高分子材料的形状记忆功能及其应用
- 格式:pdf
- 大小:336.46 KB
- 文档页数:5
有形状记忆功能的高分子材料摘要:本文综述了具有形状记忆功能的高分子材料的发展概况,分析了形状记忆高分子材料的记忆效应原理,并对交联聚烯烃、、聚酯等具有形状记忆功能的高分子材料的特性及应用进行了评价和探讨,特别对聚氨酯(形状记忆PUs)的记忆原理和特征,及其研究现状和应用前景作了重点阐述同时对形状记忆高分子材料的发展前景进行了展望。
关键词:记忆效应;聚氨酯;聚酯聚氨酯;热致形状记忆高分子;形状记忆性;微相分离;玻璃化转变:一.概况:(一)引言汽车外壳上的凹痕,像压扁的乒乓球一样,浸泡在热水中就可以复原;登山服的透气性可以根据环境的温度自动调节;一部机器中的零部件可以按照预定的程序,根据外界的温度变化而有序地自动拆卸;供药系统可以根据患者的体温或血液的酸度自动地调控药剂释放的剂量和速度;断骨外的套管可以在体温的作用下束紧,并能够在创伤愈合后自动降解消失等等,这些看似神奇的设想,通过的一类新型材料———形状记忆材料,都已经逐一地变成了现实。
有人把这类材料称之为“智能材料”,并非过誉之词。
(二)发展日本捷闻、可乐丽、旭化成和三菱重工等公司就开发出聚降冰片烯、反式,聚异戊二烯和聚氨酯等形状记忆树脂。
但是一种材料所具有的某种新功能的发现,对于它是否能够真正在材料目录中占有一席之地以及能否真正为工程技术人员所采用,往往需要经过一段或长或短的时间。
这不仅和材料的生产成本及性能好坏有关,生产工艺的成熟与否也是需要重视的基本因素,有时它们可以成为起决定性作用的因素。
形状记忆聚合物的工作原理有记忆功能的高聚物,规范的术语应当是高分子形状记忆材料,一般分为热塑性和热固性两类。
它们在产生形状记忆效应时的主要机制大致相同。
这类高聚物在外力作用下,可以产生大的弹性形变,并且可以方便地"如降低温度!使这种形变保持下来,但是在外加某种刺激信号"如加热!时,材料又可以恢复到原来的形状。
这种变化过程,称为形状记忆效应。
形状记忆功能高分子材料的研究现状和进展Value Engineering0引言随着社会的进步和科学技术的发展,一般的材料难以满足日益复杂的环境,因此需要具有自修复功能的智能材料———形状记忆材料。
20世纪50年代以来,各国相继研究出在外加刺激的条件(如光、电、热、化学、机械等)经过形变可以回复到原始形状的具有形状记忆功能的材料,它可分为三大类,形状记忆合金、形状记忆陶瓷和形状记忆聚合物材料。
高分子产业的迅速发展,推动了功能高分子材料得到了蓬勃发展。
形状记忆聚合物材料的独特性,广泛应用于很多领域并发展潜力巨大,人们开始广泛关注[1]。
1功能高分子材料研究概况功能高分子材料是20世纪60年代的新兴学科,是渗透到电子、生物、能源等领域后开发涌现出的新材料。
由于它的内容丰富、品种繁多、发展迅速,成为新技术革命不可或缺的关键材料,对社会的生活将产生巨大影响。
1.1功能高分子材料的介绍功能高分子材料是指具有传递、转换或贮存物质、能量和信息作用的高分子及其复合材料,或具体地指在原有力学性能的基础上,还具有化学反应活性、光敏性、导电性、催化性、生物相容性、药理性、选择分离性、能量转换性、磁性等功能的高分子及其复合材料,通常也可简称为功能高分子,也可称为精细高分子或特种高分子[2]。
1.2功能高分子材料分类可分为两类:第一类:以原高分子材料为基础上进行改性或其他方法,使其成为具有人们所需要的且各项性能更好的高分子材料;第二类:是具有新型特殊功能的高分子材料[3]。
1.3形状记忆功能高分子材料自19世纪80年代发现热致形状记忆高分子材料[4],人们开始广泛关注作为功能材料的一个分支———形状记忆功能高分子材料。
和其它功能材料相比的特点:首先,原料充足,形变量大,质量轻,易包装和运输,价格便宜,仅是金属形状记忆合金的1%;第二,制作工艺方简便;形状记忆回复温度范围宽,而且容易加工,易制成结构复杂的异型品,能耗低;第三,耐候性,介电性能和保温效果良好。
形状记忆高分子材料引言形状记忆高分子材料(SMP)作为一类智能材料,因其可以在适当的刺激条件(如温度、光、电磁或溶剂等)下,响应环境变化,而相应发生形状转变的能力,为解决科学技术难题带来了一种新的方法。
1950年,第一次报道了具有形状记忆效应的交联聚乙稀聚合物,并在文中描述了具体的表征方法。
这类形状记忆高分子材料与其它形状记忆材料如形状记忆合金和陶瓷相比,具有变形量大、赋形容易、响应温度易于调整,质量轻、价格低、以及易加工成型等优点。
而且易于设计成具有良好的生物相容性、可生物降解性的生物材料,比如手术缝合线、支架、心脏瓣膜、组织工程、药物释放、矫形术及光学治疗等。
1.形状记忆高分子材料的分类SMPs根据刺激响应的不同可分为热致型,电磁致型,光致型,化学型以及水致型,其中热致型是研究最广也是研究最成熟的一种高分子材料。
热致型SMPs 由固定相和可逆相两部分组成,其中固定相通常是由化学交联或物理交联点构成,其可以决定初始形变;可逆相通常由结晶结构构成,可随温度变化而进行可逆的软硬化转变。
1.1 热致型SMP热致型SMP是指材料在初始条件下开始受热,当加热温度达到相转变温度时,同时给材料施加外应力,然后再外力不变的情况下,将温度迅速下降至室温,材料会保持暂时形状,即使在撤去外应力后材料依旧可保持这种状态,直到再次在无应力条件下加热,温度再次达到相转变温度时,材料才会自发地恢复到初始形状。
以聚氨酯为例其可以通过改变嵌段共聚物的成分和比例,来改变聚氨酯材料物理化学性质、生物相容性、组织相容性,以及可生物降解性质。
形状记忆聚氨酯由软段和硬段组成,其中硬段主要由二异氰酸酯和扩链剂组成,因此刚度比较大,抑制了材料变形过程中大分子链的塑性滑移;软段主要由聚酯多元醇或聚醚多元醇等线性分子组成,因此能够进行较大的形变.一般情况下,在温度增加到软段的转变温度之上时形状记忆聚氨酯材料处于高弹态,而且软段微观布朗运动的加剧,致使材料容易变形,此时因为硬段还处于玻璃态,所以阻止了分子链滑移的同时产生了一个内部的回弹力;当温度从冷却的温度增加到软段的转变温度以上时,硬段储存的应力释放,进而导致了材料能够回复到初始形变。
形状可记忆水凝胶的应用
可记忆水凝胶是一种具有可记忆性能的高分子材料,它可以在改变温度或其他外部刺激下,改变其形状,并在恢复原温度或外部刺激消失后恢复其原有形状。
可记忆水凝胶的应用非常广泛,如:
1. 医疗领域:可记忆水凝胶可以用于制造外科手术中的缝合材料,它可以根据患者的身体形状自动调整其形状,从而减少手术时间,提高手术效果。
2. 电子器件:可记忆水凝胶可以用来制造可调节的电子器件,可以根据外部刺激自动调节其形状,从而改变电子器件的性能。
3. 建筑领域:可记忆水凝胶可以用来制造可调节的建筑材料,可以根据外部环境自动调节其形状,从而改变建筑材料的性能。
4. 汽车领域:可记忆水凝胶可以用来制造可调节的汽车零件,可以根据外部环境自动调节其形状,从而改变汽车零件的性能。
5. 包装领域:可记忆水凝胶可以用来制造可调节的包装材料,可以根据外部环境自动调节其形状,从而改变包装材料的性能。
聚乳酸的形状记忆的应用
聚乳酸是一种具有形状记忆特性的高分子材料,这种特性使得它在各种领域都有着广泛的应用。
形状记忆材料是指当受到外部刺激时,可以恢复到其最初的形状的材料。
聚乳酸作为一种形状记忆材料,具有许多独特的应用。
首先,聚乳酸在医疗领域有着广泛的应用。
由于其生物相容性和可降解性,聚乳酸被用于制造可内置式医疗器械,如支架和缝线。
而其形状记忆特性能够使这些器械在植入后恢复到原始的设计形状,从而更好地适应患者的体内环境,提高治疗效果。
其次,聚乳酸在纺织品领域也有着重要的应用。
利用其形状记忆特性,可以制造出具有自我整形功能的纺织品,如防皱衣物和运动服。
这些纺织品可以在受到外部挤压或变形后,快速恢复到原来的形状,保持服装的整洁和美观。
除此之外,聚乳酸还被应用于智能材料和仿生机器人领域。
在智能材料中,通过调控聚乳酸的形状记忆特性,可以制造出可以根据外
界条件自行调整形状的材料,如智能窗帘和自动调节的太阳镜。
而在仿生机器人领域,聚乳酸的形状记忆特性被用于制造仿生材料,使得仿生机器人可以更好地模仿生物运动,从而提高其适应各种环境的能力。
总的来说,聚乳酸作为一种具有形状记忆特性的高分子材料,在医疗、纺织品、智能材料和仿生机器人等领域都有着广泛的应用前景。
随着科学技术的不断发展,相信聚乳酸的应用领域还会不断拓展,为人类社会的发展带来更多的新奇和便利。
形状记忆聚合物的研究及其应用第一章绪论形状记忆聚合物是一种具有记忆性能的高分子材料,其可以产生可逆变形行为,具有广泛的应用前景。
本文将介绍形状记忆聚合物的研究进展以及其在各领域中的应用。
第二章形状记忆聚合物的研究形状记忆聚合物是一种由特殊的聚合物基质构成的高分子材料。
它的形状可随着溶剂、温度、电场、光等外部条件的变化产生可逆性的变形。
因此,它拥有一定的智能性,被广泛应用于各个领域。
形状记忆聚合物的主要结构包括线性结构、交联结构、网络结构等,其中交联结构和网络结构更加适合形状记忆应用,因为它们具有更好的弹性和形变能力。
形状记忆聚合物的形状记忆效应是由聚合物链的编织结构和交联结构、结晶性、形态等在加热或冷却过程中的相变引起的。
在这个过程中,形状记忆聚合物中的链和交联点会进行可逆的位移和旋转,从而产生可逆的形变。
此外,形状记忆聚合物还具有形状记忆材料的其他特征,如自修复性能,自润滑性能等。
形状记忆聚合物的研究主要包括材料的合成、结构与性质的表征以及应用研究等。
近年来,科学家们通过改变聚合物材料的交联结构、晶态结构以及形态结构等方面的调控,成功地提高了形状记忆聚合物的响应速度、形变能力、热稳定性等性能,发展了一系列新的高性能形状记忆聚合物。
第三章形状记忆聚合物的应用形状记忆聚合物具有卓越的应用前景,广泛应用于医学、航天航空、建筑等领域。
3.1 医学领域在医学领域中,形状记忆聚合物可以应用于生物修复和医疗器械等方面。
例如,可以将形状记忆聚合物作为缝合线,将其置放在组织器官中,随着体内温度的变化而进行形态修复和固定。
此外,可以将形状记忆聚合物应用于医疗器械的制造,如形状记忆聚合物支架、人工骨等材料,具有优异的生物相容性和形变能力。
3.2 航天航空领域形状记忆聚合物可以应用于航天航空领域的机构调整、形状变化等方面。
例如,可以将形状记忆聚合物用于飞机机身的气动调整装置、发动机变形处理手段等工程中。
3.3 建筑领域形状记忆聚合物可以应用于建筑领域中的防震减灾、隔音降噪等方面。
高分子材料形状记忆性能研究报告摘要:本研究报告旨在对高分子材料的形状记忆性能进行深入研究。
通过实验和分析,我们探讨了高分子材料形状记忆性能的机制、特性以及应用前景。
研究结果表明,高分子材料的形状记忆性能在多个领域具有广泛的应用潜力。
1. 引言高分子材料作为一种重要的材料类别,具有广泛的应用领域。
其中,形状记忆性能是高分子材料的一项重要特性,其能够在外界刺激下恢复到其原始形状。
形状记忆材料的研究对于开发智能材料和制造可调控结构具有重要意义。
2. 形状记忆性能的机制高分子材料的形状记忆性能主要基于其特殊的结构和性质。
通过控制高分子链的交联程度和取向,可以实现形状记忆效应。
形状记忆材料的形状转变通常发生在两个阶段,即相变和恢复。
相变阶段是通过外界刺激引发高分子材料结构的改变,而恢复阶段则是通过内部能量释放实现形状恢复。
3. 形状记忆材料的特性形状记忆材料具有多种特性,包括形状记忆效应、可逆性、稳定性等。
形状记忆效应是指材料在外界刺激下能够恢复到其原始形状的能力。
可逆性是指形状记忆效应可以多次循环发生,而不会损害材料的性能。
稳定性是指形状记忆效应在长期使用和环境变化下的稳定性能。
4. 形状记忆材料的应用前景形状记忆材料在多个领域具有广泛的应用前景。
在医学领域,形状记忆材料可以应用于支架、缝合线和药物释放系统等。
在航空航天领域,形状记忆材料可以用于制造可调控结构和自修复材料。
在纺织品领域,形状记忆材料可以用于制造具有变形功能的服装和纺织品。
5. 结论通过对高分子材料形状记忆性能的研究,我们得出了以下结论:高分子材料的形状记忆性能在多个领域具有广泛的应用潜力;形状记忆材料的机制主要基于其特殊的结构和性质;形状记忆材料具有形状记忆效应、可逆性和稳定性等特性。
我们相信,进一步的研究和开发将推动形状记忆材料在各个领域的应用和发展。
致谢:感谢所有参与本研究的人员和机构的支持和帮助。
附录:本研究所使用的实验方法和数据详见附录部分。
具有形状记忆功能的高分子材料研究随着科技的不断进步,人们对材料的需求也越来越高。
而其中一种备受关注的材料就是具有形状记忆功能的高分子材料。
形状记忆是指材料能够根据外界刺激或者内部条件,自主改变自身形状,并在刺激消失后回复到最初的形态。
这种材料的研究在医疗、智能材料和工程领域有着广泛的应用前景。
形状记忆功能的高分子材料的研究始于二十世纪五十年代,当时的科研工作者开始对具有嵌段结构的聚合物进行研究。
随后,研究人员发现,在这些聚合物中,具有相干结构的片段能够形成物理交联点,从而赋予材料形状记忆功能。
这种交联点可以通过加热或者其他方式来打破,使材料恢复到初始形状。
这项研究成果引起了广泛关注,并在此后的几十年里得到了持续的探索和发展。
目前,研究人员主要专注于两种形状记忆高分子材料:热致形状记忆材料和光致形状记忆材料。
热致形状记忆材料是最常见的一种,其材料中添加了热塑性嵌段,能够在一定温度范围内发生熔融和再结晶。
这些嵌段之间形成的序列结构使材料具有记忆形状的能力。
当材料被加热到临界温度时,分子链之间的交联点会被打破,材料变得软化,可以任意塑性变形。
当材料冷却后,分子链之间的交联点再次形成,材料恢复到原始状态。
而光致形状记忆材料是一种相对较新的研究领域。
这类材料的形状变化是通过光敏染料的光热效应实现的。
光敏染料可以在特定波长的光照下吸收光能并将其转化为热能。
当材料暴露在特定光照下时,光敏染料吸收的光能会导致局部温度升高,从而改变材料的形状。
而当材料不再受到光照时,温度也会回落,材料恢复到原始形态。
形状记忆高分子材料的应用潜力巨大。
在医疗领域,这种材料可以用于智能药物释放系统。
例如,一种植入体可以被设计成在特定温度下打开,释放药物,并在其他条件下关闭,从而实现精确的药物控释。
这种智能药物释放系统可以减少药物滥用和副作用,提高临床治疗的效果。
在智能材料领域,形状记忆高分子材料可以应用于可穿戴设备和机器人。
这种材料可以通过外界刺激实现形状变化,使得可穿戴设备和机器人能够更加贴合用户的需求和动作。
高分子材料的形状记忆性能研究形状记忆材料是一类具有特殊性能的材料,在受到外界刺激时能够回复其原有形状。
这一特性在许多领域都有潜在应用,例如医疗、电子、航空航天等。
而高分子材料是一类常见的形状记忆材料,其研究一直备受关注。
本文将探讨高分子材料的形状记忆性能,以及相关研究进展和应用前景。
1. 形状记忆材料的原理形状记忆材料具有两个基本状态:一是其正常状态,也称为高温状态,该状态下材料保持着其所具有的原始形状;二是其特殊状态,也称为低温状态,该状态下材料会发生一定程度的形状变化。
形状记忆材料的形状记忆性能主要依赖于两种基本原理:热致形状记忆效应和应力驱动形状记忆效应。
2. 高分子材料的形状记忆性能高分子材料是一类具有长链结构的聚合物材料,其形状记忆性能主要通过调控其结构和组成来实现。
高分子材料的形状记忆性能可以通过改变温度、应力或其他外界刺激来实现形状的转变和恢复。
具体而言,高分子材料的形状记忆性能可以通过以下几个方面来评价和研究:转变温度、形状记忆率、形状恢复速度和循环稳定性。
3. 影响高分子材料形状记忆性能的因素在研究高分子材料的形状记忆性能时,有许多因素会对其性能产生影响。
其中,材料的结构和组成是最为重要的因素之一。
高分子材料的结构可以通过控制聚合物的交联度、分子量以及交联点的类型和密度来实现对形状记忆性能的调控。
此外,材料的加工方法、处理过程、外界刺激等也会对形状记忆性能产生影响,因此需要对这些因素进行精确控制和研究。
4. 高分子材料形状记忆性能的研究进展高分子材料的形状记忆性能一直备受研究者的关注。
近年来,许多新型材料和制备方法被提出和应用于高分子材料的形状记忆性能研究中。
例如,利用纳米颗粒增强材料的形状记忆性能,通过界面改性增加材料的形状恢复速度等。
这些研究为高分子材料的形状记忆性能提供了新的途径和思路。
5. 高分子材料形状记忆性能的应用前景高分子材料的形状记忆性能在众多领域具有广阔的应用前景。