超声电源
- 格式:pdf
- 大小:514.25 KB
- 文档页数:5
超声波电源发生器工作原理
超声波电源发生器是一种先进的电力设备,它能够将低频电源转换为高频超声波信号输出,并将其用于实现灵活、精确的工程应用。
超声波电源发生器的工作原理是将低频电源(如直流电源)或交流电源)用交流转换器转换为直流电压后,再将其转换为高频超声波信号输出。
频超声波信号是一种正弦波形,形成的振动波波长一般为1mm至50mm,频率通常为20kHz-2MHz之间。
超声波电源发生器的工作方式一般分为半导体模式、振荡模式和变压器模式等,其中半导体模式指将低频源(如直流电池)用半导体元件(即功率晶体管)转换为高频超声波信号,振荡模式则通过穿插各种器件实现,而变压器模式则是通过一个变压器完成此功能,它能够将低频电源转换为高频超声波信号。
超声波电源发生器的输出信号可以用于各种实际应用,如控制自动化设备、用于焊接、清洗以及检测等。
例如,超声波电源发生器可以用于维护自动化设备,其中通过将高频超声波信号调节到特定的频率和幅度,可以实现对机器性能参数的准确控制和检测,从而提高机器性能。
另外,超声波电源发生器还可以用于物体的精确焊接。
它能够将高频超声波信号调节到特定的频率和幅度,使物体在焊接过程中产生高温,从而实现物体的精确焊接和装配。
样,超声波电源发生器还可以用于实现物体的特殊表面处理和清洗,为实现均匀、持久的表面处理效果和清洗提供了可行的方案。
超声波电源发生器的操作原理及其在工程应用方面的广泛性为其受到广泛应用打开了大门。
它已经成为自动化控制系统、工业设备以及各种商业应用中使用最为广泛的电力设备。
未来,超声波电源发生器将继续拓展新的应用领域,为更多工程应用提供更高效率、更精确的控制效果。
超声波电源发生器工作原理超声波电源发生器是一种用于产生高精度、高功率的正弦电压和正弦电流的电源发生器。
它具有高精度、高可靠性以及稳定可控等特点,因此,在微机控制、家电控制、测量仪器、电源逆变器、无线电及通信等领域有重要的应用。
本文旨在通过分析超声波电源发生器的工作原理,为广大研究用户提供参考。
一、超声波电源发生器的结构超声波电源发生器的结构包括电源控制电路、超声波控制电路、自动保护电路、电路板布线及各种附件等。
1.电源控制电路电源控制电路负责调节输出电压。
它包括正压电源控制电路、负压电源控制电路和脉冲电源控制电路等。
正压电源控制电路可以产生两种电压,一种是正向输出电压,一种是负向输出电压;负压电源控制电路可以产生双向输出电压;脉冲电源控制电路可以产生脉冲信号,控制超声波控制电路开关管。
2.超声波控制电路超声波控制电路是由超声波控制管、放大电路和检测电路组成的一个系统,它通过调节超声波控制管的功率,产生高功率正弦电压和正弦电流,从而实现无损伤的电源输出。
3.自动保护电路自动保护电路用来控制超声波发生器的安全工作。
当电源控制电路的电压和电流超出范围时,自动保护电路会自动断开连接,从而保护超声波发生器不受损坏。
二、超声波电源发生器的工作原理超声波电源发生器是通过晶体振荡器和超声波控制电路实现高精度、高功率的正弦电压和正弦电流的电源发生器。
1.体振荡器晶体振荡器的元件主要包括电容、电阻、多路调节电容、控制电子管、振荡电路和多路正弦波生成电路。
它的功能是将频率稳定的直流电源通过振荡电路转换成用于超声波控制电路的高频正弦信号。
2.声波控制电路超声波控制电路是通过星座控制电路、电压调整电路和电流调整电路等主要组成部分来实现高精度、高功率的正弦电压和正弦电流的输出。
3.座控制电路星座控制电路主要由振荡器、调节电路和反馈电路组成。
它的作用是根据输入的控制电压及频率信号,通过改变振荡器的振荡频率,从而控制超声波控制电路的开关管的开关频率,保证输出电压的精度和功率的稳定。
超声设备电源电路分析及故障诊断任何一台机器的正常工作,需要相应的可靠电源支持。
电源质量的好坏直接决定了机器的工作稳定性。
作为B超这样的高档诊断显像设备,电源质量的好坏更决定了其图像质量的高低。
东芝SAL-32B型B超电源系统采用的是开关式直流稳压电源供电。
使机器电源效率高、结构紧凑、整机重量轻、体积小、携带方便。
1、初级输入电路分析1.1 滤波器及整流电路:交流电源经保险丝F1、F2、电源开关SWl送人由L1、L2、L3组成的电源噪声滤波器,电源噪声滤波器将来自电源的高频噪声干扰滤除掉,又通过双向可控硅SCRl送人整流电路D 1。
J1的作用是通过将其接人和断开,使B超工作在lOOV或220V电源上。
若电源电压为100V时,J1按虚线接人。
由电路分析可知,输出电压提高一倍。
当电源电压为220V时,J1断开,这就是正常的全波整流电路。
1.2 软起动电路:软起动电路是为防止电源接通瞬间,由于大容量电容的存在,而产生浪涌电流的抑制电路。
这个电路主要由元件SCRl、R1、L3组成。
其原理是:双向可控硅SRCl的导通与截止由开关变压器中L3绕组中的反电势控制。
电源接通瞬间双向可控硅SCRl呈断开状态,这时流经整流桥D1的电流由于R1的存在抑制了电路浪涌电流的产生,减少开机时大电流对元件的冲击。
电阻R1的阻值只有10Ω左右,与R4、R5(200kΩ)相比可忽略不计,因此,在双向可控硅开关操作过程中,对电压波动的影响可忽略不计,D1的直流输出电压大约是300V。
1.3 逆变器:所谓逆变就是一个由直流到交流的转变。
东芝3 2B机逆变振荡频率大约为40kHz。
逆变电路主要由晶体管开关TRl、TR2和高频变压器T1组成。
高频变压器T1采用的是具有磁饱和特性的电磁材料。
利用电磁饱和性质来维持晶体管TRl、TR2的轮换开关操作。
将3 00V直流变成约40kHz的交变电压,通过开关变压器的次级降为多路直流输出所需要的电压值。
超声波电源的设计超声波设备通常需要稳定的直流电源来驱动超声波发生器和传感器。
因此,超声波电源的设计需要满足以下要求:1.工作电压和电流:根据超声波设备的工作需求,确定适当的工作电压和电流。
一般来说,超声波设备的工作电压在10V到100V之间,电流在0.1A到1A之间。
2.稳定性:超声波电源需要提供稳定的电压和电流输出,以确保超声波设备的正常工作。
为了实现稳定性,可以采用电压稳压器、电流稳流器等电路设计。
3.过载和短路保护:超声波设备可能会遇到过载和短路情况,因此超声波电源需要具备过载和短路保护功能。
这通常可以通过采用过载保护电路和短路保护电路来实现。
4.效率:为了提高超声波电源的效率,可以采用高效率的功率变换器来降低能耗。
常用的功率变换器包括开关电源和开关模式电源等。
5.纹波和噪声:超声波电源需要降低输出电压和电流的纹波和噪声水平,以确保超声波设备的正常工作。
可以采用滤波器等电路设计来降低纹波和噪声。
6.温度保护:超声波电源需要具备温度保护功能,以防止过热损坏。
可以采取过温保护电路设计来实现温度保护。
1.分析超声波设备的工作需求,确定电源的工作电压、电流和其他特性。
2.设计电源的基本电路,包括整流电路、滤波电路、稳压电路和保护电路等。
3.选择适当的元器件,包括整流器、滤波电容、稳压器、保护元件等。
在选择元器件时,需要考虑其工作电压、电流以及供应商的信誉度。
4.进行电路仿真和优化,以确保电源设计的稳定性、效率和可靠性。
5.进行实验验证,测试电源的性能和可靠性。
6.优化设计并进行样机制作,最终完成超声波电源的设计。
总之,超声波电源的设计需要综合考虑超声波设备的工作需求,通过合理的电路设计和元器件选择,以实现稳定、高效、可靠的电源供应。
超声波电源发生器工作原理
超声波电源发生器是一种既经济又实用的电源发生设备,它可以将外部物理能量转化为电能,可以方便地进行负载的供电,被广泛用于各种类型的电子设备的供电,其工作原理也是比较复杂的。
超声波电源发生器的工作原理主要基于超声波技术,超声波是高频的声波,其频率范围是从20kHz到10MHz,它可以被利用来产生电能。
当一个超声波源将超声波发射到一个结构物时,由于结构物的反射和折射,将会产生两个不同频率的波。
介于两个波之间的频率差是定值,这种频率差就叫做固定频率差(FFD)。
由于这两个波的存在,就会在物体的表面产生一个振动,当两个振动传导到物体内部时,就会有一种类似于压电效应的电压产生。
此外,超声波电源发生器还可以用于产生低频振荡器,它可以将超声波和有限的电流和电压进行调节,从而利用来获得低频振荡器所作用于系统中的DC电源。
此外,超声波电源发生器还可以用来进行电磁干扰测量,它可以通过把超声波电源发生器连接到较高频率的信号源上,从而把较高频率的信号转换成一致的低频信号,从而可以用于测量电磁干扰的强度等等。
最后,超声波电源发生器本质上是一种能量转换设备,它可以将外部的体积物质能量转换成电能,并且还可以利用它来产生低频振荡器和电磁干扰测量等功能,这就是超声波电源发生器工作原理。
超声波电源发生器工作原理
超声波电源发生器的工作原理是依靠电磁感应原理,将电能转换
为无线电能。
超声波电源发生器通过一个导体来实现电能的传输,在
导体上施加高频电流可产生无线电,当高频电流通过磁半路阻抗效应,使其磁场感应回路发生感应电流,产生源激波,由于真空腔内的反射,超声波发生器能够持续发出超声波信号,当与另外一个超声波发生器
平行连接后,可以产生一条通路,以传输超声波信号。
超声波电源发生器是一种多功能的电源发生器,它可以输出高分
辨率的超声波信号,而且超声波信号的强度可以调节,从而满足不同
的应用要求。
另外,超声波电源发生器可以实现微型频率调节,可以
提供广泛的频率应用,可以用于特定的目的包括无线数据传输、地形
测量、安全监控、无线感应系统以及超声检测等等。
超声波电源发生器虽然具有多功能性,但是它也有一些限制,比
如它不能用于高温高压环境中,也不能用于爆炸性或者放射性的环境中,所以在使用之前一定要安装好安全保护装置,以免发生噩梦般的
后果。
超声波电源发生器的原理超声波电源发生器是一种新型的电源发生器,它能够产生具有超声回波的电波。
这是一种全新的电源发生器技术,它的出现可以为许多新的电子设备提供稳定的电源。
超声波电源发生器的原理是通过电子组件来发送和接收超声波信号,并将其转换为电能。
它具有可靠性高、反应快、性能稳定等优点。
它主要由电子元件、调节器、超声源、功率放大器、滤波器和发射器等组成。
电子元件是超声波电源发生器的核心部件,它可以根据设计要求来完成电路的设计。
接下来,调节器用于调整电路的参数,使电路能够有效地控制超声波的发射和检测。
超声源是一种集中的电源系统,它可以提供源信号的高频信号,并将其转换为超声波。
功率放大器是一种用于放大高频信号的元件,而滤波器则用于降低源信号中的噪声和干扰。
最后,发射器用于将超声波信号发送到接收器中。
超声波电源发生器的工作原理是,当超声源产生的高频信号经过功率放大器放大后,再通过发射器发射出去。
当这个高频信号抵达另一端的接收器,它就会受到超声回波的反射。
接收器收到反射信号后,会通过滤波器过滤掉噪声信号,并将其转换为电能。
最后,电能被输送到下一个处理单元,从而产生稳定的电源。
从上文可以看出,超声波电源发生器可以用来为许多新型的电子设备提供稳定的电源。
它有着可靠性高、反应快、性能稳定等特点。
例如,它可以用于家用电器的电力调节、工厂的自动化生产以及医疗设备的精确控制等应用中。
它不但节省了能源,而且还确保了设备的稳定性,给用户带来了方便。
因此,超声波电源发生器的原理对于电子设备的发展有着重要的意义,它为这些电子设备提供了一种新而可靠的电源供应方式。
只要我们有更多实用的电子设备,就可以更好地满足现代社会对于科技发展的需求。
超声波电源发生器的原理及其引起的科技发展,为实现社会现代化提供了重要的经济效益和社会效益。
它有利于改善人民的生活,节能环保,并为可持续发展和社会发展作出贡献。
未来,随着科技的进一步发展,超声波电源发生器也将有更多的应用。
DCX V系列超声波发生器使用手册EDP 500-220-112版本号:Rev.A必能信超声(上海)有限公司上海市松江区荣乐东路758号邮编:201613电话:+86-021-3781-0588DCX V系列超声波发生器使用手册手册更新必能信通过不断改进设备的电路及零部件来保证其在超声波塑料焊接、金属焊接、清洗和相关技术领域的领先地位。
当这些技术改进通过完整的测试程序之后即投入到实际生产中。
关于任何技术改进的信息都将会增加到新版本的技术文件中并打印成册。
因此,当用户就某一部件向售后服务进行咨询时,请告知文件首页上的版本信息及位于页脚处的打印日期。
版权和商标版权©2012必能信超声公司保留所有权利没有必能信超声公司的书面许可,本手册的内容不得以任何形式进行复制。
Mylar是杜邦帝人薄膜公司的注册商标。
Loctite 是乐泰公司的注册商标。
WD-40是WD-40制造公司的注册商标。
Windows 7, Windows Vista和Windows XP是微软公司的注册商标。
在此提到的其他商标和服务标志都有其相应的所有者。
DCX V系列超声波发生器使用手册前言非常感谢您选购必能信的产品!必能信DCX V系列焊接系统是利用超声波能量对塑料件进行焊接的设备,是此类先进技术的最新一代产品,适用于多种不同的应用要求。
本操作手册是该产品技术文件的一部分,请将手册和设备放置在一起,便于查询参考。
再次感谢您选择必能信!绪论操作手册分成若干个章节,便于用户查找设备搬运、安装、设置、编程、操作以及维护等信息。
用户可以通过目录快速查找到所需内容。
如果需要其他帮助或信息,请联系必能信生产支持部门(请参考1.4小节:如何联系必能信)或与当地必能信销售代表联系。
DCX V系列超声波发生器使用手册目录1安全与支持1.1安全要求及警告 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1-21.1.1手册中的常用标志 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1-21.1.2产品上常用标志 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1-21.2预防措施- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1-31.2.1设备用途- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1-41.2.2排放物 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1-41.2.3设置工作场所- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1-41.2.4遵循的规章及条例 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1-51.3保修政策- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1-61.4如何联系必能信 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1-91.4.1联系必能信之前 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1-91.5设备返修- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -1-102设备概述2.1产品型号- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2-22.1.1设备简介- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2-32.1.2超声波发生器使用手册 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2-42.2关于其他必能信设备 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2-52.3与必能信产品的兼容 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2-52.4系统特性- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2-62.4.1焊接系统- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2-62.4.2超声波发生器- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2-62.4.3机架 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2-62.4.4换能器/变幅器/焊头组件- - - - - - - - - - - - - - - - - - - - - - - - - - - 2-72.5控制器和显示器 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2-82.5.1DCX V系列超声波发生器前面板功能简介- - - - - - - - - - - - - - - - - - - - 2-82.5.2DCX V系列超声波发生器后面板功能简介- - - - - - - - - - - - - - - - - - - - 2-92.6焊接系统- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -2-102.6.1工作原理- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -2-102.6.2应用 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2-102.7技术术语 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2-103设备的运输及处理3.1设备运输 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 3-23.1.1环境要求 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 3-23.2设备接收 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 3-23.3包装拆卸 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 3-33.4小零件盘点 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 3-33.4.1电缆线 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 3-43.5设备发还 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 3-44设备的安装及设置4.1关于安装 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 4-24.2安装要求 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 4-24.2.1安装空间 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 4-24.2.2环境要求 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 4-74.2.3电源输入范围- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 4-74.2.4气动要求 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 4-74.3安装步骤 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 4-84.3.1安装超声波发生器- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 4-84.3.2电气连接 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 4-104.4超声波发生器的设置 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 4-184.4.1选择报警模式- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 4-184.4.2设置超声波发生器- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 4-184.5换能器/变幅器/焊头组件的安装- - - - - - - - - - - - - - - - - - - - - - - - - 4-194.5.120kHz系统换能器/变幅器/焊头组件的安装 - - - - - - - - - - - - - - - - - 4-204.5.230kHz系统换能器/变幅器/焊头组件的安装 - - - - - - - - - - - - - - - - - 4-204.5.340kHz系统换能器/变幅器/焊头组件的安装 - - - - - - - - - - - - - - - - - 4-214.5.4焊头和焊嘴的组装- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 4-214.6换能器冷却 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 4-224.7安装调试 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 4-234.8需要帮助? - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 4-235技术参数5.1技术参数 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 5-25.1.1环境要求 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 5-25.1.2电气要求 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 5-2DCX V系列超声波发生器使用手册5.2结构描述- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 5-45.3标准模块及元器件 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 5-55.3.1系统方框图- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 5-55.3.2电路 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 5-55.3.3换能器和变幅器 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 5-75.3.4部件功能描述- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -5-136设备的操作6.1启动超声能量- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 6-26.2振幅设置- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 6-26.2.1使用外部振幅控制 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 6-26.2.2使用网页界面- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 6-26.3重设超声波发生器报警 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 6-26.4网页界面- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 6-36.4.1系统要求- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 6-36.4.2连接至网页界面 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 6-36.4.3网页界面的使用 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 6-96.5超声测试- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -6-106.5.1使用输入/输出接口 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -6-116.5.2使用网页界面- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -6-117设备的维护7.1常规维护注意事项 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 7-27.2DCX V系列超声波发生器定期常规维护 - - - - - - - - - - - - - - - - - - - - - - - 7-37.2.1定期清洁设备- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 7-37.2.2换能器/变幅器/焊头组件的维护 - - - - - - - - - - - - - - - - - - - - - - - 7-47.2.3常规零件的更换 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 7-77.3校准 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 7-77.4元器件清单- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 7-77.4.1系统电缆线清单 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 7-87.4.2建议备件清单- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 7-87.5系统连线图- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -7-127.6故障分析- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -7-137.6.1常见电气故障- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -7-137.6.2风扇/电源开关故障 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -7-147.6.3超声功率故障- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -7-147.6.4焊接循环故障- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -7-157.7冷启动 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -7-16 7.7.1执行一次冷启动操作 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -7-16DCX V系列超声波发生器使用手册附图索引图 1.1DCX V系列超声波发生器上的安全标志(水平安装式) - - - - - - - - - - - - - - - - - -1-2图 1.2DCX V系列超声波发生器上的安全标志(竖直安装式) - - - - - - - - - - - - - - - - - -1-3图 1.3CE标志- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -1-5图 2.1DCX V系列超声波发生器外形图(水平安装式) - - - - - - - - - - - - - - - - - - - - -2-3图 2.2DCX V系列超声波发生器外形图(竖直安装式) - - - - - - - - - - - - - - - - - - - - -2-3图 2.3DCX V系列超声波发生器前面板示意图 - - - - - - - - - - - - - - - - - - - - - - - - -2-8图 2.4DCX V系列超声波发生器后面板示意图 (水平安装式) - - - - - - - - - - - - - - - - - -2-9图 2.5DCX S系列超声波发生器后面板示意图 (竖直安装式) - - - - - - - - - - - - - - - - - -2-9图 4.1DCX V水平安装式超声波发生器外形图 - - - - - - - - - - - - - - - - - - - - - - - - -4-3图 4.2DCX V竖直安装式超声波发生器外形图(400 W, 750 W 和800 W) - - - - - - - - - - - -4-4图 4.3DCX V 竖直安装式超声波发生器外形图 (1.25 kW和1.5 kW) - - - - - - - - - - - - - - -4-5图 4.4DCX V竖直安装式超声波发生器外形图 (2.5 kW 和 4 kW) - - - - - - - - - - - - - - - -4-6图 4.5DCX V超声波发生器接口示意图 (水平安装式) - - - - - - - - - - - - - - - - - - - - 4-10图 4.6DCX V超声波发生器接口示意图 (竖直安装式) - - - - - - - - - - - - - - - - - - - - 4-10图 4.7用户输入/输出电缆识别和线色图解 - - - - - - - - - - - - - - - - - - - - - - - - - - 4-11图 4.8常见数字式输入/输出接线图 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 4-15图 4.9常见模拟式输入/输出接线图 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 4-15图 4.10射频电缆连接示意图- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 4-16图 4.11换能器/变幅器/焊头组装示意图 - - - - - - - - - - - - - - - - - - - - - - - - - - - 4-19图 4.12焊头和焊嘴组装示意图 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 4-21图 5.1系统方框图 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -5-5图 5.220 kHz CR-20S换能器外形图 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -5-7图 5.320 kHz CH-20S换能器外形图 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -5-8图 5.420 kHz变幅器外形图 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -5-8图 5.520 kHz换能器/变幅器/焊头组件外形图- - - - - - - - - - - - - - - - - - - - - - - - -5-9图 5.630 kHz换能器外形图 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 5-10图 5.730 kHz变幅器外形图 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 5-11图 5.830 kHz换能器/变幅器/焊头组件外形图- - - - - - - - - - - - - - - - - - - - - - - - 5-11图 5.940 kHz, 4TR和4TJ换能器外形图 - - - - - - - - - - - - - - - - - - - - - - - - - - - 5-12图 5.1040 kHz变幅器外形图 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 5-12图 5.1140 kHz换能器/变幅器/焊头组件外形图- - - - - - - - - - - - - - - - - - - - - - - - 5-13图 6.1测试连线图 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 6-11图 7.1换能器/变幅器/焊头组件的接触面修整示意图 - - - - - - - - - - - - - - - - - - - - - 7-5图 7.2系统连线图 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -7-12DCX V系列超声波发生器使用手册附表索引表 1.1保修期- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1-6表 1.2联系电话- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -1-11表 2.1产品型号- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2-2表 2.2超声波发生器和换能器匹配表 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2-5表 2.3DCX V系列超声波发生器前面板显示器- - - - - - - - - - - - - - - - - - - - - - - - - 2-8表 2.4DCX V系列超声波发生器后面板接口- - - - - - - - - - - - - - - - - - - - - - - - - - 2-9表 3.1环境要求一览表 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 3-2表 3.2包装拆卸步骤 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 3-3表 3.3小零件盘点表 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 3-4表 3.4DCX V系列系统电缆线 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 3-4表 4.1环境要求一览表 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 4-7表 4.2输入电流和断路器规格- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 4-7表 4.3用户输入/输出电缆线信号及信号规则 - - - - - - - - - - - - - - - - - - - - - - - - -4-11表 4.4数字输入信号的功能 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -4-12表 4.5数字输出信号的功能 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -4-13表 4.6模拟输入信号的功能 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -4-13表 4.7模拟输出信号的功能 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -4-13表 4.8默认用户输入/输出接口信号及信号规则 - - - - - - - - - - - - - - - - - - - - - - - -4-14表 4.9超声波组件扭矩值 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -4-20表 4.10工具一览表 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -4-20表 4.11焊嘴扭矩值一览表 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -4-21表 4.12连续运行最大功率 & 满功率占空比 - - - - - - - - - - - - - - - - - - - - - - - - - - -4-22表 4.13换能器冷却步骤 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -4-22表 5.1环境要求一览表 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 5-2表 5.2输入电压- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 5-2表 5.3输入电流和断路器规格- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 5-3表 5.4连续运行最大功率 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 5-3表 5.5DCX V系列超声波发生器尺寸一览表- - - - - - - - - - - - - - - - - - - - - - - - - - 5-4表 6.1重设DCX V超声波发生器 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 6-2表 6.2超声波发生器测试程序(用户输入/输出)- - - - - - - - - - - - - - - - - - - - - - - -6-11表 6.3超声波发生器测试程序(网页界面)- - - - - - - - - - - - - - - - - - - - - - - - - - -6-11表 7.1换能器/变幅器/焊头组件修整步骤- - - - - - - - - - - - - - - - - - - - - - - - - - - 7-4表 7.2超声波发生器组件扭矩值- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 7-6表 7.3螺栓扭矩值一览表 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 7-7表 7.4DCX V系列电缆线清单 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 7-8表 7.5建议备件清单 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 7-8表 7.6DCX V系列超声波发生器使用的换能器- - - - - - - - - - - - - - - - - - - - - - - - - 7-9表 7.7DCX V系列超声波发生器使用的变幅器- - - - - - - - - - - - - - - - - - - - - - - - - 7-9表 7.8DCX V系列超声波发生器使用的其他零件 - - - - - - - - - - - - - - - - - - - - - - -7-10表 7.9常见电气故障的排除 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -7-13表 7.10风扇/电源开关故障的排除- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -7-14表 7.11超声波功率故障的排除- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -7-14表 7.12焊接循环故障的排除 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -7-15表 7.13冷启动步骤 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -7-16DCX V系列超声波发生器 1: 安全与支持使用手册1:安全与支持1.1安全要求及警告 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1-21.1.1手册中的常用标志 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1-21.1.2产品上常用标志 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1-21.2预防措施- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1-31.2.1设备用途- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1-41.2.2排放物 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1-41.2.3设置工作场所- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1-41.2.4遵循的规章及条例 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1-51.3保修政策- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1-61.4如何联系必能信 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1-91.4.1联系必能信之前 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1-91.5设备返修- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -1-10本章节主要介绍了操作手册中及产品上所使用的不同安全标志的含义,以及超声波焊接的其他安全信息,同时也提供了必能信的联系方式。
超声波电源发生器工作原理
超声波电源发生器是一种新型的电源发生器,它利用超声波技术来产生高压电,可以用来驱动特定的电器,例如医疗设备。
该电源发生器的工作原理是:通过将高频声波发射到特定区域,超声波电源发生器可以创建一个静电场,然后将该静电场变换成高压电,从而支持连接的电子设备。
超声波电源发生器是由一个特殊的电路板制造,它由一个大型元件组成,它可以在指定频率内产生和发射超声波。
这些超声波在空气中以特定的频率传播,由于超声波的特性,它可以形成一个静电场,这个静电场的电压可以达到数千到数万伏特的范围。
静电场在超声波电源发生器中被转换成高压电,通过特殊的电子元件,这些电子元件可以把静电场的电压转换成可使用的高压电,例如在医疗设备中。
这些电子元件可以将高频超声波转换为可用的电压,而不会影响超声波电源发生器本身。
超声波电源发生器可以实现非常高效的能量转换,基本上可以达到小于1%的效率。
因为它不会消耗太多的能量,可以节省许多能源,同时也不会产生有害的废气,这对环境非常有益。
此外,超声波电源发生器可以提供稳定的电流,从而使电子设备在运行过程中可以保持稳定性。
而且,它可以大大提高装置的安全性,因为电流稳定,不会有大面积烧坏的危险。
总之,超声波电源发生器是一种简洁而高效的电源发生器,它利用高频超声波来产生高压电,从而支持特定的电器,例如医疗设备,
可以大大提高它们的安全性和效率,同时也可以节省能源,减少对环境的污染。
基于56F803型DSP的大功率超声波电源的研究
摘要:针对大功率超声波电源高精度、高功率输出的特点.对超声波电源控制策略进行了改进。
提出一种基于56F803型DSP的频率跟踪与功率调节相结合的周期分段移相控制策略.研究了基于此控制方法的超声波电源。
关键词:超声波电源;频率跟踪与功率协调控制;超声波发生器;数字信号处理器;56F803
1 引言
随着科学的发展和技术的进步.超声波在超声焊接、超声清洗、干燥、雾化、导航、测距、育种等领域的应用日趋广泛。
现在的大功率超声波电源大都采用频率跟踪控制或功率控制。
这种单一控制方法不仅会降低超声波电源效率,而且会影响输出精度和强度。
如何使超声波电源根据实际负载实时,动态调节输出谐振频率和功率,从而保证超声波加工等操作的要求具有重要的理论研究和实际应用价值。
2 超声波电源系统的组成
超声波电源系统主要由220V电源、整流滤波、高频逆变单元、匹配网络、检测电路、PWM 产生电路和驱动电路组成,如图1所示。
220V单相交流电经过二极管不可控整流电路得到直流电压,然后经过由MOSFET组成的高频逆变电路得到满足换能器要求的高频电压。
为减少高频工作条件下MOSFET的开关损耗,高频逆变电路采用带辅助网络的全桥结构,如图2所示。
此电路结构解决了传统零电压开关(ZVS)PWM电路变压器漏感小且滞后桥臂难于实现ZVS的问题。
同时,根据电流增强原理,此电路结构可在任意负载和输入电压范围内实现零电压开关,大大减少了占空比丢失。
超声波电源与换能器匹配的好坏将决定整个电路的控制效果。
因此,应该对匹配网络每个参量(高频变压器匝比K,输出匹配电感Lf)进行严格的计算。
匹配主要指为使发生器输出额定电功率,进行阻抗变换匹配。
以及为使发生器输出最高效率进行调谐匹配。
采用56F803型DSP作为控制电路的核心处理器.它内置2 KB SRAM,31.5 KB FLASH,同时,其40 MHz的CPU时钟频率比其他单片机具有更强的处理能力。
6路PWM信号可以实现高频逆变电路开关管MOSFET的移相控制。
12位A/D转换器采集可以实现电压和电流采样并满足采样数据精度的要求。
利用56F803型DSP中定时器的捕获功能可以精确计算相位差大小,实现系统的频率跟踪控制。
串行外设接口SPI与MCl4489配合使用可以实现对5位半数码管的控制.从而实现系统频率和功率的显示。
另外,56F803还支持C语言与汇编语言混合编程的 SDK软件开发包.可以实现在线调试。
驱动电路采用IR21lO型驱动模块.它具有集成度高,响应速度快(tar/taff=120 ns/94 ns),偏值电压高(<600 V),驱动能力强,成本低和易于调试等优点。
IR2110是基于自举驱动原理的功率MOSFET驱动电路.驱动信号延时为纳秒级,开关频率可以从数十赫兹到数百千赫兹。
同时,IR2110还具有比较完善的保护功能(如欠压检测、抗干扰、外部保护闭锁等)。
一个IR2110可以同时驱动单桥臂的上下二个 MOSFET,因此,使用少量分立元件和一路控制电源就可以实现一个桥臂MOSFET 的驱动控制,这样大大减小了驱动电路的体积和成本。
3 系统的控制策略
超声波电源系统采用频率跟踪和功率调节相结合的控制策略,从而使发生器在输出最大功率时可达到最高效率。
此种控制策略主要通过控制PWM的周期(也就是控制开关频率)和PWM 控制波形的移相角来实现。
3.1 频率跟踪控制的实现
采用锁相法实现频率跟踪控制。
使用KT20A/P型电流传感器和KV20A/P型电压传感器分别检测换能器二端的电压和电流,经过滞环控制得到电压和电流的方波信号,如图3所示。
该滞环的回差为lV。
然后,对二路方波信号经过异或门和D触发器得到相位差波形和相位差符号。
相位差波形送入DSP的捕获口,计算出相位差大小T,相位差符号送入GPIOA7口.获得符号标志量flag。
当T≠O,flag=o时,表示电压超前电流。
此时,应该减小开关管的频率f;当T≠O,flag=l时,表示电压滞后电流,此时,应该增加开关管的频率f,然后把频率量转化成时间量附给DSP模值寄存器,从而改变输出PWM信号的周期。
3.2 功率控制的实现
为了使高频逆变电路的输出功率满足换能器所需要的额定功率,要采用功率控制电路,即采集直流侧的电流信号与给定的电流值进行比较,并对偏差进行数字PI调节,从而改变移相控制波形的移相角.进而改变高频逆变电路的输出电压。
采集直流侧的电流来实现功率控制的主要原因是通过换能器的电压和电流是交流,需要检波、滤波等处理过程才能检测到,这样比较困难。
而直流侧电压是直流量, 基于这种考虑,采用了检测直流侧电流的方法。
采用增量式数字PI运算减小偏移量,从而达到无静差控制。
直流侧电流实时跟踪给定电流,改变软开关控制信号的移相角,从而改变高频逆变电路的输出
电压,当移相角增大时输出电压也增大,所以高频逆变电路最终会输出换能器所要求的功率。
3.3 周期分段实现移相控制
本系统的开关采用占空比为50%的PWM信号移相控制。
传统移相控制方法有二种:一种是采用UC3875产生移相控制波形.但电路复杂,不便于调试。
精度低:另一种是采用单片机,这种方法大部分采用正弦表产生移相波形,程序冗长、复杂、可读性差。
本系统采用周期分段控制方法实现移相控制波形。
在每个PWM 周期中把开关管的控制波形分为4段.每段波形中DSP模值寄存器PWMCM的值等于计数器PWMVAL的值。
变量Count
代表输出的是第几段波形,当 Count=l或Count=3时.把波形I或Ⅲ的模值MODUL01(I和Ⅲ的模值相同)赋给模值寄存器。
当Count=l时,PWM模块的0通道和3 通道分别输出高电平和低电平。
当Count=3时.PWM模块的0通道和2通道分别输出低电平和高电平;当Count=2或Count=4时.把波形Ⅱ或 IV的模值MODULO 2(Ⅱ和IV的模值相同)赋给模值寄存器.当Count=2时,PWM模块的O通道和3通道都输出高电平。
当Count=4时.PWM 模块的0通道和2通道都输出低电平。
然后,按照上述方式循环输出波形,如图4所示程序框图。
(m=100).然后随着相位差的减小.逐渐减小步长.直到相位差为零。
4 实验结果分析
上述超声波电源的主要参数是直流侧电压270 V;开关频率fS=20 kHz;高频变压器匝比
K=38:15;谐振电感Lf=3 mH;换能器采用工作频率为20 kHz.内阻为10Ω ,电容为12 000pF,最大输出功率为l 500 W。
图6(a)给出逆变桥输出电压和电流实验波形。
图6(b)是Q1管控制波形和漏一源极间电压实验波形。
可见,当控制信号使开关管导通时。
其漏极和源极之间的电压已经为零,实现了开关管零电压导通
图6(c)是换能器二端电压实验波形。
换能器处于固有频率谐振状态时为纯阻性负载,所以二端电压为正弦。
5 结束语
采用频率跟踪和功率协调控制的数控式新型超声波电源具有以下特点:
(1)采用带辅助电路、电流增强型的ZVS全桥变换器.实现了所有开关管的ZVS;(2)实现了频率跟踪与功率控制的协调控制策略,跟踪精度可达4Hz.能够满足超声焊接、超声清洗等控制的要求;(3)采用周期分段控制策略实现ZVS的移相控制,使得程序简化;(4)采用IR2110型集成驱动,驱动简单.减小了系统的体积,降低了成本。
来源:国外电子元器件。