脱硫塔干湿界面结垢原因分析及处理方法
- 格式:pdf
- 大小:1.39 MB
- 文档页数:5
火电厂脱硫吸收塔结垢原因分析及防治措施发布时间:2021-12-22T04:02:42.323Z 来源:《中国电业》(发电)》2021年第15期作者:胡云龙周志忠[导读] 石灰石-石膏湿法脱硫是目前我国火电厂常用的一种脱硫方式,华能沁北电厂#3机组脱硫超净改造后采用双塔湿法脱硫。
华能沁北发电有限责任公司河南济源 459012摘要:石灰石-石膏湿法脱硫是目前我国火电厂常用的一种脱硫方式,华能沁北电厂#3机组脱硫超净改造后采用双塔湿法脱硫。
吸收塔结垢为湿法脱硫中常见的问题之一,吸收塔结垢不仅影响脱硫吸收塔的运行效率,还会加速吸收塔相关设备的磨损,危机脱硫系统的安全稳定运行。
本文以华能沁北电厂#3机组脱硫系统为例,对吸收塔结垢成分进行化验分析,并采集#3机组脱硫系统运行参数,结合数据分析归纳总结吸收塔结垢原因,并提出防治措施。
希望能够对脱硫系统的运行调整起到一定的参考作用。
关键词:燃煤发电;湿法脱硫;吸收塔结垢1 华能沁北电厂#3脱硫系统简介我厂超净改造后,#3脱硫吸收塔采用湿法脱硫,双塔运行方式。
吸收塔布置如图所示。
从锅炉排出的烟气通过引风机先后进入一级吸收塔、二级吸收塔,烟气经过吸收塔时,烟气中的SO2、SO3、HCl、HF等酸性成分被吸收,经过除雾器时,除去烟气中携带的雾滴,防止因雾滴沉降造成设备腐蚀,每层喷淋装置对应1台浆液循环泵,经洗涤和净化的烟气流出二级吸收塔,经烟道除雾器后进经烟囱排放。
吸收塔浆液池中的石灰石/石膏浆液由循环泵送至浆液喷雾系统的喷嘴,产生细小的液滴沿吸收塔横截面均匀向下喷淋。
SO2、SO3与浆液中石灰石反应,生成亚硫酸钙和硫酸钙。
在吸收塔浆池中鼓入空气将生成的亚硫酸钙氧化成硫酸钙,硫酸钙结晶生成石膏。
经过脱水机脱水得到副产品石膏。
2 吸收塔结垢原因分析2.1脱硫吸收塔结垢成分分析在#3脱硫系统检修期间,发现#3脱硫一级塔内部烟气进出口处以及氧化风出口处有严重的结垢现象,对垢样化验,成分占比如下:氢氧化钙亚硫酸钙硫酸钙碳酸钙氧化镁二氧化硅三氧化二铝三氧化二铁1.22% 2.05% 47.59% 21.28% 8.08% 10.38 6.76 0.38对半年内#3脱硫一级塔吸收塔浆液分析报告汇总归纳,其成分如下:pH值密度碳酸钙亚硫酸钙酸性不溶物5.8 1180Kg/m3 1.88% 1.12% 18.25%2.2结垢原因分析:通过日常运行情况得知,我厂#3脱硫一级塔pH值波动范围较大,在4.5值6.0之间,而当pH值较低时,亚硫酸钙溶解度明显提高,随着吸收塔浆液pH值的上升,亚硫酸钙溶解度下降,在吸收塔内部烟气进出口处以及氧化风出口处等干湿交界处极易形成亚硫酸钙软垢,随着烟气和氧化风的作用最终形成硫酸钙硬垢。
浅谈脱硫塔塔堵的处理措施脱硫塔是燃煤电厂的重要设备,用于去除烟气中的二氧化硫,保护环境。
在使用过程中,脱硫塔偶尔会出现塔堵的问题,严重影响其正常运行,甚至会导致事故发生。
对脱硫塔塔堵的处理措施十分重要。
本文将从塔堵的原因分析入手,探讨脱硫塔塔堵的处理方法及预防措施。
一、塔堵的原因分析1.1 石灰石结垢脱硫塔的脱硫工艺一般是采用石灰石作为脱硫剂,而石灰石在使用过程中会产生结垢现象,使塔内壁面逐渐被覆盖,影响脱硫效果。
当结垢过厚时,会导致塔堵的发生。
1.2 烟气中粉尘含量高烟气中含有大量的粉尘,随着烟气进入脱硫塔,部分粉尘会在脱硫塔内壁附着,随着时间的推移,粉尘不断积累,最终形成结垢,导致塔堵。
1.3 脱硫剂浓度不足脱硫剂的浓度不足将影响脱硫效果,使废气中的二氧化硫无法完全被吸收,而二氧化硫会在脱硫塔内部与水蒸气和氧发生化学反应形成硫酸,当硫酸浓度增加时,会与脱硫塔内壁的石灰石发生反应,生成硫酸钙结垢。
1.4 温度梯度不均脱硫塔内部温差过大也是导致塔堵的原因之一。
当温差过大时,会导致烟气在脱硫塔内部产生冷凝,冷凝液中的水分和硫酸与石灰石发生反应,形成结垢。
二、脱硫塔塔堵的处理方法2.1 清理结垢脱硫塔塔堵的主要原因是石灰石结垢,因此对塔内结垢的清理是解决塔堵问题的关键。
清理结垢的方法一般有机械清理和化学清洗两种方式。
机械清理需要将脱硫塔逐层停机,对内部结垢进行人工清理。
化学清洗则是通过喷洒特制清洗剂,溶解结垢后再进行清理。
2.2 增加清洗系统为了避免脱硫塔内部结垢的形成,在设计脱硫塔的时候可以考虑增加清洗系统,定期对塔内壁进行清洗,减少结垢的积累。
清洗系统可以采用水冲洗或喷淋清洗,有效地减少结垢的形成。
脱硫剂浓度不足是导致脱硫塔结垢的重要原因之一,因此提高脱硫剂的浓度是解决塔堵问题的有效措施之一。
在脱硫塔运行过程中,及时调整脱硫剂的投加量,保持合适的浓度,有效地减少结垢的形成。
2.4 提高内部温度均匀性为了避免温度梯度不均导致的塔堵问题,需要采取相应的措施来提高脱硫塔内部的温度均匀性。
火电厂脱硫吸收塔运行中产生结垢的原因和解决办法摘要:介绍了火电厂烟气脱硫鼓泡塔系统结垢的问题,分析了运行中发生结垢原因及其产生的机理,提出了脱硫运行中解决结垢的办法。
关键词:结垢;冲洗水管;溶解度;解决办法引言:国家发展改革委和国家环保总局联合会下发了《燃煤发电机组脱硫电价及脱硫设施运行管理办法(试行)》以来,有力的加快了燃煤机组烟气脱硫设施的投运率,极大的减少了二氧化硫排放量。
随着脱硫设施的投运,脱硫系统均出现了系统结垢问题,吸收塔系统结垢已成为影响脱硫系统安全稳定运行的关键因素之一,系统内部结垢会严重影响脱硫系统的运行稳定性,必要时需停机处理。
本文以台山电厂4号机组鼓泡式吸收塔(以下简称鼓泡塔)为例,讲解鼓泡塔系统结垢产生的原因和解决办法。
1. 脱硫系统垢的形成机理1.1 “湿-干”界面结垢的形成“湿-干”界面结垢主要是吸收塔浆液在高温烟气的作用下,浆液中的水分蒸发导致浆液迅速的固化,这些含有硅、铁、铝以及钙等物质,且有一定粘性的固化后的浆液在遇到塔里部件后会粘附沉降下来,随着高温继续作用,致使沉降后的层面浆液逐渐成为结垢类似水泥的硬垢。
在鼓泡式吸收塔中烟气冷却器入口烟道、烟气冷却器喷嘴、吸收塔升气管外壁、吸收塔鼓泡管内部、氧化风喷嘴喷口位置均易形成此类结垢。
如图1所示:图1:鼓泡管内壁结垢1.2 结晶结垢的形成物质从液态到固态的转变过程统称为凝固,如果通过凝固能形成晶体结构,即为结晶。
(1)结晶硬垢在鼓泡式吸收塔内,当塔内石膏浆液过饱和度大于或等于140%时,浆液中的CaSO4将会在塔内各部件表面析出而形成结晶石膏垢,此类石膏垢以吸收塔内壁面和烟气冷却泵、石膏排出泵入口滤网侧居多,以硬垢为主。
(2)结晶软垢当脱硫系统自然氧量和强制氧量不能满足CaSO3●1/2H2O的氧化成CaSO4●2H2O时,CaSO3●1/2H2O的浓度就会上升而同硫酸钙一同结晶析出形成结晶石膏软垢。
软垢在塔内各部件表面逐渐长大形成片状垢层,但当氧化风量足够时软垢很少发生。
FGD系统中有一种结垢形式。
是灰垢,这在吸收塔入口干/湿交界处十分明显。
高温烟气中的灰分在遇到喷淋液的阻力后,与喷淋的石膏浆液一起堆积在入口,越积越多,在连州电厂FGD系统吸收塔的入口出冷热交界的1m左右区域,结垢积灰现象十分严重,烟道底部垢层再20~30cm厚,人可踩在上面。
入口处两侧壁面中间支柱上都积有垢山,其主要成分是灰分和CaSO4。
二是石膏垢,当吸收塔的石膏浆液中的CaSO4过饱和度大于或等于1.4时,溶液中CaSO4就会在吸收塔内各组件表面析出结晶形成石膏垢。
石膏过饱和度a=[Ca2+] [SO2- 4]/Ksp上式中[Ca2+]、[SO2- 4]分别为溶液中Ca2+、SO2- 4离子的浓度(mol/L);Ksp 为CaSO4•2H2O的浓度积(mol2/L2)。
过饱和度a越大,结垢形成的速度就越快,仅当<1.4时才能获得无垢运行。
要使<1.4,需适当地设计吸收塔内的石膏浆液浓度、液气比为11。
石膏浆液浓度与的关系亦是如此,浓度越低,越大。
吸收塔壁面及循环泵入口、石膏泵入口滤网的两侧就是此类石膏垢,吸收塔壁面在浆液下(约10m)均匀地结了一层松散的垢层,约1.5mm厚,可以很容易的剥落下来。
另外,在上层除雾器的叶片上以及再器管壁上,由于冲洗不能完全彻底,都有明显的浆液黏积现象。
在水力旋流器溢流的盖子上以及底部分流器管子上,均有结垢发生。
三是当浆液中亚硫酸钙浓度偏高时就会与硫酸钙同时结晶析出,形成这两种物质的混合结晶[Ca(SO3)x•(SO4)x•1/2H2O],即CSS垢(Calcium Sulfate and Sulfite),CSS在吸收塔内各组件表面逐渐长大形成片状的垢层,其生长速度低于石膏垢,当充分氧化时,这种垢就少发生。
在吸收塔底,尽管均布有四台搅拌器,但仍存在“死区”,沉积的石膏便堆积在此处,高达0.5m,有的硬如石块。
在泵的入口,沉积的石膏浆液达到了滤网的高度。
在运行时可以从以下几方面来预防结垢的发生:(1) 提高锅炉电除尘器的效率和可靠性,使FGD入口烟尘在设计范围内。
石灰石湿法脱硫结垢的原因分析与防治摘要:结垢是影响石灰石/石灰湿法烟气脱硫系统运行安全性的主要问题之一。
分析了湿法烟气脱系统中各类垢体的形成机理,并阐述了系统结垢的主要防治方法。
关键词:石灰石脱硫;脱硫结垢;结垢原因;结垢防治1.湿法烟气脱硫系统概述石灰石-石膏法烟气脱硫工艺是目前火电行业应用最为广泛、技术最成熟的烟气脱硫技术之一,以石灰石为脱硫吸收剂,副产品为石膏。
但在实际运行中脱硫塔塔壁会出现结垢现象,脱落后的垢层分布在脱硫塔底部,会堵塞石膏排出泵入口滤网、循环浆液泵入口滤网、吸收塔底部排放口、石膏压滤的水力旋流器入口等。
而未脱落的垢层则仍依附在脱硫塔塔壁,会对检修工作带来安全隐患,通风不佳造成风压上升,影响脱硫乳化单元的脱硫效果。
1.湿式石灰石烟气脱硫系统的运行条件在湿式石灰石烟气脱硫系统中,从经济角度考虑,最重要的两个因素是脱硫截留率)和石灰石残留量(FGD-石膏) 。
虽然影响湿式石灰石烟气脱硫系效率(SO2统设计和运行的最相关的参数是物理参数,如液气比、吸收塔气速和氧化率、石浓度、反应池 pH 值、洗涤器温度、 HCl、 HF 和添灰石的反应性、烟气中 SO2加剂的使用等湿式石灰石烟气脱硫系统的化学因素,以及烟气脱硫系统效率的运行条件,如颗粒控制装置效率、烟气脱硫系统的停留时间、水处理或循环以及氧化过程,也可能影响湿式石灰石烟气脱硫系统的运行。
2.1. 石灰石的活性石灰石的粒径分布、孔隙率和石灰石中的杂质等性质对脱硫效率有重要影响。
这些参数可以作为影响石灰石活性的关键因素。
石灰石的活性被定义为提供碱性并与二氧化硫溶解到水中所产生的酸反应的能力。
常规湿式石灰石烟气脱硫系统中,石灰石经粉碎至平均粒径为5-20μm (大约为500目)后使用,但能耗大,一般以250目即可。
2.2. 酸碱度和温度H +浓度对石灰石的溶解速率和 SO2去除率有较大的影响。
烟气脱硫系统的设计是在5.0-6.0的最佳 pH 值范围内运行。
一、吸收塔结垢原因及防治吸收塔内结垢可分为沉积结垢、干湿结垢及结晶结垢,其中,沉积结垢和干湿结垢占大部分。
(一)沉积结垢1.沉积结垢现象:主要发生在脉冲悬浮泵出口底层区域、吸收塔底部直角圆周区域、检修人孔门区域。
垢块呈黑色,棱角较光滑,密度较结晶晶块低,杂物多,有时呈暗红,垢块纹理混乱,分层混乱,水分含量大,硬度低,易变形。
2.沉积结垢形成原因:吸收塔浆液是含有碳酸钙、硫酸钙、亚硫酸钙等物质的悬浊液,如果搅拌器设置不合理,出现搅拌死角;停用设备没有及时疏放冲洗;泵的选型不合理等都会引起固体颗粒沉积而堆积在容器底部或管道上。
3.沉积结垢防治:沉积结垢主要是控制浆液流速,吸收塔内部搭件尽量简单,注意管件、弯头处的畅通,避免出现浆液扰动出现死角。
(二)干湿结垢1.干湿结垢现象:主要发生在吸收塔原烟气入口处、除雾器内部、后一层除雾器与烟气出口间的塔壁面、氧化空气管内部于“干湿”交界区。
垢块较松散,易变形,密度、硬度低晶块棱角尖锐,晶块颗粒透明发亮,具有晶体的共性,各视角面上都有光亮,石膏晶块呈菱形块状,整体颜色呈暗褐色,晶块层次分明、规则,易碎。
2.干湿结垢形成原因:吸收塔浆液中含有多种物质,如硫酸钙、亚硫酸氢钙、亚硫酸钙、碳酸钙及锅炉燃灰中包含的 Si、Fe 等重金属离子,这些都是粘稠度较大的物质。
当浆液碰撞到塔壁时,它们中的部分便会粘附于塔壁而沉降下来;运行时由于各种原因,会把浆液循环泵喷淋下的浆液带入吸收体入处内,在高温烟气的作用下,使干湿垢慢慢形成。
3.干湿结垢的防治:及时冲洗是防治干湿结垢的有效办法,如除雾器的冲洗。
控制冲洗时间,一般控制在 60-90min 范围内冲洗一次。
对于氧化空气管道内的结垢,采用在氧化空气管内加装喷水减温喷嘴,通过调节减温水的流量来控制氧化风的温度,一般控制在 50℃左右。
(三)结晶垢1.结晶垢现象:主要发生在吸收塔内部运行液位控制以下的壁面,包括吸收塔内部构件,如分离器大梁、各氧化风管、脉冲悬浮泵上吸入口滤网,石膏排出泵上吸入口滤网等处。
石灰石-石膏湿法脱硫技术问题及脱硫效率探讨田斌摘要:阐述了石灰石-石膏湿法脱硫工艺原理及存在的技术问题和处理方法,并对影响脱硫效率的主要因素进行了探讨。
关键词:湿法脱硫;技术问题;脱硫效率当前脱硫技术在新建、扩建、或改建的大型燃煤工矿企业,特别是燃煤电厂正得到广泛的推广应用,而石灰石-石膏湿法脱硫是技术最成熟、适合我国国情且国内应用最多的高效脱硫工艺,但在实际应用中如果不能针对具体情况正确处理结垢、堵塞、腐蚀等的技术问题,将达不到预期的脱硫效果。
本文就该法的工艺原理、实践中存在的技术问题、处理方法及影响脱硫效率的主要因素做如下简要探讨。
1. 石灰石-石膏湿法脱硫工艺及脱硫原理从电除尘器出来的烟气通过增压风机BUF进入换热器GGH,烟气被冷却后进入吸收塔Abs,并与石灰石浆液相混合。
浆液中的部分水份蒸发掉,烟气进一步冷却。
烟气经循环石灰石稀浆的洗涤,可将烟气中95%以上的硫脱除。
同时还能将烟气中近100%的氯化氢除去。
在吸收器的顶部,烟道气穿过除雾器Me,除去悬浮水滴。
离开吸收塔以后,在进入烟囱之前,烟气再次穿过换热器,进行升温。
吸收塔出口温度一般为50-70℃,这主要取决于燃烧的燃料类型。
烟囱的最低气体温度常常按国家排放标准规定下来。
在我国,有GGH 的脱硫,烟囱的最低气温一般是80℃,无GGH 的脱硫,其温度在50℃左右。
大部分脱硫烟道都配备有旁路挡板(正常情况下处于关闭状态)。
在紧急情况下或启动时,旁路挡板打开,以使烟道气绕过二氧化硫脱除装置,直接排入烟囱。
石灰石—石膏稀浆从吸收塔沉淀槽中泵入安装在塔顶部的喷嘴集管中。
在石灰石—石膏稀浆沿喷雾塔下落过程中它与上升的烟气接触。
烟气中的SO溶入水2溶液中,并被其中的碱性物质中和,从而使烟气中的硫脱除。
石灰石中的碳酸钙与二氧化硫和氧(空气中的氧)发生反应,并最终生成石膏,这些石膏在沉淀槽中从溶液中析出。
石膏稀浆由吸收塔沉淀槽中抽出,经浓缩、脱水和洗涤后先储存起来,然后再从当地运走。
火电厂湿法脱硫系统脱硫塔入口烟道积垢原因分析及对策关键词:湿法脱硫脱硫塔脱硫系统以某660MW机组为例,对于石灰石-石膏湿法脱硫系统中脱硫塔入口干-湿交界而区域大量积垢的原因进行了研究,分析了该区域的垢样组成,初步总结了脱硫塔入口烟道积垢的发生过程,并针对该问题提出了解决对策。
合理加装导流板来改善入口烟道气流分布和优化系统运行方式可以有效解决该问题。
1概况由于我国火电厂大部分己取消了脱硫旁路,因此脱硫系统的运行情况将直接影响机组的正常运行。
脱硫塔入口烟道为典型的干-湿交界面,极易发生结垢,甚至造成堵塞。
该区域结垢的发生与原烟气含尘浓度、烟道的布置及气流均匀性都有直接的关系,同时入口烟气流速对吸收塔内部流场分布也具有明显的影响。
本文对某发电公司660MW机组出现的脱硫塔入口烟道干-湿交界面结垢堵塞原因进行深入研究,并提出了一系列解决对策,期望对于今后类似机组的类似问题起到指导和帮助作用。
某发电公司660MW超临界直流炉,配套建设石灰石-石膏湿法烟气脱硫系统。
脱硫系统入口烟气量2206020m3/h,入口烟温120℃,入口烟气SO2浓度6400mg/m3,入口烟气粉尘浓度30mg/m3,脱硫系统主设备参数见表1。
表1FGD主要设备选型参数2存在的问题该发电公司660MW机组脱硫系统在历次停机检修中发现入口烟道干-湿交界面存在少量结垢现象,但是该系统在拆除GGH后,仅运行3个月后机组开始出现明显异常,增压风机入口压力由原来的-800~-400Pa增长为正压+400~700Pa,随后在系统高负荷运行时,增压风机出现明显喘。
为了减缓增压风机的喘振,该机组只能降负荷运行,但是增压风机电流与满负荷时相差不多。
机组停运检修时从人孔门处发现垢物大量堆积导致该区域烟气流通面积明显减少,系统阻力大幅提高。
同时检修了除雾器,发现其未发生结垢和堵塞,因此可以确定增压风机喘振的原因就是吸收塔入口烟道处大量积垢引发堵塞。
入口烟道内产生大量垢物不仅产生系统阻力,影响增压风机的正常运行,同时改变了烟气的停留时间和分布特性,对塔内氧化风管、搅拌器等设备的正常工作带来安全隐患。
脱硫塔专用阻垢剂Scale Inhibitor for FGD System1.脱硫塔结垢原因通过化验分板发现,垢样的主要成份为硫酸盐和硅酸盐。
这是因为水中含有大量的Ca2+、Mg2+等离子,而烟气中又含有大量的二氧化硫、二氧化碳和粉尘,当烟气与水逆流相遇,在塔板上剧烈混合,充分接触时,就会生成硫酸钙和少量碳酸钙。
由于硫酸钙和碳酸钙在高温水中的溶解度很低,极易析出沉淀。
烟气中的灰尘,为硫酸钙和碳酸钙的析出提供了晶核,加快了硫酸钙和碳酸钙的沉积速度;而硫酸钙和碳酸钙的沉积物又吸附了大量的粉尘。
沉积物和粉尘相互依赖,牢固的附着在塔板、喷嘴上,造成塔板以及喷嘴结垢,堵塞喷嘴以及塔板。
2.脱硫塔浆液阻垢剂阻垢机理(1)增加成垢化合物的溶解度药剂中的有机酸和聚电解质溶于水后发生电离,生成带负电荷的分子链,这些带负电荷的分子链能与Ca2+、Mg2+等金属离子形成稳定络合物,从而提高了CaSO4晶粒析出时的过饱和度,也就是说增加了CaSO4在水中的溶解度。
另外,由于有机膦酸能吸附在CaSO4晶粒活性增长点上,使其畸变,即相对于不加药剂的水平来说,形成的晶粒要细小得多。
从颗粒分散度对溶解度影响角度看,晶粒细小也就意味着CaSO4溶解度奕大,因此提高了CaSO4析出的过饱和度。
(2)晶格畸变论硫酸钙垢是结晶体,它的成长是按照严格的顺序,由带正电荷的Ca2+与带负电荷的SO42-相撞才能彼此结合,一定的方向成长。
在水中加入有机酸时,它们会吸附到硫酸钙晶体的活性增长点上与Ca2+螯合,抑制了晶格向的方向成长,因此使晶格歪曲,银难长大。
也就是说晶体被有机膦酸表面活剂的分子所包围而失去活性,这也是产生临界值效应的机理。
另外,部分吸附在晶体上的化合物随着晶体增长被卷入晶格中,使CaSO4晶格发生位错,在垢层中形成一些空洞,分子与分子之间的相互作用减小,使硬垢变软。
这可能是由于有机膦酸相对分子质量较小,它吸附在CaSO4晶粒活性增长点上干扰了晶粒向一定方向成长,因而产生严重畸变。