高考数学复习专题10 非主干知识(原卷版)
- 格式:doc
- 大小:1.02 MB
- 文档页数:13
2022年高考数学重点复习知识点(含练习题)---------南通四星级高9、注意命题pq的否定与它的否命题的区别:命题pq的否定是pq;否命题是pq注意②:函数单调性与奇偶性的逆用了吗(①比较大小;②解不等式;③求参数范围).如已知奇函数f(某)是定义在(2,2)上的减函数,若f(m1)f(2m1)0,求实数m的取值范围。
(答:命题“p或q”的否定是“┐P且┐Q”,“p且q”的否定是“┐P一、集合与逻辑或┐Q”注意:如“若a和b都是偶数,则ab是偶数”的1、区分集合中元素的形式:如:某|ylg某—函数的定义域;否命题是“若a和b不都是偶数,则ab是奇数”否定是“若a和b都是偶数,则ab是奇数”y|ylg某—函数的值域;(某,y)|ylg某—函数图象上的点集,二、函数10、指数式、对数式:2如(1)设集合M{某|y某3},集合N=y|y某1,某M,12m)23③复合函数由同增异减判定④图像判定.⑤作用:比大小,解证不等式.如函数ylog1某2某的单调递增区间是________(答:22则MN___(答:[1,));aa,alg2lg51,logemnnmmn0a1,loga10,logaa1,,,1man(2)设集合M{a|a(1,2)(3,4),R},某ln某,abNlogaNb(a0,a1,N0),2N{a|a(2,3)(4,5),R},则MN_____(答:1logalogaNN。
如()28的值为________(答:1)64(1,2))。
16、奇偶性:f(某)是偶函数f(-某)=f(某)=f(|某|);f(某)是奇函数f(-某)=-f(某);定义域含零的奇函数过原点(f(0)=0);定义域关于原点对称是为奇函数或偶函数的必要而不充分的条件。
17、周期性。
(1)类比“三角函数图像”得:①若yf(某)图像有两条对称轴某a,某b(ab),则{(2,2)})2、条件为AB,在讨论的时候不要遗忘了A的情况如:A{某|a某2某10},如果AR,求a的取值。
热点08 数列与不等式【命题趋势】在新高考卷的考点中,数列主要以两小和一大为主的考查形式,在小题中主要以等差数列和等比数列为主,大题中新高考比以往的考察有了很大的改变,以前是三角和数列在17题交替考查,现在作为主干知识必考内容,考察位置是17或18题,题型可以是多条件选择的开放式的题型。
由于三角函数与数列均属于解答题第一题或第二题的位置,考查的内容相对比较简单,这一部分属于必得分,对于小题部分,一般分布为一题简单题一道中等难度题目。
对于不等式内容新教材删除了线性规划和不等式选讲,新高考主要考察不等式性质和基本不等式。
基本不等式考察往往都是已基本不等式作为切入点形式出现,题目难度中等。
专题针对高考中数列、不等式等高频知识点,预测并改编一些题型,通过本专题的学习,能够彻底掌握数列,不等式。
请学生务必注意题目答案后面的名师点睛部分,这是对于本类题目的一个总结。
【满分技巧】1、等差、等比数列如果记住基本的通项公式以及求和公式和性质,基本上所有的等差、等比数列问题都可以解决。
2、数列求通项主要方法有:公式法、利用前n项和求通项、累加、累乘、构造等方法;这里要注意各个方法中递推关系的模型结构特点。
3、数列求和问题主要包含裂项求和,分组求和,绝对值求和,错位相减求和,掌握固定的求和方式即可快速得到答案;这里要注意各个方法中数列通项的结构模型;本专题有相应的题目供参考。
4、对于基本不等式类的题目应注意等号成立地条件和基本不等式的模型结构,对“1”的活用。
【考查题型】选择题、填空、解答题【常考知识】数列的概念、等差等比数列的概念和公式和性质、数列求通项的方法、数列求和的方法、不等式的性质、基本不等式【限时检测】(建议用时:90分钟)一、单选题1.(2020·云南省个旧市第一高级中学高三其他模拟(理))设等差数列的前项和为,且{}n a n n S ,则的值为( )1144S =378a a a ++A .11B .12C .13D .142.(2020年全国统一高考数学试卷(文科)(新课标Ⅰ))设是等比数列,且,{}n a 1231a a a ++=,则( )234+2a a a +=678a a a ++=A .12B .24C .30D .323.(2018·陆川中学高三其他模拟(理))等差数列的前项和为,且,.设{}n a n n S 10a >500S =,则当数列的前项和取得最大值时, 的值为( )()*12n n n n b a a a n N ++=∈{}nb n nT n A .23B .25C .23或24D .23或254.(2020·广西高三一模(理))已知数列,,则( )21131322n n n a a a --=++12a =()25log 1a +=A .B .C .D .263log 331-231log 315-363log 231-331log 215-5.(2020年浙江省高考数学试卷)已知等差数列{a n }的前n 项和S n ,公差d ≠0,.记b 1=S 2,11a d≤b n+1=S 2n+2–S 2n ,,下列等式不可能成立的是( )n *∈N A .2a 4=a 2+a 6B .2b 4=b 2+b 6C .D .2428a a a =2428b b b =6.(2020·江苏宝应中学高二期中)若a ,b 为正实数,且,则的最小值为( )1123a b +=3a b +A .2B .C .3D .4327.(2020·云南省个旧市第一高级中学高三其他模拟(理))已知数列的前项和为,且{}n a n n S ,,,则的通项公式为( )12n n S a n +=+-*n N ∈12a ={}n a A .B .C .D .121n n a -=-12n n a -=121n n a -=+2nn a =8.(2020·贵州高三其他模拟(理))已知是双曲线的半焦距,则的最c 2222:1(0,0)x y C a b a b -=>>a b c+大值是( )A BC D9.(2020·四川遂宁·高三零模(理))已知正项等比数列满足,,又为数{}n a 112a =2432a a a =+n S 列的前项和,则( ){}n a n 5S =A . 或B .312112312C .D .15610.(2020·河南焦作·高三一模(理))在等比数列中,,,则({}n a 11a =427a =352a a +=)A .45B .54C .99D .8111.(2020年全国统一高考数学试卷(理科)(新课标Ⅱ))数列中,,,若{}n a 12a =m n m n a a a +=,则( )155121022k k k a a a ++++++=- k =A .2B .3C .4D .512.(2020·江西高三二模(理))已知等比数列的首项,公比为,前项和为,则“{}n a 10a >q n n S”是“”的( )1q >3542S S S +>A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件13.(2020·浙江省东阳中学高三其他模拟)已知数列的前n 项和,则{}n a ()212,1n n S n a n a =≥=n a =( )A .B .C .D .()21n n +22(1)n +121n-121n -二、多选题14.(2020年新高考全国卷Ⅰ数学高考试题(山东))已知a >0,b >0,且a +b =1,则( )A .B .2212a b +≥122a b ->C .D 22log log 2a b +≥-+≤15.(2020·广东湛江·高三其他模拟)已知数列{a n }满足:0<a 1<1,.则下列说()14n n n a a ln a +-=-法正确的是( )A .数列{a n }先增后减B .数列{a n }为单调递增数列C .a n <3D .202052a >三、填空题16.(2020年浙江省高考数学试卷)我国古代数学家杨辉,朱世杰等研究过高阶等差数列的求和问题,如数列就是二阶等差数列,数列的前3项和是________.(1)2n n +⎧⎫⎨⎬⎩⎭(1)2n n +⎧⎫⎨⎬⎩⎭(N )n *∈17.(2020·广西高三一模(理))已知数列和满足,,,{}n a {}n b 12a =11b =1n n n a b b ++=.则=_______.114n n n a b a +++=20211008b a 18.(2020·山东济宁·高三其他模拟)已知,若不等式对140,0,1m n m n >>+=24m n x x a +≥-++已知的及任意实数恒成立,则实数最大值为_________.,m n x a 19.(2020·福建莆田·高三其他模拟)在△ABC 中,三边a ,b ,c 所对应的角分别是A ,B ,C ,已知a ,b ,c 成等比数列.若,数列满足,前n 项和为,sin sin sin B A C ={}n a 32|cos |2nn a nB =n S 2nS =__________.20.(2020·四川遂宁·高三零模(理))已知均为实数,函数在时取,a b 1()(2)2f x x x x =+>-x a =得最小值,曲线在点处的切线与直线_____2ln(1)y x =+()0,0y bx =a b +=四、解答题21.(2020·福建莆田·高三其他模拟)在①;②为等差数列,其中成131n n n a a a +=+1{}n a 236111,1,a a a +等比数列;③这三个条件中任选一个,补充到下面的问题中,然后解答2123111132n n na a a a -++++= 补充完整的题目.已知数列中,______.{}n a 11a =(1)求数列的通项公式;{}n a (2)设为数列的前项和,求证:.1,n n n n b a a T +={}n b n 13n T <注:如果选择多个条件分别解答,按第一个解答计分.22.(2020·安徽高三其他模拟(理))已知公比大于的等比数列满足,,1{}n a 2312a a +=416a =.2log n n b a =(1)求数列、的通项公式;{}n a {}n b (2)若数列的前项和为,求的前项和.{}n b n n S ()()*12n nnn a c n S -=∈N n n T 23.(2020年天津高考数学卷)已知为等差数列,为等比数列,{}n a {}n b .()()115435431,5,4a b a a a b b b ===-=-(Ⅰ)求和的通项公式;{}n a {}n b (Ⅱ)记的前项和为,求证:;{}n a n n S ()2*21n n n S S S n ++<∈N (Ⅲ)对任意的正整数,设求数列的前项和.n ()21132,,,.n nn n n n n a b n a a c a n b +-+⎧-⎪⎪=⎨⎪⎪⎩为奇数为偶数{}n c 2n 24.(2020年浙江省高考数学试卷)已知数列{a n },{b n },{c n }中,.1111121,,()nn n n n n n b a b c c a a c c n b +++====-=⋅∈*N (Ⅰ)若数列{b n }为等比数列,且公比,且,求q 与{a n }的通项公式;0q >1236b b b +=(Ⅱ)若数列{b n }为等差数列,且公差,证明:.0d >1211n c c c d +++<+*()n N ∈25.(2018·陆川中学高三其他模拟(理))已知数列为公差不为零的等差数列,且,{}n a 23a =1a 3a ,成等比数列.7a (1)求数列的通项公式;{}n a (2)若数列满足,记数列的前项和为,求证:.{}n b 110101n n n b a a +=+{}n b n n S 12n S <。
专题十 非主干知识【考生存在问题报告】(一)基本概念模糊不清本专题中,存在对集合的概念和符号含义、平面向量中向量的投影概念和运算的几何形式、常用逻辑用语中命题的否定与否命题的概念、复数的模与共轭复数等概念、计数原理与排列组合的辨析等模糊不清的问题.【例1】(2020·四川省三台中学实验学校高三开学考试)若集合2{|20}A x x x =-<,则R C A =( ) A .(0,2) B .[0,2] C .(),0-∞ D .[)2,+∞ 【评析】本题主要考查了集合的补集的运算,其中解答中正确求解集合A ,熟记集合的补集的运算是解答的关键,着重考查了运算与求解能力.求得集合{|0A x x =<或2}x >,根据集合的补集的运算,即可求解.【例2】(2020·上海高三)设12,z z 为复数,则下列命题中一定成立的是( )A .如果120z z ->,那么12z z >B .如果12=z z ,那么12=±z zC .如果121z z >,那么12z z > D .如果22120z z +=,那么12 0z z == 【评析】本题解题关键是掌握复数定义,在判断时可采用特殊值法检验,考查了分析能力,根据复数定义,逐项判断,即可求得答案.【例3】(2020·天津高三期末)命题“0(0,)x ∃∈+∞,00ln 1x x =-”的否定是( )A .0(0,)x ∃∈+∞,00ln 1x x ≠-B .0(0,)x ∃∉+∞,00ln 1x x =-C .(0,)x ∀∈+∞,ln 1x x ≠-D .(0,)x ∀∉+∞,ln 1x x =-【评析】对于常用逻辑用语,主要考查命题概念及真假判断,全称量词和存在量词的意义的理解,充要条件含义的理解,属概念辨析.在选择题或填空题考查这部分知识时,都属容易题,应努力确保所有考生都能做对.本题中易混淆的是命题的否定与否命题的概念,体现为常用逻辑用语中出现的概念模糊问题. 产生问题原因主要在于:①对概念及符号语言的含义理解不够深入,②此类试题训练偏少.(二)知识置景的应用意识和化归与转化意识不强在设置新情景中应用相关知识解决问题,需要经历将新情景转化为适合知识直接应用的熟悉情景,体现为某种数学模型的建立过程.知识置景应用意识和化归与转化意识不强,在本板块中的二项式定理应用和排列组合应用上,表现得更为突出.【例4】(2020·湖南省高三期末)()51311x x ⎛⎫+- ⎪⎝⎭的展开式中的常数项为( )A .14B .-14C .16D .-16【评析】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,把511x ⎛⎫- ⎪⎝⎭按照二项式定理展开,可得()51311x x ⎛⎫+- ⎪⎝⎭的展开式中的常数项.(三)算法程序框图语句解读能力欠缺知识的建构与内化、能力的形成与提升是素养养成的基础,心理素质等情感态度也是需要培育的基本素养.全国卷算法框图的考查往往融入更多的知识内涵、要求有更高的思维含量和读图(框图)理解能力,考生由于对框图语句解读的能力欠缺,而容易出现解题失误.【例5】(2020·莆田第二十五中学高三期末)执行如图所示的程序框图,当输入的x 的值为4时,输出的y的值为2,则空白判断框中的条件可能为( ).A .3?x >B .4?x >C .?4≤xD .?5≤x【评析】本题主要考查算法框图的识别与算法含义的解读能力、循环结构等基础知识,考查推理论证能力与运算求解能力.对于这种“逆袭”框图中算法过程条件的,要求较高思维水平、较高推理论证能力的试题,理科相比文科有明显的优势.产生问题的主要原因在于平时考试较少关注心理调适训练,较少提供独立思考与感悟、自我反思与纠错的机会.(四)读题析题中图表辅助意识不强解答试题前,必然经历阅读理解题意和析题以形成解题思路或预设解题方案的过程.在读题与析题的过程中充分发挥“图、表”的辅助功能,是数学的学科特色.这里的“图”指的可能是某个几何图形或图象(曲线),也可能是问题思考的思维导图;“表”指的是由试题中已知条件和待求结论的数据信息构成的数据表.读题析题中的图表辅助意识或应用意识不强,在本板块中主要体现在算法初步(循环过程的数据变化表)、平面向量(代数向量及运算的几何含义)、不等式(含参二次不等式和线性规划问题).【例6】【2016年全国卷Ⅰ理16文16】某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5 kg,乙材料1 kg,用5个工时;生产一件产品B需要甲材料0.5 kg,乙材料0.3 kg,用3个工时.生产一件产品A的利润为2100元,生产一件产品B的利润为900元.该企业现有甲材料150 kg,乙材料90 kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为元.【评析】本题表象上考查线性规划问题所涉及的有关基础知识,实际上考查了抽象概括能力、推理论证能力、运算求解能力和数形结合思想,特别彰显了对数学应用意识的考查,实现了对数学建模、数学抽象、数学运算等核心素养的综合检测.主要问题有下列可能:①数学建模素养不高,难于正确地建立数学模型;②目标函数的斜率看错,可行域判断出错;③三条直线的方向差异关系(倾斜度关系)弄错;④解题过程的草图过草,或揭示草图中点线位置关系的某些关键点标错.产生问题原因主要在于:运用数学知识分析解决实际问题的能力很低,学科特色的图表应用意识不强,教学过程中对读题与析题的示范不够,对数学模型意识的培育重视不够.(六)关键信息的提取能力及信息转换能力不强试题中每个已知信息都应是试题解答之需,有些信息更是问题解决的突破口、或解题思路的重要启示,即问题解决的关键信息.条件的显化或信息的转换,使之可直接用于解题,是试题解答的必经过程.关键信息的提取能力及信息转换能力不强,在本板块中的考查创新意识的推理题中,表现得尤为突出.【例7】(2020·榆树市第一高级中学校高三期末)学校艺术节对同一类的A,B,C,D四件参赛作品,只评一件一等奖,在评奖揭晓前,甲、乙、丙、丁四位同学对这四项参赛作品预测如下:甲说:“C 或D 作品获得一等奖”; 乙说:“B 作品获得一等奖”;丙说:“A ,D 两项作品未获得一等奖”; 丁说:“C 作品获得一等奖”.若这四位同学中有且只有两位说的话是对的,则获得一等奖的作品是______.【评析】本题属于信息题,可根据题目所给信息来找出解题所需要的条件并得出答案,在做本题的时候,可以采用依次假设A B C D 、、、为一等奖并通过是否满足题目条件来判断其是否正确.首先根据“学校艺术节对A B C D 、、、四件参赛作品只评一件一等奖”,故假设A B C D 、、、分别为一等奖,然后判断甲、乙、丙、丁四位同学的说法的正确性,即可得出结果.【命题专家现场支招】一、解决问题的思考与对策(一)正确认识集合课程的功能价值,落实后进生群体的基础教学高考中集合主要考查集合的含义、元素与集合的关系、集合语言(列举法和描述法)、集合间的包含与相等的含义及子集的识别、交集与并集的含义及简单求解.集合课程的主要功能价值,在于为数学学科提供了基本的语言工具,是符号语言的基础,其基本概念、符号含义是所有学生都能理解和掌握的.然而,实际教学中往往操之过急,拔高要求,注重其与其它知识的综合运用,定位过高而疏忽了对学生,特别是后进学生群体的关注和帮扶.下述例9意在说明集合教学的难度控制问题.【例8】(2020·四川省泸县第四中学高三月考)设全集U =R ,集合{|14}M x x =-<<,{}2|log (2)1N x x =-<,则()U M C N ⋂=( )A .φB .{|42}x x -<≤C .{ |4<<3}x x -D .{|12}x x -<≤ (二)准确针对复数课程的独立特点,并重落实概念与运算的训练“数系的扩充和复数的引入”的考查,主要是基于知识点覆盖的需要,着重考查复数的模、复数相等、共轭复数等概念,考查复数代数表示法及其几何意义,复数代数形式的四则运算.在实际教学中,容易被复数内容“单薄、简单”所蒙蔽,未能注意到对学生而言可能是“模糊、抽象”的另一面.未能针对复数内容相对独立的课程特点,规划好使知识不断再现和强化的教学安排,使部分考生临考时反而出现了知识的“盲区”,常因集中关注代数形式运算的训练,而忽视了对概念再现的关注.【例9】(2020·黑龙江省伊春二中高三期末)已知复数z 满足(1)2i z i +=,则z =( )A .1i -B .1i +C .1i --D .1i +-(三)把握全国卷计数原理的命题特点,落实全国卷题型的变式训练计数原理(文科不要求)在高考中,着重考查用二项式定理解决与二项展开式有关的简单问题,适当考查对两计数原理的理解和用原理解决一些简单的实际问题,结合考查对排列、组合概念的理解及用排列数和组合数公式解决一些简单的实际问题. 注意到所有试题都是曾考试题的变式题的特点,要切实落实好全国卷题型的变式训练,解答错因分析中发现,二项式定理试题尚未完全摆脱福建卷考查形式的“思维定势”影响,仍停留在二项直接展开的低要求上,忽视全国卷在新情景下考查应用意识的命题特点.【例10】(2020·广东省高三月考)72()x x -的展开式中3x 的系数为( )A .168B .84C .42D .21 (四)准确把握算法课程的价值取向,落实框图类试题的解题示范高考对算法初步着重考查包含顺序、条件分支、循环三种基本结构的算法框图的识图能力和框图算法含义的解读能力,考查对算法的含义和算法的思想的了解.教学中不能盲目增加试题的难度和训练的数量,要做好”读题、审题、析题、解题”等过程性的教师示范,养成良好的解题习惯和做好认真、冷静审题的心理准备.其实,突破算法初步试题的关键不在于试题的难度,而在于方法的掌握、过程的体验、心理的调适.【例11】(2018·重庆高三)中国古代名著《孙子算经》中的“物不知数”问题:“今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?”即“有数被三除余二,被五除余三,被七除余二,问该数为多少?”为解决此问题,现有同学设计如图所示的程序框图,则框图中的“菱形”处应填入( )A.221a-∈Z B.215aZ-∈C.27a-∈Z D.23a-∈Z(五)调整对不等式课程地位的认识,重视应用性的隐性考查训练不等式部分,高考中全面考查简单的线性规划问题、一元二次不等式、基本不等式、不等式的运算性质等基础知识,着重考查线性规划、一元二次不等式.不等式是具有工具特征的特殊板块,呈现考查形式的多样化:除不等式选讲选考题外,每年都有一道专门考查线性规划的试题,并且主要以填空题的形式为主,偶尔也有选择题的形式,还常将二次不等式交汇到集合试题中进行考查;又常将不等式的运算性质、二次不等式、基本不等式等基础知识,结合到如函数与导数等试题中进行隐性考查,体现综合考与考应用的考查方式.要帮助后进生掌握求解不含参数的一次、二次不等式、最简指数不等式、最简对数不等式的方法;落实含参二次不等式、区间上二次函数讨论问题的训练;以模式化示范和训练线性规划模型试题的求解过程为重要的提分策略;重视基本不等式的应用;不可忽视不等式的基本性质、比较大小方法的隐性的交汇考查.【例12】(2020·钦州市第三中学高三月考)已知实数x,y满足20370x yx yx y-≥⎧⎪+≥⎨⎪+-≤⎩则3z x y=-+的最大值是()A.5 B.1 C.13 D.11(六)遵循推理与证明的方法论特点,适度组织显性考查试题训练推理与证明,高考主要考查直接证明的两种基本方法(综合法和分析法)、合情推理在数学发现中的作用、和演绎推理中“三段论”的具体应用.推理与证明内容特殊,考查形式也特殊.表面上较少出现对推理与证明进行显性考查的试题,实质上试卷大量地考查数学证明的基本思想方法,考查演绎推理在数学证明或数学问题解答过程、化归转化过程中的应用,隐性地考查合情推理在探寻问题解决思路中的应用价值.作为辅助考查应用意识和创新意识,可能对逻辑推理和合情推理进行显性考查.解决此类试题要求有较高的阅读理解并有效提取信息的能力、推理论证能力,具备整体与局部思想,具备批判性思维能力,往往难度较高.教学安排中要有读题、析题、解题的完整示范,还要有一定量的训练.【例13】(2020·全国高三专题练习)甲、乙、丙、丁四人参加数学竞赛.赛后,他们四个人预测名次的谈话如下:甲:“丙第一名,我第三名”;乙:“我第一名,丁第四名”;丙:“丁第二名,我第三名”;丁没有说话.最后公布结果时,发现他们预测都只猜对了一半,则这次竞赛甲、乙、丙、丁的名次依次是第( )名.A .一、二、三、四B .三、一、二、四C .三、一、四、二D .四、三、二、一(七)针对常用逻辑用语的考查要求,落实后进生群体的过关训练常用逻辑用语,高考主要考查命题概念及真假判断,考查对全称量词和存在量词的意义的理解,充要条件含义的理解.该部分内容的考查,偶尔结合在选择题中进行考查,主要是关于命题真假的判断,关于全称命题与特称命题的含义,也曾结合到选考题中考查过对充要条件含义的理解.这部分内容的考题难度较低,是后进生群体的重要得分题,要落实对后进生的过关性训练.【例14】(2020·北京高三)“3m <”是“方程22123x y m m +=+-表示双曲线”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 二、典型问题剖析(一)集合【例15】(2020·安徽省高三)已知集合{1,2,3}A =,{|(1)(2)0,}B x x x x Z =+-<∈,则A B ⋃= A .{1}B .{12},C .{0123},,,D .{10123}-,,,,【评析】本题主要考查集合的表示法,集合的交、并、补运算,二次不等式等基础知识,考查运算求解能力和数形结合思想.解答此类问题的基本步骤为:正确求解不等式,显化已知条件中的集合;根据目标选项的内容进行相关的集合运算(遇区间运算常以数轴为辅助工具,体现数形结合思想的运用).(二)复数【例16】(2020·河南省高三开学考试)已知复数z 满足21i z i =-,其中i 为虚数单位,则z 的虚部为( ) A .i - B .i C .1- D .1【评析】本题考查复数的基本概念,关键是将其分母实数化,化为(,)a bi a b R +∈的形式,进行判断.根据复数代数形式的除法运算将复数化成标准形式即可得解.(三)计数原理【例17】(2020·四川省泸县第一中学高三月考)要将甲、乙、丙、丁4名同学分到A 、B 、C 三个班级中,要求每个班级至少分到一人,则甲被分到A 班的分法种数为A .6B .12C .24D .36 【评析】解答排列、组合问题的角度:解答排列、组合应用题要从“分析”、“分辨”、“分类”、“分步”的角度入手.(1)“分析”就是找出题目的条件、结论,哪些是“元素”,哪些是“位置”;(2)“分辨”就是辨别是排列还是组合,对某些元素的位置有、无限制等;(3)“分类”就是将较复杂的应用题中的元素分成互相排斥的几类,然后逐类解决;(4)“分步”就是把问题化成几个互相联系的步骤,而每一步都是简单的排列、组合问题,然后逐步解决.【例18】(2020·宁夏回族自治区银川一中高三)若231()n x x+展开式的各项系数之和为32,则其展开式中的常数项为( )A .1B .5C .10D .20 【评析】本题主要考查了二项式定理的应用,其中解答中熟记二项展开式的系数的求法,以及二项展开式的通项是解答的关键.着重考查了计算能力.由二项式231()n x x+展开式的各项系数之和为32,求得5n =,再结合展开式的通项,即可求解常数项.(四)算法初步【例19】(2020·宁夏回族自治区银川一中高三)我国古代名著《庄子g 天下篇》中有一句名言“一尺之棰,日取其半,万世不竭”,其意思为:一尺的木棍,每天截取一半,永远都截不完.现将该木棍依此规律截取,如图所示的程序框图的功能就是计算截取7天后所剩木棍的长度(单位:尺),则①②③处可分别填入的是( )A .17?,,+1i s s i i i≤=-= B .1128?,,2i s s i i i ≤=-=C .17?,,+12i s s i i i ≤=-=D .1128?,,22i s s i i i ≤=-= 【评析】本题主要考查了循环结构的程序框图的应用,其中解答中正确理解程序框图的含义是解答的关键,着重考查了分析问题和解答问题的能力.分析程序中各变量的作用,再根据流程图所示的顺序,可得该程序的作用是累加并输出S 的值,由此可得到结论.(五)不等式【例20】【2018年江苏高考卷13】在ABC ∆中,角,,A B C 所对应的边分别为,,,120,a b c ABC ABC ∠=∠o 的平分线交AC 于点D ,且1BD =,则4a c +的最小值为__________.【评析】本题主要考查三角形的面积公式,基本不等式等基础知识,考查推理论证能力和运算求解能力,考查化归与转化思想、函数与方程思想等,检测数学抽象、数学建模、数学运算素养等.类似这种自然的交汇在各种试题中都有可能出现.(六)推理与证明从思维方法和思想方法上,推理方式与证明方法,到渗透数学问题的方方面面.显性考查,一般有两类试题:合情推理试题和纯推理试题.【例21】网上购鞋常常看到这样一张脚的长度与鞋号的对照表,第一行可以理解为脚的长度,第二行是我们习惯称呼的“鞋号”.脚的长度与鞋号对照表 中国鞋码实际标注(同国际码)mm 220 225 230 235 240 245 250 255 260 265中国鞋码习惯叫法(同欧码) 34 35 36 37 38 39 40 41 42 43从上述表格中可以推算出30号的童鞋对应的脚的长度为__________;若一个篮球运动员的脚长为282 mm ,则他该穿__________码的鞋.【评析】本题意图考查观察能力,考查合情推理能力.观察能力强的或许可以通过观察,猜想规律,验证规律,得出猜想的换算关系.但本题有明显的不公平性缺陷,可能有些考生知道了换算关系, 就没有考查的价值了.(七)简单逻辑用语【例22】(2020·四川省棠湖中学高三月考)设,a b ∈R ,则“||||a a b b >”是“33a b >”成立的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【评析】充分、必要条件的三种判断方法.1.定义法:直接判断“若则”、“若则”的真假.并注意和图示相结合,例如“⇒”为真,则是的充分条件.2.等价法:利用⇒与非⇒非,⇒与非⇒非,⇔与非⇔非的等价关系,对于条件或结论是否定式的命题,一般运用等价法.3.集合法:若⊆,则是的充分条件或是的必要条件;若=,则是的充要条件..【新题好题针对训练】一、单选题1.(2020·海南省高三)已知集合{}|34A x x =-<<,{}|46B x x =-<<,则()A B =R I ð( ) A .{}|46x x << B .{}{}43||46x x x x -<<-⋃<<C .{} 6|4x x ≤< D .{}{}43||46x x x x -<≤-⋃≤< 2.(2020·云南省高三)若:,sin 2p x R x a ∃∈=-,:q 函数321()3f x x x ax =-+在R 上是增函数,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.(2020·陕西省高三月考)命题“x ∀∈R ,10x x -+≠”的否定是( )A .x ∃∈R ,10x x -+≠B .x ∀∈R ,10x x -+=C .x ∃∈R ,10x x -+=D .x ∀∉R ,10x x -+≠4.(2020·江西省高三)在锐角ABC ∆中,内角,,A B C 的对边分别为,,a b c ,已知24a b +=,sin 4sin 6sin sin a A b B a B C +=,则ABC ∆的面积取得最小值时有2c =( )A .5+B .5+C .5D .55.(2020·全国高三专题练习)某企业在“精准扶贫”行动中,决定帮助一贫困山区将水果运出销售.现有8辆甲型车和4辆乙型车,甲型车每次最多能运6吨且每天能运4次,乙型车每次最多能运10吨且每天能运3次,甲型车每天费用320元,乙型车每天费用504元.若需要一天内把180吨水果运输到火车站,则通过合理调配车辆,运送这批水果的费用最少为( )A .2400元B .2560元C .2816元D .4576元6.(2020·黑龙江省牡丹江一中高三期末)第十一届全国少数民族传统体育运动会在河南郑州举行,某项目比赛期间需要安排3名志愿者完成5项工作,每人至少完成一项,每项工作由一人完成,则不同的安排方式共有多少种A .60B .90C .120D .1507.(2020·湖北省高三期末)()()52122x x--的展开式中8x 的项的系数为( ) A .120 B .80 C .60D .408.(2020·陕西省高三)关于甲、乙、丙三人参加高考的结果有下列三个正确的判断:①若甲未被录取,则乙、丙都被录取;②乙与丙中必有一个未被录取;③或者甲未被录取,或者乙被录取.则三人中被录取的是( )A .甲B .丙C .甲与丙D .甲与乙9.(2020·湖南省长沙一中高三月考)如图所示的程序框图,则输出的,,x y z 的值分别是( )A .13009,600,11203B .1200,500,300C .1100,400,600D .300,500,1200 10.(2020·山东省高三)若1iz i =+(其中i 是虚数单位),则复数z 的共轭复数在复平面内对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限 11.(2020·湖南省高三期末)已知3n a x x ⎛⎫+ ⎪⎝⎭的展开式中各项的二项式系数之和为32,且各项系数和为243,则展开式中7x 的系数为( )A .20B .30C .40D .50 二、填空题12.(2020·江苏省高三专题练习)设a 是实数,若复数112a i i -+-(i 为虚数单位)在复平面内对应的点在直线0x y +=上,则a 的值为________.13.(2020·重庆市合川瑞山中学高三)已知a ∈R ,命题p :[]1,2x ∀∈,20x a -≥,命题q :x ∃∈R ,2220x ax a ++-=,若命题p q ∧为真命题,则实数a 的取值范围是_____.14.(2020·河南省高三期末)已知集合1|28,2x A x x R ⎧⎫=<<∈⎨⎬⎩⎭,{}|11,B x x m x R =-<<+∈,若x B ∈成立的一个充分不必要条件是x A ∈,则实数m 的取值范围是 .15.(2020·湖南省高三)为了解某地区的“微信健步走”活动情况,现用分层抽样的方法从中抽取老、中、青三个年龄段人员进行问卷调查.已知抽取的样本同时满足以下三个条件:(i )老年人的人数多于中年人的人数;(ii )中年人的人数多于青年人的人数;(iii )青年人的人数的两倍多于老年人的人数.①若青年人的人数为4,则中年人的人数的最大值为___________.②抽取的总人数的最小值为__________.16.(2020·黑龙江省黑龙江实验中学高三开学考试)现有高一学生两人,高三学生两人,高三学生一人,将这五人排成一行,要求同一年级的学生不能相邻,则不同的排法总数为______.17.(2020·山东省高三开学考试)甲、乙、丙三位同学中有一人申请了北京大学的自主招生考试,当他们被问到谁申请了北京大学的自主招生考试时,甲说:丙没有申请;乙说:甲申请了;丙说:甲说对了.如果这三位同学中只有一人说的是假话,那么申请了北京大学的自主招生考试的同学是_____________. 18.(2020·四川省高三月考)已知ABC ∆中,角A 、B 、C 对应的边分别为a 、b 、c ,D 是AB 上的三等分点(靠近点A ),且1,()sin ()(sin sin )CD a b A c b C B =-=+-,则2+a b 的最大值为_____.。
热点01 多选题、多空题、多条件解答题【命题形式】1、新高考与之前相比,最大的不同就是增加了多项选择题部分,选择题部分由原来的12道单选题,变成了8道单选题与4道多选题。
这有利于缩小学生选择题部分成绩的差距,过去学生错一道单选题,可能就会丢掉5分,在新高考中,考生部分选对就可以得3分,在一定程度上保证了得分率。
2、新高考的单项选择题部分主要考察学生的基础知识和基本运算能力,总体上难度不大,只要认真复习,一般都可以取得一个较好的成绩。
在多项选择题上,前两道较为基础,后两道难度较大,能够突出高考的选拔性功能,总体上来看,学生比以往来讲,更容易取得一个不错的成绩,但对于一些数学基础比较的好的同学来说,这些题比以往应该更有挑战性。
过去,只需要在四个选项中选一个正确答案,现在要在四个选项中,选出多个答案,比以往来说,要想准确的把正确答案全部选出来,确实有一定的难度。
3、选择题部分与之前的一大区别就是强化了对不等式的考察。
新高考解答题中删除了对不等式选讲的考察,因此在选择题之中,不等式的考察有所强化。
4、填空题,会对多空题(有一个空变成了两个空)加大考察力度,难度加大,但所占的分值比重与全国卷的相当。
5、解答题与之前相比,新高考数学试卷删除了选考题(坐标系与参数方程与不等式选讲)的题目,数列与三角函数由原来的每年二选一考试,变成了均为必考题,凸显了对于主干知识的重视,6、解答题与之前相比,出现了新题型,从三个条件中选一个条件作答,体现了高考试卷的灵活性,同时也给考生以选择的余地,有利于考生选择一个自己擅长的条件参与作答,在一定程度上有利于增加得分率。
【满分技巧】1、掌握规则多项选择题由1个题干和4个备选项组成,备选项中至少有2个正确选项,所选正确答案将是2个、3个或4个。
因此,在做多项选择题时应该注意,如果应考者所选答案中有错误选项,该题得零分;如果全部选对得5分,如果所选答案中没有错误选项,但是正确选项未全部选出,则得3分。
高考数学知识点整理高考数学知识点整理在平日的学习中,说到知识点,大家是不是都习惯性的重视?知识点就是掌握某个问题/知识的学习要点。
为了帮助大家掌握重要知识点,以下是店铺精心整理的高考数学知识点整理,希望能够帮助到大家。
高考数学知识点整理1一、函数的单调性在(a,b)内可导函数f(x),f′(x)在(a,b)任意子区间内都不恒等于0.f′(x)≥0?f(x)在(a,b)上为增函数.f′(x)≤0?f(x)在(a,b)上为减函数.1、f′(x)>0与f(x)为增函数的关系:f′(x)>0能推出f(x)为增函数,但反之不一定.如函数f(x)=x3在(-∞,+∞)上单调递增,但f′(x)≥0,所以f′(x)>0是f(x)为增函数的充分不必要条件.2、可导函数的极值点必须是导数为0的点,但导数为0的点不一定是极值点,即f′(x0)=0是可导函数f(x)在x=x0处取得极值的必要不充分条件.例如函数y=x3在x=0处有y′|x=0=0,但x=0不是极值点.此外,函数不可导的点也可能是函数的极值点.3、可导函数的极值表示函数在一点附近的情况,是在局部对函数值的比较;函数的最值是表示函数在一个区间上的情况,是对函数在整个区间上的函数值的比较.二、函数的极值1、函数的极小值:函数y=f(x)在点x=a的函数值f(a)比它在点x=a附近其它点的函数值都小,f′(a)=0,而且在点x=a附近的左侧f′(x)<0 f="" x="">0,则点a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值.2、函数的极大值:函数y=f(x)在点x=b的函数值f(b)比它在点x=b附近的其他点的函数值都大,f′(b)=0,而且在点x=b附近的左侧f′(x)>0,右侧f′(x)<0,则点b叫做函数y=f(x)的极大值点,f(b)叫做函数y=f(x)的极大值.极小值点,极大值点统称为极值点,极大值和极小值统称为极值.三、函数的最值1、在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值.2、若函数f(x)在[a,b]上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在[a,b]上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值.四、求可导函数单调区间的一般步骤和方法1、确定函数f(x)的定义域;2、求f′(x),令f′(x)=0,求出它在定义域内的一切实数根;3、把函数f(x)的间断点(即f(x)的无定义点)的横坐标和上面的各实数根按由小到大的顺序排列起来,然后用这些点把函数f(x)的定义区间分成若干个小区间;4、确定f′(x)在各个开区间内的符号,根据f′(x)的符号判定函数f(x)在每个相应小开区间内的增减性.五、求函数极值的步骤1、确定函数的定义域;2、求方程f′(x)=0的根;3、用方程f′(x)=0的根顺次将函数的定义域分成若干个小开区间,并形成表格;4、由f′(x)=0根的两侧导数的符号来判断f′(x)在这个根处取极值的情况.六、求函数f(x)在[a,b]上的最大值和最小值的步骤1、求函数在(a,b)内的极值;2、求函数在区间端点的函数值f(a),f(b);3、将函数f(x)的各极值与f(a),f(b)比较,其中最大的一个为最大值,最小的一个为最小值.高考数学知识点整理2一、直线方程.1. 直线的倾斜角:一条直线向上的方向与轴正方向所成的最小正角叫做这条直线的倾斜角,其中直线与轴平行或重合时,其倾斜角为0,故直线倾斜角的范围是.注:①当或时,直线垂直于轴,它的斜率不存在.②每一条直线都存在惟一的倾斜角,除与轴垂直的直线不存在斜率外,其余每一条直线都有惟一的斜率,并且当直线的斜率一定时,其倾斜角也对应确定.2. 直线方程的几种形式:点斜式、截距式、两点式、斜切式.特别地,当直线经过两点,即直线在轴,轴上的截距分别为时,直线方程是:.注:若是一直线的方程,则这条直线的方程是,但若则不是这条线.附:直线系:对于直线的斜截式方程,当均为确定的数值时,它表示一条确定的直线,如果变化时,对应的直线也会变化.①当为定植,变化时,它们表示过定点(0,)的直线束.②当为定值,变化时,它们表示一组平行直线.3. ⑴两条直线平行:∥两条直线平行的条件是:①和是两条不重合的直线. ②在和的斜率都存在的前提下得到的. 因此,应特别注意,抽掉或忽视其中任一个“前提”都会导致结论的错误.(一般的结论是:对于两条直线,它们在轴上的纵截距是,则∥,且或的斜率均不存在,即是平行的必要不充分条件,且)推论:如果两条直线的倾斜角为则∥.⑵两条直线垂直:两条直线垂直的条件:①设两条直线和的斜率分别为和,则有这里的前提是的斜率都存在. ②,且的斜率不存在或,且的斜率不存在.(即是垂直的充要条件)4. 直线的交角:⑴直线到的角(方向角);直线到的角,是指直线绕交点依逆时针方向旋转到与重合时所转动的角,它的范围是,当时.⑵两条相交直线与的夹角:两条相交直线与的夹角,是指由与相交所成的四个角中最小的正角,又称为和所成的角,它的取值范围是,当,则有.5. 过两直线的交点的直线系方程为参数,不包括在内)6. 点到直线的距离:⑴点到直线的距离公式:设点,直线到的距离为,则有.注:1. 两点P1(x1,y1)、P2(x2,y2)的距离公式:.特例:点P(x,y)到原点O的距离:2. 定比分点坐标分式。
专题十 非主干知识【考生存在问题报告】(一)基本概念模糊不清本专题中,存在对集合的概念和符号含义、平面向量中向量的投影概念和运算的几何形式、常用逻辑用语中命题的否定与否命题的概念、复数的模与共轭复数等概念、计数原理与排列组合的辨析等模糊不清的问题.【例1】(2020·四川省三台中学实验学校高三开学考试)若集合2{|20}A x x x =-<,则R C A =( ) A .(0,2) B .[0,2] C .(),0-∞ D .[)2,+∞ 【评析】本题主要考查了集合的补集的运算,其中解答中正确求解集合A ,熟记集合的补集的运算是解答的关键,着重考查了运算与求解能力.求得集合{|0A x x =<或2}x >,根据集合的补集的运算,即可求解.【例2】(2020·上海高三)设12,z z 为复数,则下列命题中一定成立的是( )A .如果120z z ->,那么12z z >B .如果12=z z ,那么12=±z zC .如果121z z >,那么12z z > D .如果22120z z +=,那么12 0z z == 【评析】本题解题关键是掌握复数定义,在判断时可采用特殊值法检验,考查了分析能力,根据复数定义,逐项判断,即可求得答案.【例3】(2020·天津高三期末)命题“0(0,)x ∃∈+∞,00ln 1x x =-”的否定是( )A .0(0,)x ∃∈+∞,00ln 1x x ≠-B .0(0,)x ∃∉+∞,00ln 1x x =-C .(0,)x ∀∈+∞,ln 1x x ≠-D .(0,)x ∀∉+∞,ln 1x x =-【评析】对于常用逻辑用语,主要考查命题概念及真假判断,全称量词和存在量词的意义的理解,充要条件含义的理解,属概念辨析.在选择题或填空题考查这部分知识时,都属容易题,应努力确保所有考生都能做对.本题中易混淆的是命题的否定与否命题的概念,体现为常用逻辑用语中出现的概念模糊问题. 产生问题原因主要在于:①对概念及符号语言的含义理解不够深入,②此类试题训练偏少.(二)知识置景的应用意识和化归与转化意识不强在设置新情景中应用相关知识解决问题,需要经历将新情景转化为适合知识直接应用的熟悉情景,体现为某种数学模型的建立过程.知识置景应用意识和化归与转化意识不强,在本板块中的二项式定理应用和排列组合应用上,表现得更为突出.【例4】(2020·湖南省高三期末)()51311x x ⎛⎫+- ⎪⎝⎭的展开式中的常数项为( )A .14B .-14C .16D .-16【评析】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,把511x ⎛⎫- ⎪⎝⎭按照二项式定理展开,可得()51311x x ⎛⎫+- ⎪⎝⎭的展开式中的常数项.(三)算法程序框图语句解读能力欠缺知识的建构与内化、能力的形成与提升是素养养成的基础,心理素质等情感态度也是需要培育的基本素养.全国卷算法框图的考查往往融入更多的知识内涵、要求有更高的思维含量和读图(框图)理解能力,考生由于对框图语句解读的能力欠缺,而容易出现解题失误.【例5】(2020·莆田第二十五中学高三期末)执行如图所示的程序框图,当输入的x 的值为4时,输出的y的值为2,则空白判断框中的条件可能为( ).A .3?x >B .4?x >C .?4≤xD .?5≤x【评析】本题主要考查算法框图的识别与算法含义的解读能力、循环结构等基础知识,考查推理论证能力与运算求解能力.对于这种“逆袭”框图中算法过程条件的,要求较高思维水平、较高推理论证能力的试题,理科相比文科有明显的优势.产生问题的主要原因在于平时考试较少关注心理调适训练,较少提供独立思考与感悟、自我反思与纠错的机会.(四)读题析题中图表辅助意识不强解答试题前,必然经历阅读理解题意和析题以形成解题思路或预设解题方案的过程.在读题与析题的过程中充分发挥“图、表”的辅助功能,是数学的学科特色.这里的“图”指的可能是某个几何图形或图象(曲线),也可能是问题思考的思维导图;“表”指的是由试题中已知条件和待求结论的数据信息构成的数据表.读题析题中的图表辅助意识或应用意识不强,在本板块中主要体现在算法初步(循环过程的数据变化表)、平面向量(代数向量及运算的几何含义)、不等式(含参二次不等式和线性规划问题).【例6】【2016年全国卷Ⅰ理16文16】某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5 kg,乙材料1 kg,用5个工时;生产一件产品B需要甲材料0.5 kg,乙材料0.3 kg,用3个工时.生产一件产品A的利润为2100元,生产一件产品B的利润为900元.该企业现有甲材料150 kg,乙材料90 kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为元.【评析】本题表象上考查线性规划问题所涉及的有关基础知识,实际上考查了抽象概括能力、推理论证能力、运算求解能力和数形结合思想,特别彰显了对数学应用意识的考查,实现了对数学建模、数学抽象、数学运算等核心素养的综合检测.主要问题有下列可能:①数学建模素养不高,难于正确地建立数学模型;②目标函数的斜率看错,可行域判断出错;③三条直线的方向差异关系(倾斜度关系)弄错;④解题过程的草图过草,或揭示草图中点线位置关系的某些关键点标错.产生问题原因主要在于:运用数学知识分析解决实际问题的能力很低,学科特色的图表应用意识不强,教学过程中对读题与析题的示范不够,对数学模型意识的培育重视不够.(六)关键信息的提取能力及信息转换能力不强试题中每个已知信息都应是试题解答之需,有些信息更是问题解决的突破口、或解题思路的重要启示,即问题解决的关键信息.条件的显化或信息的转换,使之可直接用于解题,是试题解答的必经过程.关键信息的提取能力及信息转换能力不强,在本板块中的考查创新意识的推理题中,表现得尤为突出.【例7】(2020·榆树市第一高级中学校高三期末)学校艺术节对同一类的A,B,C,D四件参赛作品,只评一件一等奖,在评奖揭晓前,甲、乙、丙、丁四位同学对这四项参赛作品预测如下:甲说:“C 或D 作品获得一等奖”; 乙说:“B 作品获得一等奖”;丙说:“A ,D 两项作品未获得一等奖”; 丁说:“C 作品获得一等奖”.若这四位同学中有且只有两位说的话是对的,则获得一等奖的作品是______.【评析】本题属于信息题,可根据题目所给信息来找出解题所需要的条件并得出答案,在做本题的时候,可以采用依次假设A B C D 、、、为一等奖并通过是否满足题目条件来判断其是否正确.首先根据“学校艺术节对A B C D 、、、四件参赛作品只评一件一等奖”,故假设A B C D 、、、分别为一等奖,然后判断甲、乙、丙、丁四位同学的说法的正确性,即可得出结果.【命题专家现场支招】一、解决问题的思考与对策(一)正确认识集合课程的功能价值,落实后进生群体的基础教学高考中集合主要考查集合的含义、元素与集合的关系、集合语言(列举法和描述法)、集合间的包含与相等的含义及子集的识别、交集与并集的含义及简单求解.集合课程的主要功能价值,在于为数学学科提供了基本的语言工具,是符号语言的基础,其基本概念、符号含义是所有学生都能理解和掌握的.然而,实际教学中往往操之过急,拔高要求,注重其与其它知识的综合运用,定位过高而疏忽了对学生,特别是后进学生群体的关注和帮扶.下述例9意在说明集合教学的难度控制问题.【例8】(2020·四川省泸县第四中学高三月考)设全集U =R ,集合{|14}M x x =-<<,{}2|log (2)1N x x =-<,则()U M C N ⋂=( )A .φB .{|42}x x -<≤C .{ |4<<3}x x -D .{|12}x x -<≤ (二)准确针对复数课程的独立特点,并重落实概念与运算的训练“数系的扩充和复数的引入”的考查,主要是基于知识点覆盖的需要,着重考查复数的模、复数相等、共轭复数等概念,考查复数代数表示法及其几何意义,复数代数形式的四则运算.在实际教学中,容易被复数内容“单薄、简单”所蒙蔽,未能注意到对学生而言可能是“模糊、抽象”的另一面.未能针对复数内容相对独立的课程特点,规划好使知识不断再现和强化的教学安排,使部分考生临考时反而出现了知识的“盲区”,常因集中关注代数形式运算的训练,而忽视了对概念再现的关注.【例9】(2020·黑龙江省伊春二中高三期末)已知复数z 满足(1)2i z i +=,则z =( )A .1i -B .1i +C .1i --D .1i +-(三)把握全国卷计数原理的命题特点,落实全国卷题型的变式训练计数原理(文科不要求)在高考中,着重考查用二项式定理解决与二项展开式有关的简单问题,适当考查对两计数原理的理解和用原理解决一些简单的实际问题,结合考查对排列、组合概念的理解及用排列数和组合数公式解决一些简单的实际问题. 注意到所有试题都是曾考试题的变式题的特点,要切实落实好全国卷题型的变式训练,解答错因分析中发现,二项式定理试题尚未完全摆脱福建卷考查形式的“思维定势”影响,仍停留在二项直接展开的低要求上,忽视全国卷在新情景下考查应用意识的命题特点.【例10】(2020·广东省高三月考)72()x x -的展开式中3x 的系数为( )A .168B .84C .42D .21 (四)准确把握算法课程的价值取向,落实框图类试题的解题示范高考对算法初步着重考查包含顺序、条件分支、循环三种基本结构的算法框图的识图能力和框图算法含义的解读能力,考查对算法的含义和算法的思想的了解.教学中不能盲目增加试题的难度和训练的数量,要做好”读题、审题、析题、解题”等过程性的教师示范,养成良好的解题习惯和做好认真、冷静审题的心理准备.其实,突破算法初步试题的关键不在于试题的难度,而在于方法的掌握、过程的体验、心理的调适.【例11】(2018·重庆高三)中国古代名著《孙子算经》中的“物不知数”问题:“今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?”即“有数被三除余二,被五除余三,被七除余二,问该数为多少?”为解决此问题,现有同学设计如图所示的程序框图,则框图中的“菱形”处应填入( )A.221a-∈Z B.215aZ-∈C.27a-∈Z D.23a-∈Z(五)调整对不等式课程地位的认识,重视应用性的隐性考查训练不等式部分,高考中全面考查简单的线性规划问题、一元二次不等式、基本不等式、不等式的运算性质等基础知识,着重考查线性规划、一元二次不等式.不等式是具有工具特征的特殊板块,呈现考查形式的多样化:除不等式选讲选考题外,每年都有一道专门考查线性规划的试题,并且主要以填空题的形式为主,偶尔也有选择题的形式,还常将二次不等式交汇到集合试题中进行考查;又常将不等式的运算性质、二次不等式、基本不等式等基础知识,结合到如函数与导数等试题中进行隐性考查,体现综合考与考应用的考查方式.要帮助后进生掌握求解不含参数的一次、二次不等式、最简指数不等式、最简对数不等式的方法;落实含参二次不等式、区间上二次函数讨论问题的训练;以模式化示范和训练线性规划模型试题的求解过程为重要的提分策略;重视基本不等式的应用;不可忽视不等式的基本性质、比较大小方法的隐性的交汇考查.【例12】(2020·钦州市第三中学高三月考)已知实数x,y满足20370x yx yx y-≥⎧⎪+≥⎨⎪+-≤⎩则3z x y=-+的最大值是()A.5 B.1 C.13 D.11(六)遵循推理与证明的方法论特点,适度组织显性考查试题训练推理与证明,高考主要考查直接证明的两种基本方法(综合法和分析法)、合情推理在数学发现中的作用、和演绎推理中“三段论”的具体应用.推理与证明内容特殊,考查形式也特殊.表面上较少出现对推理与证明进行显性考查的试题,实质上试卷大量地考查数学证明的基本思想方法,考查演绎推理在数学证明或数学问题解答过程、化归转化过程中的应用,隐性地考查合情推理在探寻问题解决思路中的应用价值.作为辅助考查应用意识和创新意识,可能对逻辑推理和合情推理进行显性考查.解决此类试题要求有较高的阅读理解并有效提取信息的能力、推理论证能力,具备整体与局部思想,具备批判性思维能力,往往难度较高.教学安排中要有读题、析题、解题的完整示范,还要有一定量的训练.【例13】(2020·全国高三专题练习)甲、乙、丙、丁四人参加数学竞赛.赛后,他们四个人预测名次的谈话如下:甲:“丙第一名,我第三名”;乙:“我第一名,丁第四名”;丙:“丁第二名,我第三名”;丁没有说话.最后公布结果时,发现他们预测都只猜对了一半,则这次竞赛甲、乙、丙、丁的名次依次是第( )名.A .一、二、三、四B .三、一、二、四C .三、一、四、二D .四、三、二、一(七)针对常用逻辑用语的考查要求,落实后进生群体的过关训练常用逻辑用语,高考主要考查命题概念及真假判断,考查对全称量词和存在量词的意义的理解,充要条件含义的理解.该部分内容的考查,偶尔结合在选择题中进行考查,主要是关于命题真假的判断,关于全称命题与特称命题的含义,也曾结合到选考题中考查过对充要条件含义的理解.这部分内容的考题难度较低,是后进生群体的重要得分题,要落实对后进生的过关性训练.【例14】(2020·北京高三)“3m <”是“方程22123x y m m +=+-表示双曲线”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 二、典型问题剖析(一)集合【例15】(2020·安徽省高三)已知集合{1,2,3}A =,{|(1)(2)0,}B x x x x Z =+-<∈,则A B ⋃= A .{1}B .{12},C .{0123},,,D .{10123}-,,,,【评析】本题主要考查集合的表示法,集合的交、并、补运算,二次不等式等基础知识,考查运算求解能力和数形结合思想.解答此类问题的基本步骤为:正确求解不等式,显化已知条件中的集合;根据目标选项的内容进行相关的集合运算(遇区间运算常以数轴为辅助工具,体现数形结合思想的运用).(二)复数【例16】(2020·河南省高三开学考试)已知复数z 满足21i z i =-,其中i 为虚数单位,则z 的虚部为( ) A .i - B .i C .1- D .1【评析】本题考查复数的基本概念,关键是将其分母实数化,化为(,)a bi a b R +∈的形式,进行判断.根据复数代数形式的除法运算将复数化成标准形式即可得解.(三)计数原理【例17】(2020·四川省泸县第一中学高三月考)要将甲、乙、丙、丁4名同学分到A 、B 、C 三个班级中,要求每个班级至少分到一人,则甲被分到A 班的分法种数为A .6B .12C .24D .36 【评析】解答排列、组合问题的角度:解答排列、组合应用题要从“分析”、“分辨”、“分类”、“分步”的角度入手.(1)“分析”就是找出题目的条件、结论,哪些是“元素”,哪些是“位置”;(2)“分辨”就是辨别是排列还是组合,对某些元素的位置有、无限制等;(3)“分类”就是将较复杂的应用题中的元素分成互相排斥的几类,然后逐类解决;(4)“分步”就是把问题化成几个互相联系的步骤,而每一步都是简单的排列、组合问题,然后逐步解决.【例18】(2020·宁夏回族自治区银川一中高三)若231()n x x+展开式的各项系数之和为32,则其展开式中的常数项为( )A .1B .5C .10D .20 【评析】本题主要考查了二项式定理的应用,其中解答中熟记二项展开式的系数的求法,以及二项展开式的通项是解答的关键.着重考查了计算能力.由二项式231()n x x+展开式的各项系数之和为32,求得5n =,再结合展开式的通项,即可求解常数项.(四)算法初步【例19】(2020·宁夏回族自治区银川一中高三)我国古代名著《庄子g 天下篇》中有一句名言“一尺之棰,日取其半,万世不竭”,其意思为:一尺的木棍,每天截取一半,永远都截不完.现将该木棍依此规律截取,如图所示的程序框图的功能就是计算截取7天后所剩木棍的长度(单位:尺),则①②③处可分别填入的是( )A .17?,,+1i s s i i i≤=-= B .1128?,,2i s s i i i ≤=-=C .17?,,+12i s s i i i ≤=-=D .1128?,,22i s s i i i ≤=-= 【评析】本题主要考查了循环结构的程序框图的应用,其中解答中正确理解程序框图的含义是解答的关键,着重考查了分析问题和解答问题的能力.分析程序中各变量的作用,再根据流程图所示的顺序,可得该程序的作用是累加并输出S 的值,由此可得到结论.(五)不等式【例20】【2018年江苏高考卷13】在ABC ∆中,角,,A B C 所对应的边分别为,,,120,a b c ABC ABC ∠=∠o 的平分线交AC 于点D ,且1BD =,则4a c +的最小值为__________.【评析】本题主要考查三角形的面积公式,基本不等式等基础知识,考查推理论证能力和运算求解能力,考查化归与转化思想、函数与方程思想等,检测数学抽象、数学建模、数学运算素养等.类似这种自然的交汇在各种试题中都有可能出现.(六)推理与证明从思维方法和思想方法上,推理方式与证明方法,到渗透数学问题的方方面面.显性考查,一般有两类试题:合情推理试题和纯推理试题.【例21】网上购鞋常常看到这样一张脚的长度与鞋号的对照表,第一行可以理解为脚的长度,第二行是我们习惯称呼的“鞋号”.脚的长度与鞋号对照表 中国鞋码实际标注(同国际码)mm 220 225 230 235 240 245 250 255 260 265中国鞋码习惯叫法(同欧码) 34 35 36 37 38 39 40 41 42 43从上述表格中可以推算出30号的童鞋对应的脚的长度为__________;若一个篮球运动员的脚长为282 mm ,则他该穿__________码的鞋.【评析】本题意图考查观察能力,考查合情推理能力.观察能力强的或许可以通过观察,猜想规律,验证规律,得出猜想的换算关系.但本题有明显的不公平性缺陷,可能有些考生知道了换算关系, 就没有考查的价值了.(七)简单逻辑用语【例22】(2020·四川省棠湖中学高三月考)设,a b ∈R ,则“||||a a b b >”是“33a b >”成立的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【评析】充分、必要条件的三种判断方法.1.定义法:直接判断“若则”、“若则”的真假.并注意和图示相结合,例如“⇒”为真,则是的充分条件.2.等价法:利用⇒与非⇒非,⇒与非⇒非,⇔与非⇔非的等价关系,对于条件或结论是否定式的命题,一般运用等价法.3.集合法:若⊆,则是的充分条件或是的必要条件;若=,则是的充要条件..【新题好题针对训练】一、单选题1.(2020·海南省高三)已知集合{}|34A x x =-<<,{}|46B x x =-<<,则()A B =R I ð( ) A .{}|46x x << B .{}{}43||46x x x x -<<-⋃<<C .{} 6|4x x ≤< D .{}{}43||46x x x x -<≤-⋃≤< 2.(2020·云南省高三)若:,sin 2p x R x a ∃∈=-,:q 函数321()3f x x x ax =-+在R 上是增函数,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.(2020·陕西省高三月考)命题“x ∀∈R ,10x x -+≠”的否定是( )A .x ∃∈R ,10x x -+≠B .x ∀∈R ,10x x -+=C .x ∃∈R ,10x x -+=D .x ∀∉R ,10x x -+≠4.(2020·江西省高三)在锐角ABC ∆中,内角,,A B C 的对边分别为,,a b c ,已知24a b +=,sin 4sin 6sin sin a A b B a B C +=,则ABC ∆的面积取得最小值时有2c =( )A .5+B .5+C .5D .55.(2020·全国高三专题练习)某企业在“精准扶贫”行动中,决定帮助一贫困山区将水果运出销售.现有8辆甲型车和4辆乙型车,甲型车每次最多能运6吨且每天能运4次,乙型车每次最多能运10吨且每天能运3次,甲型车每天费用320元,乙型车每天费用504元.若需要一天内把180吨水果运输到火车站,则通过合理调配车辆,运送这批水果的费用最少为( )A .2400元B .2560元C .2816元D .4576元6.(2020·黑龙江省牡丹江一中高三期末)第十一届全国少数民族传统体育运动会在河南郑州举行,某项目比赛期间需要安排3名志愿者完成5项工作,每人至少完成一项,每项工作由一人完成,则不同的安排方式共有多少种A .60B .90C .120D .1507.(2020·湖北省高三期末)()()52122x x--的展开式中8x 的项的系数为( ) A .120 B .80 C .60D .408.(2020·陕西省高三)关于甲、乙、丙三人参加高考的结果有下列三个正确的判断:①若甲未被录取,则乙、丙都被录取;②乙与丙中必有一个未被录取;③或者甲未被录取,或者乙被录取.则三人中被录取的是( )A .甲B .丙C .甲与丙D .甲与乙9.(2020·湖南省长沙一中高三月考)如图所示的程序框图,则输出的,,x y z 的值分别是( )A .13009,600,11203B .1200,500,300C .1100,400,600D .300,500,1200 10.(2020·山东省高三)若1iz i =+(其中i 是虚数单位),则复数z 的共轭复数在复平面内对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限 11.(2020·湖南省高三期末)已知3n a x x ⎛⎫+ ⎪⎝⎭的展开式中各项的二项式系数之和为32,且各项系数和为243,则展开式中7x 的系数为( )A .20B .30C .40D .50 二、填空题12.(2020·江苏省高三专题练习)设a 是实数,若复数112a i i -+-(i 为虚数单位)在复平面内对应的点在直线0x y +=上,则a 的值为________.13.(2020·重庆市合川瑞山中学高三)已知a ∈R ,命题p :[]1,2x ∀∈,20x a -≥,命题q :x ∃∈R ,2220x ax a ++-=,若命题p q ∧为真命题,则实数a 的取值范围是_____.14.(2020·河南省高三期末)已知集合1|28,2x A x x R ⎧⎫=<<∈⎨⎬⎩⎭,{}|11,B x x m x R =-<<+∈,若x B ∈成立的一个充分不必要条件是x A ∈,则实数m 的取值范围是 .15.(2020·湖南省高三)为了解某地区的“微信健步走”活动情况,现用分层抽样的方法从中抽取老、中、青三个年龄段人员进行问卷调查.已知抽取的样本同时满足以下三个条件:(i )老年人的人数多于中年人的人数;(ii )中年人的人数多于青年人的人数;(iii )青年人的人数的两倍多于老年人的人数.①若青年人的人数为4,则中年人的人数的最大值为___________.②抽取的总人数的最小值为__________.16.(2020·黑龙江省黑龙江实验中学高三开学考试)现有高一学生两人,高三学生两人,高三学生一人,将这五人排成一行,要求同一年级的学生不能相邻,则不同的排法总数为______.17.(2020·山东省高三开学考试)甲、乙、丙三位同学中有一人申请了北京大学的自主招生考试,当他们被问到谁申请了北京大学的自主招生考试时,甲说:丙没有申请;乙说:甲申请了;丙说:甲说对了.如果这三位同学中只有一人说的是假话,那么申请了北京大学的自主招生考试的同学是_____________. 18.(2020·四川省高三月考)已知ABC ∆中,角A 、B 、C 对应的边分别为a 、b 、c ,D 是AB 上的三等分点(靠近点A ),且1,()sin ()(sin sin )CD a b A c b C B =-=+-,则2+a b 的最大值为_____.。