.一个正数的算术平方根是它的正的平方根.7.C解析:C【分析】根据算术平方根与平方根、立方根的定义逐项判断即可得.【详解】A4=,此项错误;B、4=±,此项错误;C3=-,此项正确;D4==,此项错误;故选:C.【点睛】本题考查了算术平方根与平方根、立方根,熟记各定义是解题关键.8.B解析:B【分析】<<,进而得出答案.直接利用估算无理数的大小的方法得出23【详解】<<,解:459<<,<<23∴-<<-,83882586∴<,∴5.8故选:B.【点睛】9.B解析:B【分析】利用对顶角的定义、余角的定义、两直线的位置关系等知识分别判断后即可确定正确的选项.【详解】解:①相等的角不一定是对顶角,故错误,是假命题;②同角的余角相等,正确,为真命题;③在同一平面内,垂直于同一条直线的两直线互相平行,故错误,是假命题; ④在同一平面内,如果两条直线不平行,它们一定相交,正确,为真命题;⑤两直线平行,同位角相等,故错误,是假命题;⑥如果直线a ∥b ,b ⊥c ,那么a ⊥c ,正确,为真命题,故选:B .【点睛】本题考查了命题与定理的知识,解题的关键是了解对顶角的定义、余角的定义、两直线的位置关系等知识,属于基础题,难度不大.10.B解析:B【分析】根据命题的定义、真命题与假命题的定义逐项判断即可得.【详解】A 、命题有真命题和假命题,此项说法错误;B 、定理都是经过推论、论证的真命题,此项说法正确;C 、不正确的判断是假命题,此项说法错误;D 、基本事实是真命题,此项说法错误;故选:B .【点睛】本题考查了命题、真命题与假命题,熟练掌握理解各概念是解题关键.11.B解析:B【分析】根据同位角的概念对每个图形一一判断,选出正确答案即可.【详解】图1:1∠与2∠是同位角;图2:1∠与2∠不是同位角;图3:1∠与2∠不是同位角;图4:1∠与2∠是同位角;只有图1、图4中1∠与2∠是同位角.故选:B .【点睛】本题主要考查同位角的概念,熟记同位角的概念是解题关键.12.C解析:C【分析】如图(见解析),先根据平移的性质可得//AE BF ,2BF AD AC ==,DE AC =,再根据平行线的性质可得BEF 的边BF 上的高等于BG ,然后根据三角形的面积公式分别求出ABE △和BEF 的面积即可得出答案.【详解】如图,过点B 作BG AE ⊥于点G ,连接BE , ABC 面积为2, 122AC BG ∴⋅=,即4AC BG ⋅=, 由平移的性质得://AE BF ,BF AD =,DE AC =,AC CD =,2BF AD AC CD AC ∴==+=,3AE AD DE AC =+=,113622ABE S AE BG AC BG ∴=⋅=⋅⋅=, //AE BF ,BEF ∴的边BF 上的高等于BG ,112422BEF S BF BG AC BG ∴=⋅=⋅⋅=, ∴四边形AEFB 的面积为6410ABE BEF S S +=+=,故选:C .【点睛】本题考查了平移的性质、平行线间的距离、三角形的面积公式等知识点,熟练掌握平移的性质是解题关键.二、填空题13.【分析】由M 点的位置易求OM 的长在根据三角形的面积公式计算可求解【详解】解:∵M 在y 轴上纵坐标为4∴OM =4∵P (6﹣4)∴S △OMP =OM•|xP|=×4×6=12故答案为12【点睛】本题考查了三解析:【分析】由M点的位置易求OM的长,在根据三角形的面积公式计算可求解.【详解】解:∵M在y轴上,纵坐标为4,∴OM=4,∵P(6,﹣4),∴S△OMP=12OM•|x P|=12×4×6=12.故答案为12.【点睛】本题考查了三角形的面积,坐标与图形的性质,根据三角形的面积公式求解是解题的关键.14.(65)【分析】通过新数组确定正整数n的位置An=(ab)表示正整数n为第a 组第b个数(从左往右数)所有正整数从小到大排列第n个正整数第一组(1)1个正整数第二组(23)2个正整数第三组(456)三解析:(6,5)【分析】通过新数组确定正整数n的位置,A n=(a,b)表示正整数n为第a组第b个数(从左往右数),所有正整数从小到大排列第n个正整数,第一组(1),1个正整数,第二组(2,3)2个正整数,第三组(4,5,6)三个正整数,…,这样1+2+3+4+…+a> n,而1+2+3+4+…+(a-1)<n,能确第a组a个数从哪一个是开起,直到第b个数(从左往右数)表示正整数nA7表示正整数7按规律排1+2+3+4=10>7,1+2+3=6<7,说明7在第4组,第四组应有4个数为(7,8,9,10)而7是这组的第一个数,为此P7=(4,1),理解规律A20,先求第几组排进20,1+2+3+4+5+6=21>20,由1+2+3+4+5=15,第六组从16开始,按顺序找即可.【详解】A20是指正整数20的排序,按规律1+2+3+4+5+6=21>20,说明20在第六组,而1+2+3+4+5=15<20,第六组从16开始,取6个数即第六组数(16,17,18,19,20,21),从左数第5个数是20,故A20=(6,5).故答案为:(6,5).【点睛】本题考查按规律取数问题,关键是读懂An=(a,b)的含义,会用新数组来确定正整数n 的位置.15.-1【分析】要使只有当和时成立即此时解出a和b代入中求出结果即可【详解】由题意可知∴∴故答案为:-1【点睛】本题考查非负数的性质几个非负数的和为0时那么这几个非负数都为0解析:-1【分析】30b +=0=和30b +=时成立.即此时20a -=,30b +=,解出a 和b ,代入2021()a b +中求出结果即可.【详解】由题意可知20a -=,30b +=,∴23a b ==-,.∴20212021()(23)1a b +=-=-.故答案为:-1.【点睛】本题考查非负数的性质,几个非负数的和为0时,那么这几个非负数都为0. 16.(1)x=或x=-;(2)x =【分析】(1)根据平方根的定义解答即可;(2)根据立方根的定义解答即可【详解】解:(1)∵9(x-1)2=25∴x-1=±即x-1=或x-1=-解得x=或x=-;(2)解析:(1)x=83或x=-23;(2)x =32-. 【分析】(1)根据平方根的定义解答即可;(2)根据立方根的定义解答即可.【详解】解:(1)∵9(x-1)2=25∴x-1=±53, 即x-1=53或x-1=-53, 解得x=83或x=-23; (2)3548x += 3548x =- 3278x =-x =32-. 【点睛】本题主要考查了求一个数的平方根与立方根,熟记定义是解答本题的关键.17.5【分析】根据平方根的定义求解即可【详解】的平方根是a-1=4a=5故答案为:5【点睛】此题考查了平方根的定义一个整数的平方根有两个它们互为相反数解析:5【分析】根据平方根的定义求解即可.【详解】a-的平方根是2±,1∴a-1=4,∴a=5.故答案为:5【点睛】此题考查了平方根的定义,一个整数的平方根有两个,它们互为相反数.18.126°【分析】由∠1=∠2及对顶角相等可得出∠1=∠5利用同位角相等两直线平行可得出l1∥l2利用两直线平行同旁内角互补可求出∠6的度数再利用对顶角相等可得出∠4的度数【详解】解:给各角标上序号如解析:126°.【分析】由∠1=∠2及对顶角相等可得出∠1=∠5,利用“同位角相等,两直线平行”可得出l1∥l2,利用“两直线平行,同旁内角互补”可求出∠6的度数,再利用对顶角相等可得出∠4的度数.【详解】解:给各角标上序号,如图所示.∵∠1=∠2,∠2=∠5,∴∠1=∠5,∴l1∥l2,∴∠3+∠6=180°.∵∠3=54°,∴∠6=180°-54°=126°,∴∠4=∠6=126°.故答案为:126°.【点睛】本题考查了平行线的判定与性质,牢记平行线的各判定与性质定理是解题的关键.19.40°【分析】先根据对顶角相等的性质得出∠1=∠2即可求出α的度数【详解】解:∵∠1与∠2是对顶角∠2=50°∴∠1=∠2∵∠2=50°∴α+10°=50°∴α=40°故答案为:40°【点睛】本题考解析:40°【分析】先根据对顶角相等的性质得出∠1=∠2,即可求出α的度数.【详解】解:∵∠1与∠2是对顶角,110α∠=+︒,∠2=50°,∴∠1=∠2,∵110α∠=+︒,∠2=50°,∴α+10°=50°,∴α=40°.故答案为:40°.【点睛】本题考查了对顶角相等的性质以及角度的计算.20.46【分析】过点C 作CF ∥AB 根据平行线的传递性得到CF ∥DE 根据平行线的性质得到∠ABC =∠BCF ∠CDE+∠DCF =180°根据已知条件等量代换得到∠BCF =76°由等式性质得到∠DCF =30°解析:46【分析】过点C 作CF ∥AB ,根据平行线的传递性得到CF ∥DE ,根据平行线的性质得到∠ABC =∠BCF ,∠CDE +∠DCF =180°,根据已知条件等量代换得到∠BCF =76°,由等式性质得到∠DCF =30°,于是得到结论.【详解】解:过点C 作CF ∥AB ,∵AB ∥DE ,∴AB ∥DE ∥CF ,∴∠ABC =∠BCF ,∠CDE +∠DCF =180°,∵∠ABC =76°,∠CDE =150°,∴∠BCF =76°,∠DCF =30°,∴∠BCD =46°,故答案为:46.【点睛】本题主要考查平行线的性质,关键是根据平行线的性质得到角之间的等量关系.三、解答题21.(1)先向上平移2 个单位,再向右平移4个点位.(2)画图见详解(3)7.5.【分析】(1)由A 到A 1纵坐标变化,说明向上平移2个单位,由B 到B 1横坐标变化说明向右平移4个单位,规律即可发现 ;(2)利用平移的特征先求出A 、B 1、C 1三点坐标,然后在平面直角坐标系中描点A 、B 、C 、A 1、B 1、C 1,再顺次连结AB 、BC 、CA ;A 1B 1、B 1C 1、C 1A 1;则△ABC 为原图,△A 1B 1C 1为平移后的图形;(3)先求△A 1B 1C 1的底113A B =,再求底边上的高长为5;利用面积公式求即可.【详解】(1)由A 到A 1纵坐标变化为由0到2,说明向上平移2个单位,由B 到B 1横坐标变化为由3到7说明向右平移4个单位,平移的规律为先向上平移2 个单位,再向右平移4个点位;故答案为:先向上平移2 个单位,再向右平移4个点位.(2)440a a +==,,022b b +==,,549c c +==,,527d d +==,,则A 、B 1、C 1三点坐标分别为()00A ,,()172B ,,()197C ,,如图 描点:A 、B 、C 、A 1、B 1、C 1,连线:顺次连结AB 、BC 、CA ;A 1B 1、B 1C 1、C 1A 1,结论:则△ABC 为原图,△A 1B 1C 1为平移后的图形.(3)11743A B =-=,11A B 边上的高为725-=,111115357.522A B C S ∆=⨯⨯==. 【点睛】本题考查平移规律,画图和三角形面积问题,掌握平移规律发现的方法,画图的步骤与要求,会求钝角三角形的面积是解题关键.22.(1)A(0,3),B(6,3), C(7,0);(2)t 的取值范围为2≤t≤3;(3)1k k +【分析】(1)由绝对值和算术平方根的非负性质得出a+c ﹣10=0,且c ﹣7=0,求出c=7,a+c=10,得出c=3,即可得出答案;(2)由题意得ON=t ,CM=2t ,得出AN=3﹣t ,由2S △ABN ≤S △BCM 和三角形面积公式得出不等式,解得t≥2,由0≤t≤3,即可得出答案;(3)设AB 与CN 交于点D ,由平行线的性质结合三角形的外角性质和已知条件得出∠ABN=(k+1)(∠OCH ﹣∠BNQ),再由平行线的性质和已知条件得出∠HCJ=k(∠OCH ﹣∠BNQ),即可得出答案.【详解】(1)∵10a c ++﹣0=∴100a c +=﹣,且70c =﹣,∴710c a c =+=,,∴3c =,∴()()0370A C ,,,, ∵AB ∥x 轴,6AB =,∴()63B ,; (2)∵()()0370A C ,,,, ∴37OA OC ==,,由题意得:2ON t CM t ==,,∴3AN t =﹣,∵2S △ABN ≤S △BCM , ∴()112362322t t ⨯⨯⨯≤⨯⨯﹣, 解得:2t ≥,∵当点N 从点O 运动到点A 时,点M 同时也停止运动,∴03t ≤≤,∴t 的取值范围为:23t ≤≤;(3)设AB 与CN 交于点D ,如图所示:∵AB∥OC,∴∠BDC=∠OCD,∵∠BDC=∠BND+∠ABN,∠CNQ=k∠BNQ,∠NCH=k∠OCH,∴∠BDC=(k+1)∠BNQ+∠ABN,∠OCD=(k+1)∠OCH,∴(k+1)∠BNQ+∠ABN=(k+1)∠OCH,∴∠ABN═(k+1)∠OCH﹣(k+1)∠BNQ=(k+1)(∠OCH﹣∠BNQ),∵NQ∥CJ,∴∠NCJ=∠CNQ=k∠BNQ,∵∠HCJ+∠NCJ=∠NCH=k∠OCH,∴∠HCJ=k∠OCH﹣∠NCJ=k∠OCH﹣k∠BNQ=k(∠OCH﹣∠BNQ),∴()()()k OCH BNQHCJABN k1OCH BNQ∠∠∠∠∠∠=+﹣﹣=1kk+.【点睛】本题考查了梯形的性质、坐标与图形性质、绝对值和算术平方根的非负性质、三角形面积公式、平行线的性质等知识;熟练掌握三角形的面积公式和平行线的性质是解题的关键.23.(1)x=83或x=-23;(2)x=32-.【分析】(1)根据平方根的定义解答即可;(2)根据立方根的定义解答即可.【详解】解:(1)∵9(x-1)2=25∴x-1=±53,即x-1=53或x-1=-53,解得x=83或x=-23;(2)35 48x+=354 8x=-3278 x=-x=32 -.【点睛】本题主要考查了求一个数的平方根与立方根,熟记定义是解答本题的关键.24.x=1或x=﹣5【分析】依据平方根的性质可得到x+2的值,然后解关于x的一元一次方程即可.【详解】解:∵3(x+2)2=27,∴(x+2)2=9,∴x+2=±3,解得:x=1或x=﹣5.【点睛】本题主要考查的是平方根的性质,熟练掌握平方根的性质是解题的关键.25.见解析【分析】先画线段AB=a,再以AB为边画正方形即可.【详解】解:作法如图所示,【点睛】本题考查了正方形的画法,根据正方形的判定,画一个垂直,再画四边相等即可,注意:画法不唯一.26.(1)∠BOD、∠AOC;(2)54°【分析】(1)根据垂直的定义得到∠FOD=90°,于是得到∠BOF+∠BOD=90°,根据对顶角的性质得到∠BOD=∠AOC,等量代换得到∠BOF+∠AOC=90°,即可得到结论.(2)根据已知条件得到∠BOF=90°﹣72°=18°,再由OE平分∠BOD,得出∠BOE=1∠BOD=36°,因此∠EOF=36°+18°=54°.2【详解】解:(1)∵OF⊥CD,∴∠FOD=90°,∴∠BOF+∠BOD=90°,∵∠BOD=∠AOC,∴∠BOF+∠AOC=90°,∴图中互余的角有∠BOF与∠BOD,∠BOF与∠AOC.故答案为:∠BOD、∠AOC;(2)∵直线AB和CD相交于点O,∴∠BOD=∠AOC=72°,∵OF⊥CD,∴∠BOF=90°﹣72°=18°,∵OE平分∠BOD,∴∠BOE=1∠BOD=36°,2∴∠EOF=36°+18°=54°.【点睛】本题考查了对顶角、垂线以及角平分线的定义;弄清各个角之间的关系是解题的关键.。
5.3 正方形(二)(第1题)1.如图,以正方形ABCD 的边AB 为一边向内作等边三角形ABE ,连结EC ,则∠BEC 的度数为(D)A .45°B .60°C .67.5°D .75°2.已知正方形ABCD 的边长为2,E ,F 分别为BC 和CD 边上的中点,则S △AEF =(B) A.52 B.32 C .2 D.3553.有下列图形:①平行四边形;②菱形;③矩形;④正方形;⑤三角形.其中一定能够找到一点,使该点到各边距离都相等的是(D)A. ①②B. ②③④⑤C. ②④D. ②④⑤4.在正方形ABCD中,对角线长为2 cm,E是AB边上任意一点,则点E到两条对角线的距离之和是(B)A. 22cmB. 1 cmC. 2 cmD. 2cm5.已知正方形ABCD的对角线AC,BD交于点O,且AC=16 cm,则DO=__8__cm,BO=__8__cm,∠OCD=__45°__.(第6题)6.如图,已知正方形ABCD的边长为2,△BPC是等边三角形,则△CDP的面积是__1__,△BPD的面积是.(第7题)7.如图,在正方形ABCD中,G为CD边上的一个动点(点G与点C,D不重合),以CG为一边向正方形ABCD外作正方形GCEF,连结DE交BG的延长线于点H.求证:(1)△BCG≌△DCE.(2)BH⊥DE.【解】(1)∵四边形ABCD,四边形GCEF都是正方形,∴BC=DC,GC=EC,∠BCG=∠DCE=90°,∴△BCG≌△DCE(SAS).(2)由(1)知,△BCG≌△DCE,∴∠GBC=∠EDC.又∵∠BGC=∠DGH,∴∠DHG=∠BCG=90°,即BH⊥DE.8.如图,已知正方形ABCD的边长为1,连结AC,BD交于点O,CE平分∠ACD,交BD于点E,求DE的长.(第8题)【解】 过点E 作EF ⊥DC 于点F. ∵四边形ABCD 是正方形, ∴∠ODC =45°,AC ⊥BD. ∵CE 平分∠ACD ,EF ⊥DC ,∴CO =CF ,∠DEF =45°=∠ODC ,∴EF =DF. ∵正方形ABCD 的边长为1, ∴AC = 2.∴CO =12AC =22.∴CF =CO =22. ∴EF =DF =DC -CF =1-22. ∴DE =EF 2+DF 2=2-1.9.若将正方形分成k 个全等的矩形,其中上、下各横排两个,中间竖排若干个,则k 的值为(B) A. 6 B. 8 C. 10 D. 12【解】 设正方形的边长为1,则矩形的长为12,该矩形的宽为x ,根据题意,得 x +12+x =1, 解得x =14.∴k =2+2+1÷14=8.(第9题) (第10题)10.如图,将正方形OABC 放在平面直角坐标系中,O 是原点,点A 的坐标为(1,3),则点C【解】 过点A 作AD ⊥x 轴于点D ,过点C 作CE ⊥x 轴于点E. ∵四边形OABC 是正方形,∴OA =OC ,∠AOC =90°, ∴∠COE +∠AOD =90°. 又∵∠OAD +∠AOD =90°, ∴∠OAD =∠COE. 在△AOD 和△OCE 中,∵⎩⎨⎧∠OAD =∠COE ,∠ADO =∠OEC =90°,AO =OC ,∴△AOD ≌△OCE(AAS). ∴OE =AD =3,CE =OD =1. ∵点C 在第二象限, ∴点C 的坐标为(-3,1).(第11题)11.如图,F 是正方形ABCD 的边CD 上的一个动点,BF 的垂直平分线交对角线AC 于点E ,连结BE ,FE ,则∠EBF 的度数是45°.【解】 过点E 作HI ∥BC ,分别交AB ,CD 于点H ,I ,则∠BHE =∠EIF =90°. ∵E 是BF 的垂直平分线EM 上的点, ∴BE =EF.∵E 是正方形对角线AC 上的点,即E 是∠BCD 的平分线上一点, ∴点E 到BC 和CD 的距离相等,∴BH =EI.在Rt △BHE 和Rt △EIF 中,∵⎩⎨⎧BE =EF ,BH =EI ,∴Rt △BHE ≌Rt △EIF(HL). ∴∠HBE =∠IEF. ∵∠HBE +∠HEB =90°, ∴∠IEF +∠HEB =90°, ∴∠BEF =90°. 又∵BE =EF , ∴∠EBF =∠EFB =45°.12.如图,正方形ABCD 的边长为1,P 为BC 边上任意一点(可与点B ,C 重合),分别过点B ,C ,D 作射线AP 的垂线,垂足分别为B ′,C ′,D ′,求BB ′+CC ′+DD ′的最大值与最小值.(第12题) (第12题解) 【解】 如解图,连结AC ,DP. 由题意,得S △ACD =S △ADP =12AP ·DD ′.∵S △ABP +S △ACP +S △ACD =1,∴12AP ·BB ′+12AP ·CC ′+12AP ·DD ′=1, ∴BB ′+CC ′+DD ′=2AP.易知1≤AP ≤2(当点P 与点B 重合时,AP =1;当点P 与点C 重合时,AP =2), ∴2≤BB ′+CC ′+DD ′≤2.即BB′+CC′+DD′的最大值为2,最小值为 2.(第13题)13.如图,正方形ABCD的周长为40 m,甲、乙两人分别从A,B同时出发,沿正方形的边行走,甲按逆时针方向每分钟行55 m,乙按顺时针方向每分钟行30 m.(1)出发几分钟后,甲、乙两人第一次在正方形的顶点处相遇.(2)如果用记号(a,b)表示两人走a(min),并相遇b次,那么当两人出发后第一次处在正方形的两个相对顶点位置时,对应的记号是多少?【解】(1)设出发x(min)后,甲、乙第y次相遇(y是正整数),则有:(55+30)x=40(y-1)+10,即85x=40y-30,17x=8y-6,∴y =17x +68=2x +x +68.∵当甲、乙都在顶点处时,甲、乙的路程都必须为10的倍数,即55x 和30x 都为10的倍数,∴x 为2的倍数.又∵y 是正整数, ∴x 最小为2.∴出发2 min 后,甲、乙两人第一次在正方形的顶点处相遇. (2)∵当甲、乙处在正方形的两个相对顶点位置时,他们相差20 m , ∴(55+30)a =40(b -1)+10+20, 即85a =40b -10, 17a =8b -2,∴b =17a +28=2a +a +28.由(1)知a 为2的倍数,且b 为整数, ∴a 最小为6. 当a =6时,b =13, ∴对应的记号为(6,13).。
2020-2021学年浙教版八年级数学下册《5.3正方形》同步基础达标训练(附答案)1.平行四边形、矩形、菱形、正方形共有的性质是()A.对角线互相平分B.对角线相等C.对角线互相垂直D.对角线互相垂直平分2.下列说法正确的是()A.一组对边相等,另一组对边平行的四边形是平行四边形B.一组邻边相等的平行四边形是矩形C.菱形有四条对称轴D.对角线相等且互相垂直平分的四边形是正方形3.下列说法正确的是()A.平行四边形对角线相等B.矩形的对角线互相垂直C.菱形的四个角都相等D.正方形的对角线互相平分4.对角线互相垂直且相等四边形一定是()A.矩形B.菱形C.正方形D.无法确定5.下列说法中错误的是()A.对角线互相平分的四边形是菱形B.对角线相等的平行四边形是矩形C.菱形的对角线互相垂直D.对角线长为a的正方形的面积是6.如图,已知正方形ABCD的边长为4,点M和N分别从B、C同时出发,以相同的速度沿BC、CD向终点C、D运动,连接AM、BN,交于点P,连接PC,则PC长的最小值为()A.2﹣2B.2C.3﹣1D.27.如图,正方形ABCD中,点E是对角线AC上的一点,且AE=AB,连接BE,DE,则∠CDE的度数为()A.20°B.22.5°C.25°D.30°8.如图所示,正方形ABCD的边长为2,AB在x轴的正半轴上,以A(1,0)为圆心,AC 为半径作圆交x轴负半轴于点P,则点P的横坐标是()A.B.C.﹣1D.9.如图,在边长为6的正方形ABCD中,点M为对角线BD上一动点,ME⊥BC于E,MF ⊥CD于F,则EF的最小值为()A.B.C.3D.210.如图,四边形OBCD是正方形,O,D两点的坐标分别是(0,0),(0,6),点C在第一象限,则点C的坐标是()A.(6,3)B.(3,6)C.(0,6)D.(6,6)11.如图,等边△ABC与正方形DEFG重叠,其中D、E两点分别在AB、BC上,且BD=BE.若AB=6,DE=2,则△EFC的面积为()A.1B.2C.D.412.如图,在正方形ABCD的外侧作等边三角形CDE,则∠DAE的度数为()A.20°B.15°C.12.5°D.10°13.如图,P为正方形ABCD的对角线BD上任一点,过点P作PE⊥BC于点E,PF⊥CD 于点F,连接EF.给出以下4个结论,其中,所有正确的结论是()①△FPD是等腰直角三角形;②AP=EF=PC;③AD=PD;④∠PFE=∠BAP.A.①②B.①④C.①②④D.①③④14.如图,在正方形ABCD中,BF⊥CE于点F,交AC于点G,则下列结论错误的是()A.△BCG≌△CDE B.AG=BE C.∠OBG=∠OCE D.∠ABG=∠AGB15.如图,正方形ABCO和正方形DEFO的顶点A,E,O在同一直线l上,且EF=,AB=3,给出下列结论:①∠COD=45°,②AE=5,③CF=BD=,④△COF的面积S△COF=3,其中正确的个数为()A.1个B.2个C.3个D.4个16.如图,正方形ABCD的面积为36,点E、F分别在AB,AD上,若CE=3,且∠ECF =45°,则CF长为()A.2B.3C.D.17.如图,在正方形ABCD中,点O是对角线AC的中点,点E是BC边上的一个动点,OE⊥OF交AB边于点F,点G,H分别是点E,F关于直线AC的对称点,点E从点C 运动到点B时,图中阴影部分的面积大小变化情况是()A.先增大后减小B.先减小后增大C.一直不变D.不确定18.如图,将正方形OEFG放在平面直角坐标系中,O是坐标原点,点E的坐标为(1,3),则点F的坐标为.19.如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,),则点C的坐标为.20.正方形ABCD,点P为正方形内一点,且满足P A=3,PB=2,PC=5,则∠APB的度数为度.21.如图,正方形ABCD的对角线BD上有一点E,且BE=3DE,点F在AB的延长线上,连接EF,过点E作EG⊥EF,交BC的延长线于点G,连接GF并延长,交DB的延长线于点P,若AB=4,BF=1,则线段EP的长是.22.如图,四边形ABCD、AEFG都是正方形,且∠BAE=45°,连接BE并延长交DG于点H,若AB=4,AE=,则线段BH的长是.23.已知正方形ABCD的边长为1,P为射线AD上的动点(不与点A重合),点A关于直线BP的对称点为E,连接PE,BE,CE,DE.当△CDE是等腰三角形时,AP的值为.24.如图,在正方形ABCD的外侧,作等边三角形ADE,连接BE,则∠AEB的度数为.25.如图,正方形ABCD中,点E为对角线AC上一点,且AE=AB,则∠BEA的度数是度.26.如图,在正方形ABCD中,对角线AC、BD交于O,E点在BC上,EG⊥OB,EF⊥OC,垂足分别为点G、F,AC=10,则EG+EF=.27.在正方形ABCD中,E是BC边延长线上的一点,且CE=BD,则∠AEC=.28.如图,正方形ABCD中,点E、F分别在边BC、CD上,连接AE、EF、AF,且∠EAF =45°,下列结论:①△ABE≌△ADF;②∠AEB=∠AEF;③正方形ABCD的周长=2△CEF的周长;④S△ABE+S△ADF=S△CEF,其中正确的是.(只填写序号)29.如图,ABCD为正方形,∠CAB的角平分线交BC于点E,过点C作CF⊥AE交AE的延长线于点G,CF与AB的延长线交于点F,连接BG、DG、与AC相交于点H,则下列结论:①△ABE≌△CBF;②GF=CG;③BG⊥DG;④DH=(﹣1)AE,其中正确的是.30.如图,在正方形ABCD中,E是边CD上一点,AF⊥AE交CB的延长线于点F,连接DF,分别交AE、AB于点G、P.求证:AE=AF.31.如图,在矩形ABCD中,AD=6,DC=8,菱形EFGH的三个顶点E,G,H分别在矩形ABCD的边AB,CD,DA上,AH=2,DG=2.求证:四边形EFGH为正方形.32.如图,正方形ABCD中,点P是对角线AC上一点,连接PB,边作PE⊥PB交AD边于于点E,且点E不与点A,D重合,作PM⊥AD,PN⊥AB,垂足分别为点M和N.(1)求证:PM=PN;(2)求证:EM=BN.33.如图,在▱ABCD中,对角线AC、BD交于点O,E是BD延长线上的点,且△ACE是等边三角形.(1)求证:四边形ABCD是菱形.(2)若∠AED=2∠EAD,求证:四边形ABCD是正方形.34.已知:如图,菱形ABCD的对角线AC与BD相交于点O,若∠CAD=∠DBC.(1)求证:四边形ABCD是正方形.(2)E是OB上一点,DH⊥CE,垂足为H,DH与OC相交于点F,求证:OE=OF.35.如图,已知正方形ABCD,P是对角线AC上任意一点,PM⊥AD,PN⊥AB,垂足分别为点M和N,PE⊥PB交AD于点E.(1)求证:四边形MANP是正方形;(2)求证:EM=BN.36.已知,如图,矩形ABCD中,AD=6,DC=7,菱形EFGH的三个顶点E,G,H分别在矩形ABCD的边AB,CD,DA上,AH=2,连接CF.(1)若DG=2,求证四边形EFGH为正方形;(2)若DG=6,求△FCG的面积;(3)当DG为何值时,△FCG的面积最小.37.如图,在▱BCFD中,点E是DF的中点,连接CE并延长,与BD的延长线相交于点A,连接CD,AF.(1)求证:四边形ADCF是平行四边形;(2)若CA=CB,则▱ADCF为(填矩形、菱形、正方形中的一个).38.如图,在正方形ABCD中,点E是对角线AC上一点,且CE=CD,过点E作EF⊥AC 交AD于点F,连接BE.(1)求证:DF=AE;(2)当AB=2时,求AF的值.39.如图,已知正方形ABCD的边长为,连接AC、BD交于点O,CE平分∠ACD交BD 于点E,(1)求DE的长;(2)过点E作EF⊥CE,交AB于点F,求BF的长;(3)过点E作EG⊥CE,交CD于点G,求DG的长.40.在边长为5的正方形ABCD中,点E在边CD所在直线上,连接BE,以BE为边,在BE的下方作正方形BEFG,并连接AG.(1)如图1,当点E与点D重合时,BG=;AG=;(2)如图2,当点E在线段CD上时,DE=2,求AG的长;(3)若AG=,请直接写出此时DE的长.参考答案1.解:A、平行四边形、矩形、菱形、正方形的对角线都互相平分,故本选项正确;B、只有矩形,正方形的对角线相等,故本选项错误;C、只有菱形,正方形的对角线互相垂直,故本选项错误;D、只有菱形,正方形的对角线互相垂直平分,故本选项错误.故选:A.2.解:A.因等腰梯形满足“一组对边相等,另一组对边平行”,但它不是平行四边形,故此选项说法错误;B.一组邻边相等的平行四边形是菱形,不一定是矩形,故此选项说法错误;C.菱形的对称轴是两条对角线所在的直线,因此菱形只有两条对称轴,故此选项错误;D.因为对角线相等且互相平分的四边形是矩形,若再加上对角线互相垂直条件,则矩形便转化为正方形,所以对角线相等且互相垂直平分的四边形是正方形,故此选项正确;故选:D.3.解:A、平行四边形对角线互相平分,错误;B、矩形的对角线相等,错误;C、菱形的四条边都相等,错误;D、正方形的对角线互相垂直平分且相等,正确;故选:D.4.解:对角线互相平分且相等的四边形才是矩形,故A选项不符合题意;对角线互相垂直平分的四边形才是菱形,故B选项不符合题意;对角线互相垂直平分且相等的四边形才是正方形,故C选项不符合题意;故D选项正确.故选:D.5.解:因为对角线互相平分的四边形是平行四边形,所以A选项错误,符合题意;因为对角线相等的平行四边形是矩形,所以B选项正确,不符合题意;因为菱形的对角线互相垂直,所以C选项正确,不符合题意;因为对角线长为a的正方形的面积是:a×a=a2.所以D选项正确,不符合题意.6.解:由题意得:BM=CN,∵四边形ABCD是正方形,∴∠ABM=∠BCN=90°,AB=BC=4,在△ABM和△BCN中,AB=BC,∠ABM=∠BCN,MB=CN,∴△ABM≌△BCN(SAS),∴∠BAM=∠CBN,∵∠ABP+∠CBN=90°,∴∠ABP+∠BAM=90°,∴∠APB=90°,∴点p是以AP为半径的圆上远动,设圆心为O,运动路径一条弧,是这个圆的,如图所示:连接OC交圆O于P,此时PC最小,∵AB=4,∴OP=OB=2,由勾股定理得:OC==2,∴PC=OC﹣OP=2﹣2;故选:A.7.解:∵四边形ABCD是正方形,∴AB=AD,∠ADC=90°,∠DAC=45°,∵AE=AB,∴AD=AE,∴∠ADE=∠AED=67.5°,∴∠CDE=90°﹣67.5°=22.5°,8.解:∵四边形ABCD是边长为2的正方形,∴AB=BC=2,∴AC=,∵以A为圆心,AC为半径画圆交x轴负半轴于点P,∴AP=AC=,又∵点A(1,0),∴OP=﹣1,∴点P(1﹣,0),故选:D.9.解:连接MC,如图所示:∵四边形ABCD是正方形,∴∠C=90°,∠DBC=45°,∵ME⊥BC于E,MF⊥CD于F∴四边形MECF为矩形,∴EF=MC,当MC⊥BD时,MC取得最小值,此时△BCM是等腰直角三角形,∴MC=BC==3,∴EF的最小值为3;故选:A.10.解:∵四边形OBCD是正方形,∴OB=BC=CD=OD,∠CDO=∠CBO=90°,∵O,D两点的坐标分别是(0,0),(0,6),∴OD=6,∴OB=BC=CD=6,∴C(6,6).故选:D.11.解:过F作FQ⊥BC于Q,则∠FQE=90°,∵△ABC是等边三角形,AB=6,∴BC=AB=6,∠B=60°,∵BD=BE,DE=2,∴△BED是等边三角形,且边长为2,∴BE=DE=2,∠BED=60°,∴CE=BC﹣BE=4,∵四边形DEFG是正方形,DE=2,∴EF=DE=2,∠DEF=90°,∴∠FEC=180°﹣60°﹣90°=30°,∴QF=EF=1,∴△EFC的面积为==2,故选:B.12.解:∵四边形ABCD是正方形,∴∠ADC=90°,AD=DC,∵△CDE是等边三角形,∴DE=DC,∠EDC=60°,∴∠ADE=90°+60°=150°,AD=ED,∴∠DAE=∠DEA=(180°﹣∠ADE)=15°,故选:B.13.解:∵P为正方形ABCD的对角线BD上任一点,∴P A=PC,∠BCD=90°,∵过点P作PE⊥BC于点E,PF⊥CD,∴∠PEC=∠DFP=∠PFC=∠C=90°,∴四边形PECF是矩形,∴PC=EF,∴P A=EF,故②正确,∵BD是正方形ABCD的对角线,∴∠ABD=∠BDC=∠DBC=45°,∵∠PFC=∠BCD=90°,∴PF∥BC,∴∠DPF=∠DBC=45°,∵∠DFP=90°,∴△FPD是等腰直角三角形,故①正确,在△P AB和△PCB中,,∴△P AB≌△PCB(SSS),∴∠BAP=∠BCP,在矩形PECF中,∠PFE=∠FPC=∠BCP,∴∠PFE=∠BAP.故④正确,∵点P是正方形对角线BD上任意一点,∴AD不一定等于PD,只有∠BAP=22.5°时,AD=PD,故③错误,故选:C.14.解:A.∵四边形ABCD是正方形,∴∠BCD=90°,∠BCG=∠CDE=45°,BC=CD,∵BF⊥CE,∴∠BFC=90°,∴∠CBG+∠BCF=∠BCF+∠DCE=90°,∴∠CBG=∠DCE,∴△BCG≌△CDE(ASA),故A正确;B.∵△BCG≌△CDE,∴CG=DE,∵正方形ABCD中,AC=BD,∴AG=BE,故B正确;C.∵△BCG≌△CDE,∴∠CBG=∠DCE,∵正方形ABCD中∠OBC=∠OCD=45°,∴∠OBG=∠OCE,故C正确;D.∵E是OD上的任意一点,∴当BE≠BC时,有AB≠BE,∵AG=BE,∴AB≠AG,∴∠ABG≠∠AGB,故D错误;故选:D.15.解:①∵∠AOC=90°,∠DOE=45°,∴∠COD=180°﹣∠AOC﹣∠DOE=45°,故正确;②∵EF=,∴OE=2,∵AO=AB=3,∴AE=AO+OE=2+3=5,故正确;③作DH⊥AB于H,作FG⊥CO交CO的延长线于G,则FG=1,CF=,BH=3﹣1=2,DH=3+1=4,BD=,故错误;④△COF的面积S△COF=×3×1=,故错误;故选:B.16.解:∵正方形ABCD的面积为36,∴BC=AB=6,如图,延长FD到G,使DG=BE;连接CG、EF;∵四边形ABCD为正方形,在△BCE与△DCG中,,∴△BCE≌△DCG(SAS),∴CG=CE,∠DCG=∠BCE,∴∠GCF=45°,在△GCF与△ECF中,,∴△GCF≌△ECF(SAS),∴GF=EF,∵CE=3,CB=6,∴BE=3,∴AE=3,设AF=x,则DF=6﹣x,GF=3+(6﹣x)=9﹣x,∴EF==,∴(9﹣x)2=9+x2,∴x=4,即AF=4,∴DF=6﹣4=2,∴CF===2,故选:A.17.解:连接BD,∵四边形ABCD是正方形,∴∠BOC=90°,∴∠BOE+∠EOC=90°,∵OE⊥OF,∴∠BOE+∠FOB=90°,∴∠FOB=∠EOC,在△FOB和△EOC中,,∴△FOB≌△EOC,同理,△HOD≌△GOC,∴图中阴影部分的面积=△ABD的面积=×正方形ABCD的面积,故选:C.18.解:如图,过点E作x轴的垂线EH,垂足为H.过点G作x轴的垂线GM,垂足为M,连接GE、FO交于点O′.∵四边形OEFG是正方形,∴OG=EO,∠GOM=∠OEH,∠OGM=∠EOH,在△OGM与△EOH中,,∴△OGM≌△EOH(ASA)∴GM=OH=1,OM=EH=3,∴G(﹣3,1).∴O′(﹣1,2).∵点F与点O关于点O′对称,∴点F的坐标为(﹣2,4).故答案是:(﹣2,4).19.解:如图,过点C作CE⊥x轴于E,过点A作AF⊥y轴于F,∵点A的坐标为(1,),∴AF=1,OF=,∵四边形ABCO是正方形,∴OA=OC,∠AOC=90°=∠EOF,∴∠COE=∠AOF,在△AOF和△COE中,,∴△AOF≌△COE(AAS),∴AF=CE=1,OE=OF=,∴点C(﹣,1),故答案为:(﹣,1).20.解:将△APB绕点B旋转90°得到△BP′C,则∠PBP′=90°,BP=BP′,AP=P′C,∠APB=∠CP′B,∵PB=2,∴BP′=2,∴PP′=4,∠BP′P=45°,∵P A=3,PC=5,∴P′C=3,∵PP′2+P′C2=42+32=52=PC2,∴△PP′C是直角三角形,∠PP′C=90°,∴∠BP′C=∠BP′P+∠PP′C=135°,∴∠APB=135°,故答案为:135.21.解:如图,作EN⊥AB于N,EM⊥BC于M,PH⊥CB于H.∵四边形ABCD是正方形,∴AD=DC=CB=AB=4,∠ABC=∠BCD=∠CDA=∠DAB=90°,∠ABD=∠CBD=∠ADB=∠CDB=45°,∴EN=EM=BN=BM,∵BE=3DE,∴BN=3AN,所以AN=1,BN=3,∴EM=EN=BM=BN=3,∵EF⊥EG,∴∠FEG=90°,∵∠NEM=90°,∴∠NEF=∠MEG,在△NEF和△MEG中:∴△NEF≌△MEG(ASA),∴MG=NF,EG=EF,∵BF=1,∴NF=NB+BF=4,∴MG=4,∴BG=BM+MG=7,∵∠PBF=∠ABD=45°,∴∠PBG=135°,∴∠PBH=45°,∴∠HPB=45°,∴BH=PH,PB=PH,设BH=PH=x,则PB=x,GH=BH+BG=x+7,得x=,所以PB=,又因为BE=BN=3,所以EP=EB+BP=.22.解:连接GE交AD于点N,连接DE,如图,∵∠BAE=45°,∴AF与EG互相垂直平分,且AF在AD上,∵AE=,∴AN=GN=1,∴DN=4﹣1=3,在Rt△DNG中,DG==;由题意可得:△ABE相当于逆时针旋转90°得到△AGD,∴DG=BE=,∵S△DEG=GE•ND=DG•HE,∴HE==,∴BH=BE+HE=+=.故答案是:.23.解:①如图1,当CE=CD,且点P在线段AD上时,由题意知,△BEC为等边三角形,过点E作BC的垂线,分别交AD,BC于点M,N,则EN=BE=,∴ME=1﹣,在四边形ABEP中,∠ABE=30°,∠A=∠PEB=90°,∴∠APE=150°,∴∠MPE=180°﹣∠APE=30°,∴在Rt△PEM中,PE=2ME=2﹣,∴AP=PE=2﹣;②如图2,当CE=CD,且点P在线段AD的延长线上时,由题意知,△BCE为等边三角形,过点E作BC的垂线,交BC于N,交AD于M,则NE=CE=,∴ME=1+,在四边形ABEP中,∠A=∠BEP=90°,∠ABE=∠ABC+∠EBC=150°,∴∠APE=30°,∴在Rt△PME中,PE=2ME=2+,∴AP=PE=2+;③如图3,当ED=EC时,点E在CD的垂直平分线上,也在AB的垂直平分线上,∴AE=BE,又∵AB=EB,∴△ABE为等边三角形,∴∠ABE=60°,∴∠ABP=∠EBP=30°,在Rt△ABP中,AP=AB=,综上所述,AP的值为2﹣或2+或.24.解:根据等边三角形和正方形的性质可知AB=AE,∴∠BAE=90°+60°=150°,∴∠AEB=(180°﹣150°)÷2=15°.故答案为:15°25.解:∵四边形ABCD是正方形,∴∠BAC=45°,∵AE=AB,∴∠BEA=∠ABE==67.5°.故答案为:67.5.26.解:∵四边形ABCD是正方形,AC=10,∴AC⊥BD,BO=OC=5,∵EG⊥OB,EF⊥OC,∴S△BOE+S△COE=S△BOC,∴•BO•EG+•OC•EF=•OB•OC,∴×5×EG+×5×EF=×5×5,∴EG+EF=5.故答案为5.27.解:连接AC,则正方形ABCD中,AC=BD ∵CE=BD∴AC=EC∴∠E=∠CAF∵AD∥EC∴∠E=∠DAF∴∠CAF=∠DAF∵∠CAD=45°∴∠CAF=∠DAF=22.5°∴∠AEC=22.5°故答案为:22.5°28.解:①当E、F不分别是BC和CD的中点时,BE≠DF,则△ABE≌△ADF不成立,故①错误;②延长CD至G,使得DG=BE,如图1,∵AB=AD,∠ABE=∠ADG=90°,∴△ABE≌△ADG(SAS),∴∠BAE=∠DAG,∠AEB=∠G,AE=AG,∵∠BAD=90°,∠EAF=45°,∴∠BAE+∠DAF=45°,∴∠GAF=∠DAG+∠DAF=45°,∴∠EAF=∠F AG,∵AF=AF,∴△AEF≌△AGF(SAS),∴∠AEF=∠G,∴∠AEB=∠AEF,故②正确;③∵△AEF≌△AGF,∴EF=GF=DG+DF=BE+DF,∴△CEF的周长=CE+CF+EF=CE+CF+BE+DF=BC+CD=2BC,∵正方形ABCD的周长=4BC,∴正方形ABCD的周长=2△CEF的周长,故③正确;④∵△ABE≌△ADG,∴S△ABE=S△ADG,∴S△ABE+S△ADF=S△AGF,∵GF=EF>CF,AD≥CE,∴,即S△AGF>S△CEF,∴S△ABE+S△ADF≠S△CEF,故④错误;故答案为:②③.29.解:①∵四边形ABCD为正方形,∴AB=CB,∠ABC=∠CBF=90°,∵AG⊥CF,∴∠AGF=90°,∴∠GAF+∠F=90°,∵∠BCF+∠F=90°,∴∠GAF=∠BCF,∴△ABE≌△CBF(ASA),故此小题结论正确;②∵AG是∠CAB的角平分线,∴∠BAG=∠CAG,∵∠AGF=∠AGC=90°,AG=AG,∴△AFG≌△ACG(ASA),∴FG=CG,故此小题结论正确;③∵∠CBF=90°,FG=CG,∴BG=CG,∴∠CBG=∠BCG,∵∠ABC=∠DCB=90°,∴∠ABG=∠DCG,∵AB=DC,∴△ABG≌△DCG(SAS),∴∠AGB=∠DGC,∵∠DGC+∠AGD=∠AGC=90°,∴∠AGB+∠AGD═90°,∴BG⊥DG,故此小题结论正确;④∵△ABG≌△DCG,∴∠CDG=∠BAG=∠CAG,∵∠DCH=∠ACE,∴DH=,故此小题结论错误.由上可知,正确的结论是①②③,故答案为:①②③.30.证明:∵四边形ABCD为正方形,∴AB=AD,∠ABC=∠BAD=∠ADC=90°,∵AF⊥AE,∴∠EAF=90°,即∠F AB+∠EAB=90°,而∠EAD+∠EAB=90°,∴∠F AB=∠EAD,在△ABF和△ADE中,,∴△ABF≌△ADE(ASA),∴AE=AF.31.解:∵四边形ABCD为矩形,四边形HEFG为菱形,∴∠D=∠A=90°,HG=HE,又AH=DG=2,∴Rt△AHE≌Rt△DGH(HL),∴∠DHG=∠HEA,∵∠AHE+∠HEA=90°,∴∠AHE+∠DHG=90°,∴∠EHG=90°,∴四边形HEFG为正方形.32.证明:(1)∵四边形ABCD为正方形,∴AC平分∠BAD,又∵PM⊥AD,PN⊥AB,∴PM=PN.(2)∵PM⊥AD,PN⊥AB,∠MAN=90°,PM=PN,∴四边形PMAN为正方形,∴∠MPN=90°,即∠MPE+∠EPN=90°.∵PE⊥PB,∴∠EPN+∠NPB=90°,∴∠MPE=∠NPB.∵PM⊥AD,PN⊥AB,∴∠PME=∠PNB=90°.在△PME和△PNB中,,∴△PME≌△PNB(ASA),∴EM=BN.33.证明:(1)∵▱ABCD,∴AO=OC,∵△ACE是等边三角形,∴EO⊥AC(三线合一)即BD⊥AC,∴▱ABCD是菱形;(2)∵△ACE是等边三角形,∠EAC=60°由(1)知,EO⊥AC,AO=OC∴∠AEO=∠OEC=30°,△AOE是直角三角形∴∠EAO=60°,∵∠AED=2∠EAD,∴∠EAD=15°,∴∠DAO=∠EAO﹣∠EAD=45°,∵▱ABCD是菱形,∴∠BAD=2∠DAO=90°,∴菱形ABCD是正方形.34.(1)证明:∵四边形ABCD是菱形,∴AD∥BC,∠BAD=2∠DAC,∠ABC=2∠DBC,∴∠BAD+∠ABC=180°,∵∠CAD=∠DBC,∴∠BAD=∠ABC,∴2∠BAD=180°,∴∠BAD=90°,∴四边形ABCD是正方形;(2)证明:∵四边形ABCD是正方形,∴AC⊥BD,AC=BD,CO=AC,DO=BD,∴∠COB=∠DOC=90°,CO=DO,∵DH⊥CE,垂足为H,∴∠DHE=90°,∠EDH+∠DEH=90°,∵∠ECO+∠DEH=90°,∴∠ECO=∠EDH,在△ECO和△FDO中,,∴△ECO≌△FDO(ASA),∴OE=OF.35.证明:(1)∵四边形ABCD是正方形,∴∠DAB=90°,AC平分∠DAB,∵PM⊥AD,PN⊥AB,∴∠PMA=∠PNA=90°,∴四边形MANP是矩形,∵AC平分∠DAB,PM⊥AD,PN⊥AB,∴PM=PN,(3分)∴四边形MANP是正方形;(2)∵四边形ABCD是正方形,∴PM=PN,∠MPN=90°,∵∠EPB=90°,∴∠MPE+∠EPN=∠NPB+∠EPN=90°,∴∠MPE=∠NPB,在△EPM和△BPN中,∵,∴△EPM≌△BPN(ASA),∴EM=BN.36.解:(1)∵四边形ABCD为矩形,四边形HEFG为菱形,∴∠D=∠A=90°,HG=HE,又AH=DG=2,∴Rt△AHE≌Rt△DGH(HL),∴∠DHG=∠HEA,∵∠AHE+∠HEA=90°,∴∠AHE+∠DHG=90°,∴∠EHG=90°,∴四边形HEFG为正方形;(2)过F作FM⊥DC,交DC延长线于M,连接GE,∵AB∥CD,∴∠AEG=∠MGE,∵HE∥GF,∴∠HEG=∠FGE,∴∠AEH=∠MGF,在△AHE和△MFG中,∠A=∠M=90°,HE=FG,∴△AHE≌△MFG,∴FM=HA=2,即无论菱形EFGH如何变化,点F到直线CD的距离始终为定值2,因此;(3)设DG=x,则由第(2)小题得,S△FCG=7﹣x,在△AHE中,AE≤AB=7,∴HE2≤53,∴x2+16≤53,∴x≤,∴S△FCG的最小值为,此时DG=,∴当DG=时,△FCG的面积最小为().37.解:(1)在平行四边形BCFD中,DE∥BC,∵E是DF的中点,∴DE=BC,∴DE是△ABC的中位线,∴E是AC的中点,∴四边形ADCF是平行四边形.(2)∵CA=CB,DE是△ABC的中位线,∴AD=AE,∵E是AC的中点,∴AE=CE,∴AD=AC,∴∠ADC=90°,∠ACD=30°,∴▱ADCF是矩形.故答案为:矩形38.(1)证明:如图,连接CF,在Rt△CDF和Rt△CEF中,,∴Rt△CDF≌Rt△CEF(HL),∴DF=EF,∵AC是正方形ABCD的对角线,∴△AEF是等腰直角三角形,∴AE=EF,∴DF=AE;(2)解:∵AB=2,∴AC=AB=2,∵CE=CD,∴AE=2﹣2,过点E作EH⊥AB于H,则△AEH是等腰直角三角形,∴EH=AH=AE=×(2﹣2)=2﹣,∴AE=EH=2﹣2,∴AF=AE=4﹣2.39.解:(1)∵四边形ABCD是正方形,∴∠ABC=∠ADC=90°,∠DBC=∠BCA=∠ACD=45°,∵CE平分∠DCA,∴∠ACE=∠DCE=∠ACD=22.5°,∴∠BCE=∠BCA+∠ACE=45°+22.5°=67.5°,∵∠DBC=45°,∴∠BEC=180°﹣67.5°﹣45°=67.5°=∠BCE,在Rt△BCD中,由勾股定理得:BD==2,∴DE=BD﹣BE=2﹣;(2)∵FE⊥CE,∴∠CEF=90°,∴∠FEB=∠CEF﹣∠CEB=90°﹣67.5°=22.5°=∠DCE,∵∠FBE=∠CDE=45°,BE=BC=CD,∴△FEB≌△ECD,∴BF=DE=2﹣;(3)延长GE交AB于F,由(2)知:DE=BF=2﹣,由(1)知:BE=BC=,∵四边形ABCD是正方形,∴AB∥DC,:DG=3﹣4.40.BG、解:(1)如图1,连接CG,∵四边形ABCD和四边形EBGF是正方形,∴∠CDB=∠CBD=45°,∠DBG=90°,BD=BG,∴∠CBG=45°,∴∠CBG=∠CBD,∵BC=BC,∴△CBD≌△CBG(SAS),∴∠DCB=∠BCG=90°,DC=CG=5,∴G,C,D三点共线,BG=,∴AG=;故答案为:5;5;(2)如图2,过点G作GK⊥AB,交AB的延长线于K,∵DE=2,DC=5,∴CE=3,∵∠EBG=∠EBC+∠CBG=90°,∠CBG+∠GBK=90°,∴∠EBC=∠GBK,∵BE=BG,∠K=∠BCE=90°,∴△BCE≌△BKG(AAS),∴CE=KG=3,BC=BK=5,∴AK=10,由勾股定理得:AG=;(3)分三种情况:①当点E在CD的延长线上时,如图3,同理知△BCE≌△BKG(AAS),∴BC=BK=5,∵AG=,由勾股定理得:KG=,∴CE=KG=,此种情况不成立;②当点E在边CD上时,如图4,同理得:DE=;③当点E在DC的延长线上时,如图5,同理得CE=GK=,∴DE=5+综上,DE的长是或.故答案为或.。
2024-2025学年浙教版中考数学模拟试卷一、单选题(每题3分)1. 题目: 解方程组:1.(2x +3y =12)2.(x −y =1)答案:(x =3,y =2)2. 题目: 解二次方程:(x 2−5x +6=0)答案:(x =2)或(x =3)3. 题目: 解方程组:1.(3x −4y =16)2.(2x +y =10)答案:(x =5611),(y =−211)4. 题目: 解二次方程:(4x 2−9=0)答案:(x =−32)或(x =32)5. 题目: 解三次方程:(x 3−2x 2−x +2=0)答案:(x =−1),(x =1), 或(x =2)二、多选题(每题4分)题目1 (4分):下列哪些选项是代数式的正确表述?(A)3x + 4y - z (B) 5 * 6 + 2 / x (C) 2x^2 - 3x + 4 (D) a / b + c答案: (A), (C)题目2 (4分):下面哪一组线性方程有唯一解?(A)x + y = 3; x - y = 1 (B) 2x + 3y = 5; 4x + 6y = 10 (C) x + y = 2; 2x + 2y = 4 (D) 3x - 2y = 1;6x - 4y = 2答案: (A)题目3 (4分):在等腰三角形ABC中,AB=AC,角B和角C的度数可能是什么?(A)50°和 50° (B) 45°和 45° (C) 60°和 60° (D) 70°和 70°答案: (A), (B), (C), (D)题目4 (4分):抛掷一枚公平的骰子两次,得到两个点数之和为7的概率是多少?(A)1/6 (B) 1/9 (C) 1/12 (D) 1/18答案: (A)题目5 (4分):下列哪些变换可以保持图形的形状和大小不变?(A) 平移 (B) 旋转 (C) 缩放 (D) 反射答案: (A), (B), (D)请仔细审题并作答,祝你考试顺利!三、填空题(每题3分)1. 计算:((23)2−4×6),答案:402. 解方程:(2x +3=7),求 x 的值,答案:23. 若 a:b = 3:4,且 b = 12,求 a 的值,答案:94. 一个正方形的周长是 20 厘米,求它的面积,答案:25 平方厘米5. 在直角三角形中,一条直角边长为 3 厘米,另一条直角边长为 4 厘米,求斜边长,答案:5 厘米四、解答题(每题8分)题目1已知函数(f (x )=2x 2−3x +4),求函数的最小值及对应的(x )值。
专题10 正方形【真题测试】一.选择题(共4小题)1.(2018春•温州期末)如图,在正方形ABCD中,E为AB中点,连结DE,过点D作DF⊥DE交BC的延长线于点F,连结EF.若AE=1,则EF的值为()A.3 B.C.2D.4【答案】B【解析】解:∵ABCD是正方形∴AB=BC=CD,∠A=∠B=∠DCB=∠ADC=90°∵DF⊥DE∴∠EDC+∠CDF=90°且∠ADE+∠EDC=90°∴∠ADE=∠CDF且AD=CD,∠A=∠DCF=90°∴△ADE≌△CDF∴AE=CF=1∵E是AB中点∴AB=BC=2∴BF=3在Rt△BEF中,EF故选:B.2.(2018春•镇海区期末)下列说法中正确的是()A.有一个角是直角的四边形是矩形B.两条对角线互相垂直的四边形是菱形C.两条对角线互相垂直平分的四边形是正方形D.两条对角线相等的菱形是正方形【答案】D【解析】解:A.有一个角是直角的四边形不一定是矩形,故本选项错误;B.两条对角线互相垂直的四边形不一定是菱形,故本选项错误;C.两条对角线互相垂直平分的四边形是菱形,故本选项错误;D.两条对角线相等的菱形是正方形,故本选项正确.故选:D.3.(2018春•宁波期中)如图,在正方形ABCD中,点O是对角线AC的中点,点E是BC边上的一个动点,OE⊥OF交AB边于点F,点G,H分别是点E,F关于直线AC的对称点,点E从点C运动到点B时,图中阴影部分的面积大小变化情况是()A.先增大后减小B.先减小后增大C.一直不变D.不确定【答案】C【解析】解:连接BD,∵四边形ABCD是正方形,∴∠BOC=90°,∴∠BOE+∠EOC=90°,∵OE⊥OF,∴∠BOE+∠FOB=90°,∴∠FOB=∠EOC,在△FOB和△EOC中,,∴△FOB≌△EOC,同理,△HOD≌△GOC,∴图中阴影部分的面积=△ABD的面积正方形ABCD的面积,故选:C.4.(2016春•嵊州市期末)如图是一个近似“囧”的图形,若已知四边形ABCD是一个边长为2的正方形,点P,M,N分别是边AD、AB、CD的中点,E、H分别是PM、PN的中点,则正方形EFGH的面积是()A.2 B.1 C.D.【答案】B【解析】解:连接MN,∵M、N分别是AB、CD的中点,∴MN=AD=2,∵E、H分别是PM、PN的中点,∴EH MN=1,∴S正方形EFGH=EH2=1,故选:B.二.填空题(共8小题)5.(2018春•萧山区期末)已知边长为4cm的正方形ABCD中,点P,Q同时从点A出发,以相同的速度分别沿A→B→C和A→D→C的路线运动,则当PQ cm时,点C到PQ的距离为__________________.【答案】或【解析】解:∵点P,Q同时从点A出发,以相同的速度分别沿A→B→C和A→D→C的路线运动,∴如图1,当P在AB上,Q在AD上时,则AQ=AP,连接AC,∵四边形ABCD是正方形,∴∠DAB=90°,AC⊥BD,∴AC AB=4,∵AQ=AP,∴△APQ是等腰直角三角形,∴∠AQP=∠QAM=45°,∴AM⊥AC,∵PQ cm,∴AM PQ,∴CM=AC=AM;如图2,当P在BC上,Q在DC上时,则CQ=CP,同理,CM,综上所述,点C到PQ的距离为或,故答案为:或.6.(2018春•滨江区期末)如图,在正方形ABCD中,E是对角线AC上的一点,EF⊥AC,分别交BC,CD于点F,H,若AF=10cm,则AH=______cm.【答案】10【解析】解:∵四边形ABCD是正方形,∴∠HCE=∠FCE=45°,∵FH⊥AC,∴∠CEH=∠CEF=90°,∴∠CHE=∠CFE=45°,∴△CEH与△CEF是等腰直角三角形,∴HE=CE=EF,∴AH=AF=10cm,故答案为:10.7.(2018春•越城区期末)如图,过正方形ABCD的顶点C作CF⊥CE,交AD于点F,交AB的延长线于点E,交BC于点G.如果S正方形ABCD=144,S△CEF=84.5,那么S△CEG=____________.【答案】【解析】解:如图,在正方形ABCD中,∵DC=BC,∠D=∠ABC=∠DCB=90°,∴∠CBE=180°﹣∠ABC=90°,∠1+∠2=∠DCB=90°,∵CF⊥CE,∴∠ECF=90°,∴∠3+∠2=90°,∴∠1=∠3,在△CDF和△CBE中,,∴△CDF≌△CBE,∴CE=CF,∴△CEF是等腰直角三角形,∵S△CEF=84.5,∴84.5,CE=13,∵S正方形ABCD=144,∴CD=AD=12,由勾股定理得:DF=BE=5,∴AF=12﹣5=7,∵BG∥AF,∴△EBG∽△EAF,∴,∴,∴BG,∴CG=12,∴S△CEG.故答案为:.8.(2018春•苍南县期末)如图,点B在线段AC上,且BC=2AB,点D,E分别是AB,BC的中点,分别以AB,DE,BC为边,在线段AC同侧作三个正方形,得到三个平行四边形(阴影部分).其面积分别记作S1,S2,S3,若S1+S3=15,则S2=______.【答案】6【解析】解:设DB=x,则S1=x2,S2=x×2x=2x2,S3=2x×2x=4x2.由题意得,S1+S3=15,即x2+4x2=15,解得x2=3,所以S2=2x2=6,故答案为:6.9.(2018春•婺城区期末)如图,边长为2的正方形OABC顶点O与坐标原点O重合,边OA、OC分别与x、y正半轴重合,在x轴上取点P(﹣2,0),将正方形OABC绕点O逆时针旋转a°(0°<a<180°),得到正方形OA′B′C′,在旋转过程中,使得以P,A′,B′为顶点的三角形是等腰三角形时,点A′的坐标是___________.【答案】(,1)或(0,2)或(﹣1,)或(,1)【解析】解:有四种情形:①如图1中,当PB′=PA′时,连接PC′.易证△POC′是等边三角形,∴∠POA′=150°,∠A′OA=30°,∵OA′=2,∴A′(,1).②如图2中,当A′与C重合时,△PA′B′是等腰三角形,此时A′(0,2)③如图3中,当PA′=A′B′时,△A′OP是等边三角形,∴∠A′OP=60°,∴A′(﹣1,).④如图4中,当PA′=PB′时,易证△POC′是等边三角形,∴∠POC′=60°,∵∠A′OC′=90°,∴∠A′OP=30°,∵OA′=2,∴A′(,1),综上所述,满足条件的点A′坐标为(,1)或(0,2)或(﹣1,)或(,1).故答案为(,1)或(0,2)或(﹣1,)或(,1).10.(2018春•永康市期末)如图,点A是x轴上的一个动点,点C在y轴上,以AC为对角线画正方形ABCD,已知点C的坐标是C(0,4),设点A的坐标为A(n,0).(1)当n=2时,正方形ABCD的边长AB=___________;(2)连结OD,当OD时,n=______.【答案】2或6【解析】解:(1)当n=2时,OA=2,在Rt△COA中,AC2=CO2+AO2=20.∵ABCD为正方形,∴AB=CB.∴AC2=AB2+CB2=2AB2=20,∴AB.故答案为:.(2)如图所示:过点D作DM⊥y轴,DN⊥x轴.∵ABCD为正方形,∴A、B、C、D四点共圆,∠DAC=45°.又∵∠COA=90°,∴点O也在这个圆上,∴∠COD=∠CAD=45°.又∵OD,∴DN=DM=1.∴D(﹣1,1).在Rt△DNA和Rt△DMC中,DC=AD,DM=DN,∴△DNA≌△DMC.∴CM=AN=OC﹣MO=3.∵D(﹣1,1),∴A(2,0).∴n=2.如下图所示:过点D作DM⊥y轴,DN⊥x轴.∵ABCD为正方形,∴A、B、C、D四点共圆,∠DAC=45°.又∵∠COA=90°,∴点O也在这个圆上,∴∠AOD=∠ACD=45°.又∵OD,∴DN=DM=1.∴D(1,﹣1).同理:△DNA≌△DMC,则AN=CM=5.∴OA=ON+AN=1+5=6.∴A(6,0).∴n=6.综上所述,n的值为2或6.故答案为:2或6.11.(2018春•镇海区期末)如图,在正方形ABCD中,E是对角线AC上一点,EG⊥AD,EF⊥CD,BE 的延长线与FG交于点H,若∠ABE=15°,则的值为______.【答案】4【解析】解:连接ED,交FG于O,∵四边形ABCD是正方形,∴BE=DE,∠BAE=45°,∵∠ABE=15°,∴∠BEC=∠CED=60°,∴∠DEH=60°,∵EG⊥AD,EF⊥CD,∴∠EGD=∠GDF=∠EFD=90°,∴四边形EFDG是矩形,∴OE=OD=OF,∴∠OEF=∠OFE=15°,∴∠EOH=30°,∴∠EHO=90°,∴OE=2EH,∴BE=ED=2OE=4EH,∴4,故答案为:4.12.(2018春•丽水期末)如图,在矩形ABCD中,对角线AC,BD交于点O,要使矩形ABCD成为正方形,应添加的一个条件是______.【答案】AB=BC(答案不唯一)【解析】解:添加的条件可以是AB=BC.理由如下:∵四边形ABCD是矩形,AB=BC,∴四边形ABCD是正方形.故答案为:AB=BC(答案不唯一).三.解答题(共2小题)13.(2018春•萧山区期末)正方形ABCD中,点E是BD上一点,过点E作EF⊥AE交射线CB于点F,连结CE.(1)已知点F在线段BC上①若AB=BE,求∠DAE度数;②求证:CE=EF(2)已知正方形边长为2,且BC=2BF,请直接写出线段DE的长.【答案】见解析【解析】解:(1)①∵ABCD为正方形,∴∠ABE=45°.又∵AB=BE,∴∠BAE(180°﹣45°)=67.5°.∴∠DAE=90°﹣67.5°=22.5°②证明:∵正方形ABCD关于BD对称,∴△ABE≌△CBE,∴∠BAE=∠BCE.又∵∠ABC=∠AEF=90°,∴∠BAE=∠EFC,∴∠BCE=∠EFC,∴CE=EF.(2)如下图所示:过点E作MN⊥BC,垂直为N,交AD于M.∵CE=EF,∴N是CF的中点.∵BC=2BF,∴.又∵四边形CDMN是矩形,△DME为等腰直角三角形,∴CN=DM=ME,∴ED DM CN.如下图所示:过点E作MN⊥BC,垂直为N,交AD于M.∵正方形ABCD关于BD对称,∴△ABE≌△CBE,∴∠BAE=∠BCE.又∵∠ABF=∠AEF=90°,∴∠BAE=∠EFC,∴∠BCE=∠EFC,∴CE=EF.∴FN=CN.又∵BC=2BF,∴FC=3,∴CN,∴EN=BN,∴DE.综上所述,ED的长为或14.(2017春•长兴县期末)如图,正方形ABCD中,E、F分别是BC、CD边上的点,AE、DE、BF、AF 把正方形分成8小块,各小块的面积分别为S1、S2、…S8,若S2=2,S7=3,S8=8,则S3的值为______.【答案】见解析【解析】解:由题意S3=S ABCD﹣S△ABE﹣S△BCF﹣S△CDE﹣S△ADF+S2+S7+S8,化简得S3=BC•CD(BE+EC)×CD(DF+FC)×BC+S2+S7+S8,∵四边形ABCD是正方形,∴BC=CD,∴BC•CD(BE+EC)×CD(DF+FC),∴S3=S2+S7+S8=2+3+8=13.故答案为13.。
浙教版八年级下册第5章正方形性质和判定同步测试(含部分答案)正方形性质和判定分类解析一、正方形与等边三角形1.如图,在正方形ABCD的外侧作等边三角形ADE,AC,BE相交于点F,则∠BFC 为()A.45°B. 55°C. 60°D. 105°2.如图,四边形ABCD6CD为边作等边三角形CDE,BE 与AC相交于点M,则DM的长为()A.32 C. 2 323.如图,正方形ABCD的面积为12,ΔABE是等边三角形,点E在正方形ABCD 内,在对角线AC上有一点P,使PD+PE最小,则这个最小值为()A.3232664.如图,先将正方形纸片对着,折痕为MN,再把B点折叠在折痕MN上,折痕为AE,点B在MN上的对应点为H,沿AH和DH剪下得到△ADH,则下列选项正确的个数为()①AE垂直平分HB;②∠HBN=15°;③DH=DC;④△ADH是一个等边三角形.A.1个 B.2个 C.3个 D.4个二.正方形与垂直(旋转或折叠)5.如图,四边形ABCD是正方形,△ADF旋转一定角度后得到△ABE,如果AF=4,AB=7.(1)求BE的长;(2)在图中作出延长BE与DF的交点G,并说明BG⊥DF.6.四边形ABCD是正方形,E、F分别是DC和CB的延长线上的点,且DE=BF,连接AE、AF、EF.(1)求证:△ADE≌△ABF;(2)若BC=8,DE=6,求△AEF的面积.(1)小颖提出:如图2,如果把“点E 是边BC 的中点”改为“点E 是边BC 上(除B ,C 外)的任意一点”,其它条件不变,那么结论“AE =EF ”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;(2)小华提出:如图3,点E 是BC 的延长线上(除C 点外)的任意一点,其他条件不变,结论“AE =EF ”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.14.如图,已知正方形ABCD ,P 是对角线AC 上任意一点,E 为AD 上的点,且∠EPB=90°,PM ⊥AD ,PN ⊥AB .(1)求证:四边形PMAN 是正方形;(2)求证:EM=BN .四.正方形与面积计算15.如图,正方形ABCD 和正方形CEFG 中,点D 在CG 上,BC =1,CE =3,CH ⊥AF 于点H ,那么CH 的长是( ) A. 35√5 B. √5 C. 32√2 D. 23√216.如图,边长为12的大正方形中有两个小正方形,若两个小正方形的面积分别为1S 、2S ,则12S S 的值为( ).A. 72B. 68C. 64D. 6017.已知:如图,在正方形ABCD 外取一点E ,连接AE 、BE 、DE .过点A 作AE 的垂线交DE 于点P .若AE=AP=1,BP=5,则正方形的面积为 。
5.3 正方形(二)(第1题)1.如图,以正方形ABCD 的边AB 为一边向内作等边三角形ABE ,连结EC ,则∠BEC 的度数为(D)A .45°B .60°C .67.5°D .75°2.已知正方形ABCD 的边长为2,E ,F 分别为BC 和CD 边上的中点,则S △AEF =(B)A.52B.32 C .2 D.3553.有下列图形:①平行四边形;②菱形;③矩形;④正方形;⑤三角形.其中一定能够找到一点,使该点到各边距离都相等的是(D)A. ①②B. ②③④⑤C. ②④D. ②④⑤4.在正方形ABCD 中,对角线长为2 cm ,E 是AB 边上任意一点,则点E 到两条对角线的距离之和是(B)A. 22cmB. 1 cmC. 2 cmD. 2cm5.已知正方形ABCD的对角线AC,BD交于点O,且AC=16 cm,则DO=__8__cm,BO=__8__cm,∠OCD=__45°__.(第6题)6.如图,已知正方形ABCD的边长为2,△BPC是等边三角形,则△CDP的面积是__1__,△BPD的面积是__3-1__.(第7题)7.如图,在正方形ABCD中,G为CD边上的一个动点(点G与点C,D不重合),以CG为一边向正方形ABCD外作正方形GCEF,连结DE交BG的延长线于点H.求证:(1)△BCG≌△DCE.(2)BH⊥DE.【解】(1)∵四边形ABCD,四边形GCEF都是正方形,∴BC=DC,GC=EC,∠BCG=∠DCE=90°,∴△BCG≌△DCE(SAS).(2)由(1)知,△BCG≌△DCE,∴∠GBC=∠EDC.又∵∠BGC=∠DGH,∴∠DHG=∠BCG=90°,即BH ⊥DE.8.如图,已知正方形ABCD 的边长为1,连结AC ,BD 交于点O ,CE 平分∠ACD ,交BD 于点E ,求DE 的长.(第8题)【解】 过点E 作EF ⊥DC 于点F. ∵四边形ABCD 是正方形, ∴∠ODC =45°,AC ⊥BD. ∵CE 平分∠ACD ,EF ⊥DC ,∴CO =CF ,∠DEF =45°=∠ODC ,∴EF =DF. ∵正方形ABCD 的边长为1, ∴AC = 2.∴CO =12AC =22.∴CF =CO =22.∴EF =DF =DC -CF =1-22.∴DE =EF 2+DF 2=2-1.9.若将正方形分成k 个全等的矩形,其中上、下各横排两个,中间竖排若干个,则k 的值为(B)A. 6B. 8C. 10D. 12【解】 设正方形的边长为1,则矩形的长为12,该矩形的宽为x ,根据题意,得 x +12+x =1, 解得x =14.∴k =2+2+1÷14=8.(第9题) (第10题)10.如图,将正方形OABC 放在平面直角坐标系中,O 是原点,点A 的坐标为(1,3),则点C 的坐标为(-3,1).【解】 过点A 作AD ⊥x 轴于点D ,过点C 作CE ⊥x 轴于点E. ∵四边形OABC 是正方形,∴OA =OC ,∠AOC =90°, ∴∠COE +∠AOD =90°. 又∵∠OAD +∠AOD =90°, ∴∠OAD =∠COE. 在△AOD 和△OCE 中, ∵⎩⎪⎨⎪⎧∠OAD =∠COE ,∠ADO =∠OEC =90°,AO =OC ,∴△AOD ≌△OCE(AAS).∴OE =AD =3,CE =OD =1. ∵点C 在第二象限, ∴点C 的坐标为(-3,1).(第11题)11.如图,F 是正方形ABCD 的边CD 上的一个动点,BF 的垂直平分线交对角线AC 于点E ,连结BE ,FE ,则∠EBF 的度数是45°.【解】 过点E 作HI ∥BC ,分别交AB ,CD 于点H ,I ,则∠BHE =∠EIF =90°.∵E 是BF 的垂直平分线EM 上的点, ∴BE =EF.∵E 是正方形对角线AC 上的点,即E 是∠BCD 的平分线上一点, ∴点E 到BC 和CD 的距离相等,∴BH =EI. 在Rt △BHE 和Rt △EIF 中,∵⎩⎪⎨⎪⎧BE =EF ,BH =EI ,∴Rt △BHE ≌Rt △EIF(HL). ∴∠HBE =∠IEF. ∵∠HBE +∠HEB =90°, ∴∠IEF +∠HEB =90°, ∴∠BEF =90°. 又∵BE =EF ,∴∠EBF =∠EFB =45°.12.如图,正方形ABCD 的边长为1,P 为BC 边上任意一点(可与点B ,C 重合),分别过点B ,C ,D 作射线AP 的垂线,垂足分别为B ′,C ′,D ′,求BB ′+CC ′+DD ′的最大值与最小值.(第12题) (第12题解) 【解】 如解图,连结AC ,DP. 由题意,得S △ACD =S △ADP =12AP ·DD ′.∵S △ABP +S △ACP +S △ACD =1,∴12AP ·BB ′+12AP ·CC ′+12AP ·DD ′=1, ∴BB ′+CC ′+DD ′=2AP.易知1≤AP ≤2(当点P 与点B 重合时,AP =1;当点P 与点C 重合时,AP =2),∴2≤BB ′+CC ′+DD ′≤2.即BB ′+CC ′+DD ′的最大值为2,最小值为 2.(第13题)13.如图,正方形ABCD的周长为40 m,甲、乙两人分别从A,B 同时出发,沿正方形的边行走,甲按逆时针方向每分钟行55 m,乙按顺时针方向每分钟行30 m.(1)出发几分钟后,甲、乙两人第一次在正方形的顶点处相遇.(2)如果用记号(a,b)表示两人走a(min),并相遇b次,那么当两人出发后第一次处在正方形的两个相对顶点位置时,对应的记号是多少?【解】(1)设出发x(min)后,甲、乙第y次相遇(y是正整数),则有:(55+30)x=40(y-1)+10,即85x=40y-30,17x=8y-6,∴y=17x+68=2x+x+68.∵当甲、乙都在顶点处时,甲、乙的路程都必须为10的倍数,即55x和30x都为10的倍数,∴x为2的倍数.又∵y是正整数,∴x最小为2.∴出发2 min后,甲、乙两人第一次在正方形的顶点处相遇.(2)∵当甲、乙处在正方形的两个相对顶点位置时,他们相差20 m,∴(55+30)a=40(b-1)+10+20,即85a=40b-10,17a=8b-2,∴b=17a+28=2a+a+28.由(1)知a为2的倍数,且b为整数,∴a最小为6.当a=6时,b=13,∴对应的记号为(6,13).。
初中数学浙教版正方形精选专题考试卷考点姓名:_____________ 年级:____________ 学号:______________题型选择题填空题解答题判断题计算题附加题总分得分一、选择题10.如图,正方形ABCD的边长为25,内部有6个全等的正方形,小正方形的顶点E、F、G、H分别落在边AD、AB、BC、CD上,则每个小正方形的边长为()A.6 B.5 C.2 D.8.下列四边形中,对角线相等且互相垂直平分的是()A.平行四边形B.正方形C.等腰梯形D.矩形7.如图,菱形ABCD中,∠B=60°,AB=4,则以AC为边长的正方形ACEF的周长为()A.14B.15C.16D.179.将一张正方形纸片按下图所示的方式三次折叠,折叠后再按图中所 C示沿MN裁剪,则可得()评卷人得分A.多个等腰直角三角形B.一个等腰直角三角形和一个正方形C.四个相同的正方形D.两个相同的正方形8.下列说法______________.(用含n的式子表示)8.矩形、菱形、正方形都是特殊的四边形,它们具有很多共性,如:______________.(填一条即可)17.如图,将正方形ABCD沿BE对折,使点A落在对角线BD上的A′处,连接A′C,则∠BA′C=______________度.21.以△ABC的AB、AC为边分别作正方形ADEB、ACGF,连接DC、BF。
(1)求证:CD=BF。
(2)利用旋转的观点,在此题中,△ADC可看成由哪个三角形绕哪点旋转多少角度得到的。
21.如图,在正方形ABCD中,CE⊥DF,求证:CE=DF.24.如图,已知正方形ABCD中,边长为10cm,点E在AB边上,BE=6cm.如果点P在线段BC上以2cm/秒的速度由B点向C点运动,同时,点Q在线段CD上由C点向D点运动,设运动的时间为t秒,①CP的长为______________cm(用含t的代数式表示);②若点Q的运动速度与点P的运动速度相等,经过2秒后,△BPE与△CQP是否全等?请说明理由.③若点Q的运动速度与点P的运动速度不相等,△BPE与△CQP能否全等,若能全等,求出点Q的运动速度,若不能全等,请说明理由.27.如图,在平面直角坐标系中,已知点A(0,1)、D(-2,0),作直线AD并以线段AD为一边向上作正方形ABCD.(1)填空:点B的坐标为________,点C的坐标为_________.(2)若正方形以每秒个单位长度的速度沿射线DA向上平移,直至正方形的顶点C落在y轴上时停止运动.在运动过程中,设正方形落在y轴右侧部分的面积为S,求S关于平移时间t(秒)的函数关系式,并写出相应的自变量t的取值范围.20.(11分)如图,正方形ABCD的边长为3,E,F 分别是AB,BC边上的点,且∠EDF=45°.将△DAE绕点D逆时针旋转90°,得到△DCM.(1)求证:EF=FM;(2)当AE=1时,求EF的长.14.如图,在正方形ABCD中AC与BD交于点O,形外有一点E,使∠AED=90°,且DE=3,OE=,则AE=______________.21.如图,已知Rt△ABC中,∠ABC=90°,先把△ABC绕点B顺时针旋转90°至△DBE后,再把△ABC沿射线平移至△FEG,DE、FG相交于点H.(1)判断线段DE、FG的位置关系,并说明理由;(2)连结CG,求证:四边形CBEG是正方形.。
2024年浙江省中考数学模拟练习试卷(解析版)(考试时间:120分钟 试卷满分:120分)一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下图是由一个长方体和一个圆柱组成的几何体,它的俯视图是( )A. B. C. D.【答案】D【解析】【分析】根据从上面看得到的图形是俯视图即可解答.【详解】解:从上面看下边是一个矩形,矩形的上边是一个圆,故选:D .2.下列计算正确的是( )A .422a a −=B .842a a a ÷=C .235a a a ⋅=D .()325b b = 【答案】C【分析】根据整式的减法运算,同底数幂的乘法、除法运算,幂的乘方进行运算求解,然后进行判断即可.【详解】解:A 中4222a a a −=≠,错误,故不符合要求;B 中8424a a a a ÷=≠,错误,故不符合要求;C 中235a a a ⋅=,正确,故符合要求;D 中()3265b b b =≠,错误,故不符合要求;故选C .3.截至2022年3月24日,携带“祝融号”火星车的“天问一号”环绕器在轨运行609天,距离地球277000000千米;数据277000000用科学记数法表示为( )A .627710×B .72.7710×C .82.810×D .82.7710× 【答案】D【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同, 当原数绝对值≥10时,n 是正整数数.【详解】解:由题意可知: 8277000000=2.7710×.故选:D .4.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .【答案】C【分析】中心对称是指把一个图形绕着某一点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,中心对称,是针对两个图形而言,是指两个图形的(位置)关系;如果一个平面图形沿着一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴.由此即可求解.【详解】解:A 选项,不是轴对称图形,也不是中心对称图形,不符合题意;B 选项,不是轴对称图形,是中心对称图形,不符合题意;C 选项,是轴对称图形,也是中心对称图形,符合题意;D 选项,是轴对称图形,不是中心对称图形,不符合题意;故选:C .5.已知点P (m ﹣3,m ﹣1)在第二象限,则m 的取值范围在数轴上表示正确的是( )A .B .C .D .【答案】D【分析】先根据题意列出不等式组,求出其中各不等式的解集,再求出这些解集的公共部分即可.【详解】解:∵点P (m ﹣3,m ﹣1)在第二象限,∴3010m m −< −> , 解得:1<m <3,故选D .6.化简24142x x −−−的结果是( ) A .12x −+ B .12x −− C .12x + D .12x − 【答案】A【分析】根据题意首先应通分,然后进行分式的加减运算进而上下约分即可得出答案. 【详解】解:24142x x −−− 224244x x x +−−−2424x x −−=− (2)(2)(2)x x x −−=−+ 12x =−+ 故选:A .7 .从甲、乙、丙三人中任选两人参加青年志愿者活动,甲被选中的概率是( )A .13B .12C .23 D .19【答案】C【分析】画出树状图,共有6种等可能的结果,其中甲被选中的结果有4种,由概率公式即可得出结果.【详解】解:根据题意画图如下:共有6种等可能的结果数,其中甲被选中的结果有4种, 则甲被选中的概率为4263=. 故选:C .8. 如图,AB 为O 的直径,C 、D 为O 上的点,AD CD =,若40CAB ∠=°,则CAD ∠=( )A .20°B .35°C .30°D .25°【答案】D【分析】连接 OD 、OC ,如图,利用等腰三角形的性质和三角形内角和定理计算出 100AOC ∠=° ,再根据圆心角、弧、弦的关系得到 50AOD COD ∠=∠=°,然后根据圆周角定理得到 CAD ∠ 的度数; 【详解】连接 OD 、OC ,如图,,OA OC =OCA OAC ∴∠=∠40=°180AOC ∴∠=°4040100−°−°=°AD CD =,AD CD∴= 12AOD COD AOC ∴∠=∠=∠50=° 125.2CAD COD ∴∠=∠=° 故选:D9.如图,在平面直角坐标系xOy 中,直线AB 经过A (4,0)、B (0,4),⊙O 的半径为2(O 为坐标原点),点P 是直线AB 上的一动点,过点P 作⊙O 的一条切线PQ ,Q 为切点,则切线长PQ 的最小值为( )A B .﹣1 C .2 D .【答案】C 【分析】连接OP 、OQ ,根据勾股定理知 222PQ OP OQ =﹣, 当PO ⊥AB 时,线段PQ 最短,即线段PQ 最小. 【详解】解:如图,连接OP 、OQ .∵PQ 是⊙O 的切线,∴OQ ⊥PQ ;由勾股定理知222PQ OP OQ =﹣,, ∵当PO ⊥AB 时,线段PQ 最短;又∵A (4,0)、B (0,4), ∴OA =OB =4,∴AB ,∴1122OP AB ==× ∵OQ =2,∴2PQ .故选C .10.如图,矩形ABCD 的内部有5个全等的小正方形,小正方形的顶点,,,E F G H 分别落在边,,,AB BC CD DA上,若20,16AB BC ==,则小正方形的边长为( )A.B .5 C.D.【答案】B 【分析】由矩形的性质可得BEG DGE ∠=∠,求出AEH CGF ∠=∠,证得(AAS)AEH CGF ≌,得出AE CG =,过点K 作GK AB ⊥于K ,可证明AEH KGE ∽,利用相似三角形对应边成比例求出144AE KG ==,再求出12EK =,然后利用勾股定理列式求出EG ,然后求解即可. 【详解】解:∵四边形ABCD 是矩形,∴AB CD ,∴BEG DGE ∠=∠, ∴AEH CGF ∠=∠, ∵5个小正方形全等,∴EH GF =,在AEH △和CGF △中,90AEH CGF A C EH GF ∠=∠ ∠=∠=° =, ∴(AAS)AEH CGF ≌, ∴AE CG =,过点K 作GK AB ⊥于K ,如下图所示,则四边形BCGK 为矩形,∴,16BKCG AE KG BC ====, ∵90,90AEH KEGKGE KEG ∠+∠=°∠+∠=°, ∴AEH KGE ∠=∠, ∵90A EKG ∠=∠=°, ∴AEH KGE ∽, ∴14AE EH KG GE ==, ∴144AE KG ==, ∴204412EK AB AE BK −−−−,在Rt KEG 中,20EG ,∴小正方形的边长为5420=÷,故选:B .二、填空题:本题共6小题,每小题3分,共18分。
初中数学浙教版正方形模拟考题模拟考试卷考点
姓名:_____________ 年级:____________ 学号:______________
题型选择题填空题解答题判断题计算题附加题总分
得分
一、选择题
20.如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE沿AE对
折至△AFE,延长EF交边BC于点G,连接AG、CF.则下列结论:①△ABG≌△AFG;
②BG=CG;③AG∥CF;④S△EGC=S△AFE;⑤∠AGB+∠AED=145°.其中正确的个数是()
A.2
B.3
C.4
D.5
4.下列性质中,正方形具有而矩形不一定具有的性质是
A.对角线互相垂直
B.对角线互相平分
C.对角线相等
D.四个角都是直角
7.下列命题中,正确的是
A.平分弦的直径垂直于弦
B.对角线相等的平行四边形是正方形
C.对角线互相垂直的四边形是菱形
D.三角形的一条中线能将三角形分成面积相等的两部分
11.如图,在正方形ABCD中,E为DC边上的点,连接BE,将ΔBCE绕点C顺时针方向旋转90°得到ΔDCF,连接EF,若∠BEC=60°,则∠ EFD的度数为()
A.10°
评卷人得分
B.15°
C.20°
D.25°
8.下列说法______________(写出所有正确命题的序号)
10.如图,在矩形ABCD中,点E是边CD的中点,将△ADE沿AE折叠后得到△AFE,且点F在矩形ABCD内部.将AF延长交边BC于点G.若,则=()
A.
B.
C.
D.
7.如图,在4×4的正方形网格中,每个小正方形的边长为1,若将△AOC绕点O顺时针旋转90°得到△BOD,则的长为()
A.π
B.6π
C.3π
D.1.5π
21.(12分)如图,正方形ABCO的边OA、OC在坐标轴上,点B坐标(3,3),将正方形ABCO绕点A顺时
针旋转角度α(0°<α<90°),得到正方形ADEF,ED交线段OC于点G,ED的延长线交线段BC于点P,连AP、AG.
(1)求证:△AOG≌△ADG;
(2)求∠PAG的度数;并判断线段OG、PG、BP之间的数量关系,说明理由.
25.如图,已知正方形OABC的边长为4,顶点A、C分别在x轴的负半轴和y轴的正半轴上,M是BC的中点.P(0,n)是线段OC上一动点(C点除外),直线PM交AB的延长线于点D.
(1)求点D的坐标(用含n的代数式表示);
(2)当△APD是以AP为腰的等腰三角形时,求n的值.
24.如图1,在面积为3的正方形ABCD中,E、F分别是BC和CD边上的两点,AE⊥BF于点G,且BE=1,∠BAE=30°.
(1)求证:△ABE≌△BCF;
(2)求出△ABE和△BCF重叠部分(即△BEG)的面积;
(3)现将△ABE绕点A逆时针方向旋转到△AB'E'(如图2),使点E落在CD边上的点E'处,问△ABE 在旋转前后与△BCF重叠部分的面积是否发生了变化?请说明理由.
26.如图,正方形ABCO的边OA、OC在坐标轴上,点B坐标为(8,8),将正方形ABCO绕点C逆时针旋转角度α(0°<α<90°),得到正方形CDEF,ED交线段AB于点G,ED的延长线交线段OA于点H,连CH、
CG.
(1)求证:△CBG≌△CDG;
(2)求∠HCG的度数;判断线段HG、OH、BG的数量关系,并说明理由;
(3)连结BD、DA、AE、EB得到四边形AEBD,在旋转过程中,四边形AEBD能否为矩形?如果能,请求出点H的坐标;如果不能,请说明理由.
18.如图,边长为3的正方形ABCD绕点C按顺时针方向旋转30°后得到正方形EFCG,EF交AD于点H,那么DH的长是______________
22.(本题满分10分)如图1,点E为正方形ABCD的边AB上一点,EF⊥EC,且EF=EC,连接AF.
(1)求∠FAD的度数;
(2)如图2,连接FC交BD于M,求证:AD=AF+2DM;
(3)如图2,连接FC交BD于M,交AD于N.若AF=,AN=10,则BM的长为______________.
17.如图,在正方形ABCD的外侧,作等边△ADE,则∠AEB=______________.
18.将等边三角形、正方形、正五边形按如图所示的位置摆放,如果∠1=41°,∠2=51°,那么∠3的度数等于______________.
16.如图,正方形ABCD的周长为40米,甲、乙两人分别从A、B同时出发,沿正方形的边行走,甲按逆时针方向每分钟行55米,乙按顺时针方向每分钟行30米.
(1)出发后______________分钟时,甲乙两人第一次在正方形的顶点处相遇;
(2)如果用记号(a,b)表示两人行了a分钟,并相遇过b次,那么当两人出发后第一次处在正方形的两个相对顶点位置时,对应的记号应是______________.
20.(11分)如图,正方形ABCD的边长为3,E,F 分别是AB,BC边上的点,且∠EDF=45°.将△DAE绕点D逆时针旋转90°,得到△DCM.
(1)求证:EF=FM;
(2)当AE=1时,求EF的长.
23.已知:如图,在矩形ABCD中,E是BC边上一点,DE平分,EF∥DC交AD边于点F,连结BD.
(1)求证:四边形FECD是正方形;
(2)若求的值.
21.如图,已知Rt△ABC中,∠ABC=90°,先把△ABC绕点B顺时针旋转90°至△DBE后,再把△ABC沿射线平移至△FEG,DE、FG相交于点H.
(1)判断线段DE、FG的位置关系,并说明理由;
(2)连结CG,求证:四边形CBEG是正方形.。