2017年下学期五年级数学竞赛试卷2
- 格式:doc
- 大小:39.50 KB
- 文档页数:2
2017年第15届小学“希望杯”全国数学邀请赛五年级 第2试试题解析一、填空题(每小题5份, 共60分)1. 计算: (2.016201)201.720.16(20.172010)________.+×−×+=【考点】提取公因数【关键词】2017年希望杯五年级二试第1题【解析】原式=2.016201.7201201.720.1620.1720.162010×+×−×−×20.1620.1720.1620.17201201.7201.62010201(201.7201.6)2010.120.1=×−×+×−×=+×−×=【解析】20.12. 定义2a b a b a b ∗=×+−, 若317m ∗=, 则________.m = 【考点】定义新运算【关键词】2017年希望杯五年级二试第2题【解析】3332317m m m m ∗=+−=+=, 14m =. 【答案】143. 在下表中, 8位于第3行第2列, 2017位于第a 行第b 列, 则________.a b −=【考点】长方形数表(周期问题)【关键词】2017年希望杯五年级二试第3题【解析】每三行为一个周期, 一个周期中有9个数, 201792241÷=, 所以22431673a =×+=, 1b =, 672a b −=.【答案】6724. 相同的3个直角梯形的位置如图所示, 则1________.∠=【考点】角度的计算【关键词】2017年希望杯五年级二式第4题...2120232219161718151211141310789632541130°50°【解析】如下图所示, 因为5090,AOC ∠+°=° 90,AOC COD ∠+∠=° 所以50COD ∠=°. 又因为90BOF ∠=°, 所以190305010∠=°−°−°=°.【答案】10°5. 张超和王海在同一家文具店买同样的练习本和铅笔, 张超买了5个练习本和4支铅笔, 付了20元, 找回3.5元; 王海买了2个练习本和2支铅笔, 正好7元整. 则练习本每个________元. 【考点】鸡兔同笼【关键词】2017年希望杯五年级二试第5题【解析】依题意得, 5个练习本和4支铅笔的价格为20 3.516.5−=(元), 4个练习本和4支铅笔的价格为7214×=(元), 所以练习本每个16.514 2.5−=(元).【答案】2.56. 数,,,a b c d 的平均数是7.1, 且2.5 1.2 4.80.25a b c d ×=−=+=×, 则________.a b c d ×××= 【考点】平均数问题, 列方程解应用题【关键词】2017年希望杯五年级二试第6题【解析】设2.5 1.2 4.80.25a b c d x ×=−=+=×=, 则0.4a x =, 1.2b x =+, 4.8c x =−, 4d x =.0.4 1.2 4.847.14a b c d x x x x ++++++−+×, 解得5x =, 2a =, 6.2b =, 0.2c =, 20d =, 所以2 6.20.22049.6a b c d ×××=×××=.【答案】49.67. 如图, 小正方形的面积是1, 则图中阴影部分的面积是________.【考点】格点图形面积【关键词】2017年希望杯五年级二式第7题【解析】分类计算, 121 2.5564131.5++++++=. 【答案】31.58. 将2015, 2016, 2017, 2018, 2019这五个数分别填入图中写有“,,,,D O G C W ”的五个方格内, 使得D O G C O W ++=++, 则共有________种不同的填法. 【考点】加乘原理【关键词】2017年希望杯五年级二式第8题【解析】D G C W +=+, 则O 处可填2015、2016、2017,.当O 处填2015时, 2016、2017、2018、2019在,,,D G C W 处, 有41218×××=种填法; 同理O 处填2016和2017时, 都有8种填法, 所以共有8324×=种不同的填法.FED CBAO 50°30°1【答案】249. 不为零的自然数a 满足以下两个条件:(1)0.2a m m =×; (2)0.5a n n n =××.其中,m n 为自然数, 则a 的最小值是________.【关键词】2017年希望杯五年级二试第9题【解析】依题意得, 2352a m n ==, 所以m 和n 均含有质因数2和5, a 最小为225(25)2000××=. 【答案】200010. 如图是一个玩具钟, 当时针每转一圈时, 分针转9圈, 若开始时两针重合, 则当两针下次重合时,时针转过的度数是________.【考点】时钟问题【关键词】2017年希望杯五年级二试第10题【解析】从第一次重合到第二次重合, 分针比时针多转一圈. 由题知当时针转1圈时, 时针比分针多转918−=(圈), 所以当时针比分针多转1圈时, 时针转过的度数是1836045÷×=(度). 【答案】45度【总结】希望杯特喜欢考察环形跑道多次相遇和追及结果的逆应用, 及已知多次的路程和或路程差反求1次的路程和或路程差或单人的路程.11. 若六位数2017ab 能被11和13整除, 则两位数________.ab = 【考点】整除特征【关键词】2017年希望杯五年级二试第11题【解析】由11的整除特征可知: (70)(21)011a b ++−++=或, 即4011a b +−=或. 若411a b +−=, 则7a b −=, 只有201817和201927两种情况, 都不能被13整除. 若40a b +−=, 则4a b +=, 构成的六位数为201047、201157、201267、201377、201487和201597, 其中只有201487能被13整除, 则48ab =. 【答案】48【另解】因为2017ab 能被11整除, 所以201与7ab 的差是11的倍数; 同理, 201与7ab 的差也是13的倍数. 因为(11,13)1=, 所以201与7ab 的差是1113143×=的倍数. 当2017143ab k −=(其中k 为自然数)时, 无解; 当7201143ab k −=(其中k 为自然数)时, 可得48ab =.【总结】201与7ab 的差是11的倍数, 也是13的倍数, 所以是11和13的公倍数. 因为公倍数是最小公倍数的倍数, 又[]11,13143=, 所以201与7ab 的差是143的倍数.12. 甲、乙、丙三人相互比较各自的糖果数.甲说: “我有13颗, 比乙少3颗, 比丙多1颗. ” 乙说: “我不是最少的, 丙和我相差4颗, 甲有11颗. ” 丙说: “我比甲少, 甲有10颗, 乙比甲多2颗. ”如果每人说的三句话中都有一句是错的, 那么糖果数最少的人有________颗糖果.【考点】逻辑推理【关键词】2017年希望杯五年级二试第12题【解析】甲说的“我有13颗, 比乙少3颗”与丙说的“甲有10颗, 乙比甲多2颗”相矛盾, 且由题意知,各对一句. 若甲有13颗, 则由乙的前两句是对的, 丙的第一和第三句是对的. 从而乙有15颗, 丙有11颗, 则甲的话只有一句是对的, 不符合题意. 所以甲有10颗, 从而乙有14颗, 丙有9颗, 糖果数最少的人有9颗.【答案】913. 自然数a b c 、、分别是某个长方体的长、宽、高的值, 若两位数ab 、bc 满足79ab bc +=, 求这个长方体体积的最大值. 【考点】长方体体积, 最值问题【关键词】2017年希望杯五年级二试第13题【解析】由79ab bc +=知, 9b c +=, 7a b +=. 则b 可取1~6, 枚举比较得, 当3b =, 6c =, 4a =时长方体的体积最大, 为34672××=. 【答案】7214. 李老师带领学生参观科技馆, 学生人数是5的倍数, 根据规定, 教师、学生按票价的一半收费, 且恰好每个人所付的票价为整数元, 共付了1599元, 问:⑴ 这个班有多少名学生?⑵ 规定的票价是每人多少元? 【考点】分解质因数【关键词】2017年希望杯五年级二式第14题【解析】学生人数是5的倍数, 算上老师, 总人数为5的倍数多1. 因为159931341313(401)=××=××+, 所以学生有40人, 票价为: 313278××=(元). 【答案】⑴ 40人; ⑵ 78元【总结】在小学中出现多次的, 一定是分解质因数的方法.15. 如图, ABCD 是长方形, AEFG 是正方形, 若6AB =, 4AD =, 2ADE S =△, 求ABG S △.【考点】直线型几何旋转【关键词】2017年希望杯五年级二式第15题 【解析】如图, 作EN AD ⊥交AD 于D , 将AEN △绕A 点顺时针旋转90度可得AGM △, ABG △的高GM 和ADE △的高EN 相等, 都等于2241×÷=, 所以1623ABG S =×÷=△.G F ED CBAMNA BCD E F G【答案】3【总结】看到正方形AEFG 斜放, 想到在正方形AEFG 构造弦图, 由弦图可想到旋转的方法.16. 某天爸爸开车送小红到距离学校1000米的地方后, 让她步行去学校, 结果小红这天从家到学校用了22.5分钟, 若小红骑自行车从家去学校需40分钟, 她平均每分钟步行80米, 骑自行车比爸爸开车平均每分钟慢800米, 求小红家到学校的距离. 【考点】方程法解行程【关键词】2017年希望杯五年级二试第16题【解析】爸爸开车送小红的时间为: 22.510008010−÷=(分). 设小红骑自行车的速度为x 米/分, 则10(800)100040x x ++=, 解之得300x =. 所以小红家到学校的距离为: 4030012000×=(米).【答案】12000米。
2016-2017学年度第二学期凤岗镇小学数学竞赛(决赛)试题五年 级 数 学 (考试时间:30分钟 满分:100分) 一、动手操作。
(共4小题,每小题2分 ,共8分。
) ①把图A 绕O 点逆时针旋转90°。
②把图B 绕O 点顺时针旋转90°。
③把图C 向左平移5格,再向上平移6格。
④画出图D 的另一半,使它成为一个轴对称图形。
二、填空:(共3小题,每小题2分 ,共6分。
) 1. 三个连续奇数的和是273,这三个奇数是( )、( )、( )。
2. 在自然数中,20以内的质数有( ),共有( )个。
3. 95的分母加上27,要使分数大小不变,分子应加上( )。
三、解决问题。
(86分) (一)按要求作答,不用计算。
(共6分) 1. 一个玩具厂做一个布娃娃原来需要3.8元的材料。
后来改进了制作方法,每个只需3.6元的材料。
原来准备做180布娃娃的材料,现在可以做多少个?(用“先算……再算……最后算……”的格式说说你的解题思路,不用列式解答。
) 我是这样想的:先算 )分(1 列算式: (2分) 2.果园里种有桃树和杏树,杏树的棵数是桃树的3倍,杏树比桃树多90棵,桃树和杏树各有多少棵?(请你画出线段图(1分),再写出等量关系式,列出算式或方程不计算(2分)) 线段图:数量关系式 (1分)列算式或方程不用计算: (1分)o(二)列式解答下面各题。
(只列式计算,不用答,第1—6题每小题3分,第7—20每小题4分,第21题6分,共80分)1.在街道中间装有16盏路灯(两端都不装),每隔60米设一个路灯,这条街道有多少米?2.5头大象6天要吃食物1275千克,平均每头大象每天要吃食物多少千克?3.小明看一本故事书,每天看18页,7天只看了这本书的一半,从此后他每天多看3页,小明看完这本书共用了多少天?4.化肥厂生产一批化肥,计划每天生产172.5吨,18天完成,但实际只用了15天就完成了任务。
2017年第十五届“走美杯”小数数学竞赛上海赛区初赛试卷(五年级)一、填空题(共5小题,每小题8分,满分40分)1.(8分)1+3+5+7+…+97+99﹣10﹣12﹣14…﹣96﹣98= .2.(8分)数学测试满分100分,第二个小组的平均分为86分,明明考了98分,若明明加入第二小组,第二小组平均分将变为88分,第二小组原有人.3.(8分)有一种六位数,从左向右第三位数字开始,每一个数字都是它前面两个数字的和,这样的六位数共有个.4.(8分)24点游戏,用适当的运算符号(包括括号)把3,3,8,8这四个数组成一个算式,使结果等于24..5.(8分)m,n,p是三个不同的正整数,它们除以13的余数分别是3,6,11那么(m+n﹣p)(2m﹣n+p)除以13的余数是.二、解答题(共5小题,满分50分)6.(10分)给定四个正整数9、9、9、17,把他们写在正方形的四个角上,在正方形外面画一个外接正方形,并且连续操作下去,层层嵌套(如图),把这个正方形的角上相邻的两个数相减(以大减小),得到的四个差数分别写在这两个数之间的外接正方形的角上,经过若干次操作,得到的正方形的四个角上的数字之和最小,这个最小值为.7.(10分)从1、2、3、4、5、6、7、8、9这9个数中选出6个不同的数,分别写在一个正方体的6个面上,使任意相邻的面上所写的两个数的差不小于2,这6个数之和最小为.8.(10分)若干个棱长为1的正方体木块组成一个立体图形,从正面看如图1,从侧面看如图2,这组木块最少有个,最多有个.9.(10分)一堆桃子堆在树下,总数为奇数,估计不少于360个,也不会超过400个,一群猴子排队等候猴王分桃,分桃的规则是,若桃子有偶数个,分桃的猴子可以分走一半;若桃子有奇数个,猴王就从树上摘一个桃子放入桃堆,分桃的猴子也分走一半,当剩下1个桃子时就停止分桃,第9个猴子分桃后只剩下了一个桃子,在分桃的过程中,猴王一共摘了7个桃子,这堆桃子原有个.10.(10分)长方形内有2017个点,连同长方形的4个顶点在内,共有2021个点,任意3个点都不在同一条直线上,以这2021个点中的某三点为顶点,可作出个互不重叠的三角形.三、解答题(共5小题,满分60分)11.(12分)一个长方形,长、宽、高均为整数厘米(长>宽>高),已知宽为8厘米,且长方体的三个相邻面的面积值恰好成等差数列,这个长方体的表面积最小为平方厘米.12.(12分)甲、乙、丙、丁四人进行围棋比赛,任意两人都赛一场,胜一场得3分,平一场各得1分,负者不得分,比赛结束,甲得2分,乙和丙都得4分,丁得分.13.(12分)每个小正方体的质量为100克,由125个小正方体组成大正方体,从这个大正方体中抽出一组小正方体,抽的方法是:从一个面到其对面所涉及到的小正方体都要抽掉,如图中涂色部分就是抽出后的情形,抽出这些小正方体后的几何体的质量是克.14.(12分)现有1×1×2的积木(A)、1×1×3的积木(B)、1×2×2的积木(C)(如图),分别有6块、11块、10块,从这些积木中选出若干个,拼成3×3×3的实心正方体,至多可以拼出个3×3×3的实心正方体,写出这几个正方体的拼法分别所用的A、B、C的个数(如1A+7B+1C):15.(12分)0、1、2、3、4、5、6、7这八个数字可以组成两个四位数M和N,如果M+N的和是一个末三位数字相同、千位数字为0的五位数,这个五位数是,M×N的积的不同取值共有种.2017年第十五届”走美杯“小数数学竞赛上海赛区初赛试卷(五年级)参考答案与试题解析一、填空题(共5小题,每小题8分,满分40分)1.(8分)1+3+5+7+…+97+99﹣10﹣12﹣14…﹣96﹣98= 70 .【分析】在算式中,这些数具有一定的特点:相加的数是1﹣﹣99之间的所有奇数,相减的数是10﹣﹣98之间的所有偶数.在1﹣﹣99之间只有1﹣﹣9这一数段中只有1、3、5、7、9这些奇数,而没有2、4、6、8这些偶数.其余的10﹣﹣19、20﹣﹣29、30﹣﹣39一直到90﹣﹣99这9个数段中都是所有的奇数和偶数.我们还知道相邻的2个自然数之间相差着1.所有把10﹣﹣99之间这些没间断的奇数和偶数运用加法的交换律进行计算,把相邻的2个自然数组成一组.这样每个数段的10个数就组成5组,共5×9=45组.1、3、5、7、9单独组成一个特别的组,再进行计算.【解答】1+3+5+7+…+97+99﹣10﹣12﹣14…﹣96﹣98=1+3+5+7+9+11﹣10+13﹣12+…+99﹣98=(1+3+5+7+9)+(11﹣10)+(13﹣12)+…+(99﹣98)=(1+9)+(3+7)+5+1×(5×9)=10+10+5+45=25+45=70【点评】解题的关键是看出这些数的特点,发现其中的规律.特别是怎样分数段,每个数段中有几个组合,它们的差都是1.2.(8分)数学测试满分100分,第二个小组的平均分为86分,明明考了98分,若明明加入第二小组,第二小组平均分将变为88分,第二小组原有 5 人.【分析】首先求出明明的数学测试成绩和第二个小组后来的平均分的差是多少;然后用它除以第二小组后来的平均分比原来的平均分多的分数,求出第二小组原有多少人即可.【解答】解:(98﹣88)÷(88﹣86)=10÷2=5(人)答:第二小组原有5人.故答案为:5.【点评】此题主要考查了平均数问题,考查了分析推理能力的应用,要熟练掌握,解答这类应用题时,主要是弄清楚总数、份数、一份数三量之间的关系,根据总数除以它相对应的份数,求出一份数,即平均数.3.(8分)有一种六位数,从左向右第三位数字开始,每一个数字都是它前面两个数字的和,这样的六位数共有 4 个.【分析】可以从首位为1开始算起,1+0=1,故有101123,1+1=2,故有112358,2+0=2,故有202246,3+0=3,故有303369,一共有4个.【解答】解:根据分析,从首位为1开始算起,1+0=1,故有101123;1+1=2,故有112358;2+0=2,故有202246;3+0=3,故有303369,这样的六位数分别是:101123、112358、202246、303369,故答案是:4.【点评】本题考查了数字问题,突破点是:从首位1开始算起,利用数字和求得六位数的个数.4.(8分)24点游戏,用适当的运算符号(包括括号)把3,3,8,8这四个数组成一个算式,使结果等于24.8÷(3﹣8÷3).【分析】首先分析数字题中的有2个搭档,同时组合过程中不容易找到,那么可以分析除法中的特殊情况.【解答】解:依题意可知;8÷(3﹣8÷3)=8÷(3﹣)=8÷=24满足条件.故答案为:8÷(3﹣8÷3)【点评】本题考查对填符号组算式的理解和运用,关键是找到特殊的除法计算.问题解决.5.(8分)m,n,p是三个不同的正整数,它们除以13的余数分别是3,6,11那么(m+n﹣p)(2m﹣n+p)除以13的余数是 4 .【分析】根据“具有同一模的两个同余式,两边分别相加减,仍得同一模的另一同余式”;以及“具有同一模的两个同余式,两边分别相乘,仍得同一模的另一同余式”解答即可.【解答】解:(m+n﹣p)(2m﹣n+p)=(3+6﹣11)×(2×3﹣6+11)=﹣22﹣22(mod )=﹣2×13+4(mod13)=4(mod13)所以,(m+n﹣p)(2m﹣n+p)除以13的余数是4.故答案为:4.【点评】本题考查了孙子定理,关键是明确孙子定理的两个性质定理.二、解答题(共5小题,满分50分)6.(10分)给定四个正整数9、9、9、17,把他们写在正方形的四个角上,在正方形外面画一个外接正方形,并且连续操作下去,层层嵌套(如图),把这个正方形的角上相邻的两个数相减(以大减小),得到的四个差数分别写在这两个数之间的外接正方形的角上,经过若干次操作,得到的正方形的四个角上的数字之和最小,这个最小值为0 .【分析】按照题目所要求的规则依次写出后一层正方形的四个顶点的数字就可以得出结果【解答】解:把四个数字按照顺时针的顺序依次写成(9,9,9,17),外层正方形顶点上的数字依次为:⇒(0,0,8,8)⇒(0,8,0,8),如下图:…再往后推算得到:⇒(8,8,8,8)⇒(0,0,0,0).此时四个数的和最小,为0,故本题答案为:0.【点评】理解清楚题目的处理规则,依据规则进行运算,就不难得出结果.7.(10分)从1、2、3、4、5、6、7、8、9这9个数中选出6个不同的数,分别写在一个正方体的6个面上,使任意相邻的面上所写的两个数的差不小于2,这6个数之和最小为27 .【分析】根据题目要求的数字和最小,首先应考虑1和2为对面,然后考虑它们相邻面的第二组对面的数字情况,进而推断第三组对面.【解答】解:要使六个数之和最小,应有1、2,且1、2不能相邻,只能对面,此时2的四个相邻面中的数不能有3,最小为4、5、6、7;若4、5对面,另两个面中不能出现6,最小为7、8,故满足条件的6个数之和最小为(1+2)+(4+5)+(7+8)=27(括号内的两数对面).故答案为:27.【点评】本题的突破口在于步步推进,首先从最小的数对开始,一步步推出三组对面数字.8.(10分)若干个棱长为1的正方体木块组成一个立体图形,从正面看如图1,从侧面看如图2,这组木块最少有8 个,最多有26 个.【分析】从正面看和从侧面(左侧)看都有4列,可以在4×4的方格中进行摆放,分别看最多和最少可摆放多少方块【解答】解:在如下图所示的4×4方格中,进行摆放方块,来使这堆方块从正面、侧面看起来的画面满足要求,摆放方块最少的情况如下图:最少共需要:3+1+2+2=8块,摆放方块最多的情况如下图:最多需要:26块.故答案为:8;26.【点评】本题需要一定的空间想象能力,要求对摆放的方块的正面和侧面视图进行分析.9.(10分)一堆桃子堆在树下,总数为奇数,估计不少于360个,也不会超过400个,一群猴子排队等候猴王分桃,分桃的规则是,若桃子有偶数个,分桃的猴子可以分走一半;若桃子有奇数个,猴王就从树上摘一个桃子放入桃堆,分桃的猴子也分走一半,当剩下1个桃子时就停止分桃,第9个猴子分桃后只剩下了一个桃子,在分桃的过程中,猴王一共摘了7个桃子,这堆桃子原有 385 个.【分析】首先分析题意,本题可用二进制的方法来解决.若有16个桃子化成二进制的数字是(10000)2,是一个五位数的二进制数字,每次均分,数位减少一个,均分4次以后余数是1个桃子,且不需要从树上摘.继续推理即可.【解答】解:依题意可知:本题可用二进制的方法来解决.若有16个桃子化成二进制的数字是(10000)2,是一个五位数的二进制数字,每次均分,数位减少一个,均分4次以后余数是1个桃子,且不需要从树上摘.((10000)2,(1000)2,(100)2,(10)2,12)看13个桃子13=(1101)2.则在第一次和第二次分桃时从树上各摘一个桃子,即(1101)2+(11)2=(10000)2.看本题中设原来有N 个桃子,则(100000000)2<N <(1000000000)2N 为奇数化为二进制数字后应为9位数,且末尾数字是1,首位数字是1,即是十进制中的256,分桃过程中又摘了7个桃子,第一次必摘,即末尾必加1,中间的7位数有6需要加1,即6个0.只有1个1.因为360<N<400,所以N=256+1+128=385.故答案为:385.【点评】本题考查对二进制的理解和运用,关键问题是找到二进制的数字的表示方法,问题解决.10.(10分)长方形内有2017个点,连同长方形的4个顶点在内,共有2021个点,任意3个点都不在同一条直线上,以这2021个点中的某三点为顶点,可作出4036 个互不重叠的三角形.【分析】这个题如果直接考虑这2021个点的话,会无从下手,可以先只考虑长方形的四个点,可以组成2个三角形,再向长方形内部一个一个的添加点.【解答】解:如图,长方形ABCD的四个顶点,连接BD,可以组成两个三角形:△ABD和△BCD,然后向长方形内部添加点E,连接周围顶点后,现在△BCD被分成3个三角形,相当于多出2个三角形,以此类推,…每添加一个点,三角形数量增加2,共添加2017个点,则三角形的数量为:2+2017×2=4036,故本题答案为:4036.【点评】本题重点在于找到逐一向长方形内部添加点这一思路,化繁为简,找到规律.三、解答题(共5小题,满分60分)11.(12分)一个长方形,长、宽、高均为整数厘米(长>宽>高),已知宽为8厘米,且长方体的三个相邻面的面积值恰好成等差数列,这个长方体的表面积最小为432 平方厘米.【分析】根据题意可设长方形的长、宽、高分别为a、b、c(a>b>c),根据题意可列出a、b、c之间的等量关系,由于均为整数,可将等式凑成乘积的形式结合分解质因数进行求解.【解答】解:设长方形的长、宽、高分别为a、b、c(a>b>c),则长方形的三个相邻面的面积由大到小的顺序为ab、ac、bc,则根据题意可得2ac=ab+bc,其中b=8,则ac=4a+4c,凑成乘积的形式可得(a﹣4)×(c﹣4)=16=16×1=8×2,则a﹣4=16或8,c﹣4=1或2,可得a=20,b=8,c=5或a=12,b=8,c=6.则长方体的表面积=2×(ab+ac+bc)=2×(160+100+40)=600平方厘米或2×(96+72+48)=432平方厘米,因此这个长方体的表面积最小为432平方厘米.故答案为:432.【点评】本题的关键在于能想到画成乘积的形式用分解质因数进行求解,稍有难度.12.(12分)甲、乙、丙、丁四人进行围棋比赛,任意两人都赛一场,胜一场得3分,平一场各得1分,负者不得分,比赛结束,甲得2分,乙和丙都得4分,丁得6分或5 分.【分析】每人恰好都比赛三场,甲得2分,一定是平2场负1场,乙丙都得4分,一定是胜1场平1场负1场,依此推断,丁有两种情形,再分类计算求得丁的得分.【解答】解:根据分析,每人恰好都比赛三场,甲得2分,一定是平2场负1场,乙丙都得4分,一定是胜1场平1场负1场,依此推断,丁有两种情形,如下图(箭头指向负者,线段表示平局);故丁的得分为6分或5分.(图示只为情形之一)故答案是:6分或5分.【点评】本题考查了逻辑推理,突破点是:根据已知,逻辑推理,分析得出丁的得分.13.(12分)每个小正方体的质量为100克,由125个小正方体组成大正方体,从这个大正方体中抽出一组小正方体,抽的方法是:从一个面到其对面所涉及到的小正方体都要抽掉,如图中涂色部分就是抽出后的情形,抽出这些小正方体后的几何体的质量是8000 克.【分析】可以先算出抽出的小正方体的个数,共抽出了3×5+4×5+5×5﹣(2+4)﹣(3×3)=45个小正方体,余下的几何体含有的小正方体个数为:125﹣45=80个,不难求得余下的几何体的质量.【解答】解:根据分析,算出抽出的小正方体的个数,因为抽小正方体的时候上下表面和左右表面以及前后表面共同的小正方体个数有:4+5+6=15个,故共抽出了:3×5+4×5+5×5﹣(4+5+6)=45个小正方体,余下的几何体含有的小正方体个数为:125﹣45=80个,质量为:80×100=8000g,故答案是:8000.【点评】本题考查剪切和拼接,突破点是:先算抽出的小正方体的个数,再求余下的几何体含有的小正方体的个数.14.(12分)现有1×1×2的积木(A)、1×1×3的积木(B)、1×2×2的积木(C)(如图),分别有6块、11块、10块,从这些积木中选出若干个,拼成3×3×3的实心正方体,至多可以拼出 3 个3×3×3的实心正方体,写出这几个正方体的拼法分别所用的A、B、C的个数(如1A+7B+1C):2A+1B+5C、1A+3B+4C、1A+7B+1C或4A+1B+4C、1A+3B+4C、1A+7B+1C【分析】首先计算出1×1×2的积木(A)、1×1×3的积木(B)、1×2×2的积木(C)能提供的总块数为85,3×3×3的实心正方体需要的积木块数为27,85÷27=3…4,因此首先可以判断至多能拼出3个3×3×3的实心正方体,然后根据奇偶性判断A、B、C各自所用的块数,据此解答.【解答】解:6块、11块、10块A、B、C积木总共能提供的块数是2×6+3×11+4×10=85,一个3×3×3的实心正方体需要的块数为27,因此最多拼成3个,且剩下块数为85﹣27×3=4,可以为2个A积木或1个C积木.27=2A+3B+4C,考虑27为奇数,因此B必须为奇数,因此B只能为1,3,5,7,B的总块数为11,因此3个实心正方体所用B的数目可以为1,5,5或1,3,7.①所用B的数目可以为1,5,5:拼法1:1B拼法2:4A+5B+1C拼法3:2A+5B+2C则拼法1中已经没有积木A可用,不符合题意;①所用B的数目可以为1,3,7:拼法1:2A+1B+5C(或4A+1B+4C)拼法2:1A+3B+4C拼法3:1A+7B+1C两种方法均符合题意.因此这几个正方形的拼法可以是 2A+1B+5C、1A+3B+4C、1A+7B+1C或4A+1B+4C、1A+3B+4C、1A+7B+1C.故答案为:3;2A+1B+5C、1A+3B+4C、1A+7B+1C或4A+1B+4C、1A+3B+4C、1A+7B+1C.【点评】本题考查拼接方法,需要掌握这种题的答题技巧,难度较大.15.(12分)0、1、2、3、4、5、6、7这八个数字可以组成两个四位数M和N,如果M+N的和是一个末三位数字相同、千位数字为0的五位数,这个五位数是10333或10666 ,M×N的积的不同取值共有64 种.【分析】按题意,这8个数字的和为28,组成的两个四位数相加和为五位数,相加时至少进位一次,所以这个五位数的数字之和只能是19或10或1,显然五位数10000不合题意,数字和为10时,这个五位数为10333或10666,进一步根据数字的组合情况可求得M、N取值的不同情形,进而求解.【解答】解:根据分析,这8个数字的和为28,组成的两个四位数相加和为五位数,相加时至少进位一次,所以这个五位数的数字之和只能是19或10或1,显然五位数10000不合题意.当数字和为10时,这个五位数为10333,两个四位数相加时若个位和为13,则十位数字和为2,只能选2和0,则数字和为3无法选数字,故不符合要求,同理十位和为13也不符合要求,因此只能个位和为3,十位和为3,百位和为13,千位和为9,对应的数字M和N分别有2×2×2×2×=32种情况,M ×N的积有32÷2=16种不同情形;当数字和为19时,这个五位数为10666,此时两个四位数相加时个、十、百位的和都只能是6(0+6,1+5,2+4),千位数相加和为10(3+7),共有6×4×2=48种不同情形,所以M×N的积共有16+48=64种.故答案是:10333或10666,64.【点评】本题考查了数字问题,突破点是:数字进位和数字之和的性质,可以推测出五位数及不同的取值.。
第3届“海都杯”数学竞赛五年级决赛试卷1、早晨4:20的时候,钟面上长针与短针所夹的锐角的角度是()度。
2、已知2※3=2+3+4,5※2=5+6,2※5=2+3+4+5+6,则5※5=()。
3、一个正方形的边长增加5厘米,它的面积就会增加225平方厘米,原来的正方形的面积是()平方厘米。
4、一个正三角形的周长与一个正六边形的周长相等。
若此正三角形的面积为4,则这个正六边形的面积为()。
5、某超市为庆祝元旦,准备将毛巾类商品做促销:儿童毛巾5元3条,大人毛巾4元1条。
明明的妈妈花了39元购买了15条毛巾。
那么他购买了()条儿童毛巾和()条大人毛巾。
6、有三个质数的和是50,则这三个质数的积最大是()。
7、在一个纸盒中装有红色、绿色及黄色的弹珠。
已知盒子里的弹珠除了38颗之外都是红色的弹珠,除了33颗之外都是绿色的弹珠,除了35颗之外都是黄色的弹珠。
那么盒子中总共装有()颗弹珠。
8、有A、B、C、D四个点从左向右依次排在一条直线上,以这四个点为端点,可以数出6条线段。
已知这6条线段的长度分别是12、18、30、32、44、62(单位:厘米),那么线段BC的长度是()厘米。
9、如下图,甲、乙两图形都是正方形,它们的边长分别是20厘米和12厘米,则三角形AEG的面积为()平方厘米。
10、通信班举行10分钟汉字输入大赛,全班平均成绩为每分钟120字,男生平均成绩比全班平均成绩少18字,女生平均成绩比男生平均成绩多27字,则这个班女生的人数是男生的()倍。
11、一个整数,如果它的各位上的数字之和再加上它的各位数字之积,恰好等于这个数,我们就称这个数为“海都数”,例如39=3+9+3×9就是一个“海都数”。
两位数中这样的“海都数”一共有()个。
12、依次写下整数1,2,3,4,…,998,999,则得到的整数123456789101112…998999,这个整数左起第2018位上的数字是()。
13、在桌面上摆有一些大小一样的正方体木块,从正面看如下(图1),从右面看如下(图2),要摆出这样的图形至少需要()块正方体木块。
2017年小学五年级数学竞赛试题及参考答案2017年小学数学学校姓名成绩:一、填空题(每小题4分,共40分)1、一个三位数,它的数字之和正好是18,而十位数字是个位数字的2倍,百位数字是个位数字的3倍,这个三位数是()。
2、100个馒头100个和尚吃,大和尚每人吃3个,小和尚3人吃一个,则大和尚有()个,小和尚有()个。
3、15年前父亲年龄是儿子的7倍,10年后,父亲年龄是儿子的2倍。
今年父亲()岁,儿子()岁。
4、差是减数的4倍,差与减数的差是150。
被减数是()。
5、平面上有30个点,任意三点都不在同一条直线上,若每两点间连一条线段,共可连出()条线段。
6、有人民币5元一张、2元一张、1元三张、5角一张、2角三张、1角一张。
要从中拿出8.6元,有()种分歧的拿法。
7、1×2×3×……×49×50的积的末尾继续有()个零。
8、午餐时,甲有4包点心,乙带有3包点心,(7包点心价钱一样),丙没食物。
他们把点心平分食用,吃完算账丙要给甲和乙共7元钱,那么,乙()元。
9、3247—1630的尾数是()。
10、在右面的乘法中,A、B表示不同的数字,其中A表示(),B表示()。
二、挑选题(每题2分,共10分)1、全班35位同学排成一行,从左边数小明是第20个,从右边数小刚是第21个,小明与小刚之间有()人。
A.6 B.5 C.4D.31应得2、右图中共有()个三角形。
A.8B.11C.14D.173、小华今年12岁,5年后爷爷是他年龄的5倍,爷爷现在的年龄是()。
A.80 B.81 C.82D.844、566除以一个数所得的商是12,而且除数与余数的差是6,余数是()。
A.40 B.38C.36D.345、现有30克和5克的砝码和一台天平,要把300克盐均分成3等份,至少要称()次。
A.2 B.3C.4D.5三、简便计算(每题5分,共20分)(1)2010×—2009×(2)6.8×0.1+0.5×68+0.049×680(3)5.3÷9+3.7÷9(4)1-3+5-7+9-11+…-1999+2001四、解答题(每小题10分,共30分)。
2017-2018学年下学期五年级数学竞赛试(满分:100分,时间:40分钟)一、填空题(没空2分,共22分)1、在括号里填上适当的单位名称。
小朋友每天要饮水1100(),粉笔盒的体积约是0.8()2、 3.85立方米=()升3、 30以内6的倍数()4、小卖部要做一个长1.5米,宽3分米,高70厘米的玻璃柜台各边都按上角铁,这个柜台需要()米角铁。
5、学校钟楼的大钟3点钟敲3下,用了6秒,9点时敲9下用了()秒。
6、丁丁7天吃了4kg西瓜,他平均每天吃了这些西瓜的(),他平均每天吃了()kg西瓜。
7、最小的偶数与最小的奇数的积,除以最小的质数与最小的合数的和,最后除得的结果是()8、 1×2 + 3×4 + 5×6 +......+ 99×100的和是()(填“奇数”或“偶数”)9、如果规定:a ※ b = a2 + b3 ,例如:2 ※ 5= 22 + 53= 129,那么3 ※ 4 = ()(直接写出得数)二、判断题.(每小题2分,共8分)1、自然数(0除外),按因数的个数可分为质数和合数。
()2、棱长1分米的正方体的表面积比它的体积大.()3、一个正方体的棱长是奇数,则它的表面积一定是偶数()4、10的倍数一定都是2和5的的倍数()三、选择题.(每小题2分,共10分)1、一间仓库的体积()它的容积.A.大于 B.小于 C.等于 D.无法确定2、一根长方体木料,它的横截面积是9平方厘米,把它截成2段,表面积增加()平方厘米.A. 9 B.18 C. 273、把一根长2米的长方体木料锯成两段后,表面积增加了100平方厘米,它的体积是()。
A.100立方厘米 B.10000立方厘米 C.2立方分米4、用0,3,4,8组成的所有四位数中,同时都是2,3,5的倍数的数有()个。
A.4B.5C.65.一个立体图形,从左面看到的是,从上面看到的是,这个立体图形共有( )种不同的摆法。
第1页 共四页 第2页 共四页秘密★启用前世界青少年奥林匹克数学竞赛(中国区)选拔赛全国总决赛试卷注意事项: 1、考生按要求用黑色、蓝色圆珠笔或钢笔在密封线内填好考生的相关信息。
2、考试时间120分钟。
3、本试卷共4页,满分100分。
4、不得在答卷或答题卡上做任何标记。
5、考生超出答题区域答题将不得分。
6、考生在考试期间不得作弊,否则试卷记零分处理。
小学五年级试题一、计算题(每题3分,共12分) 1. 7.1×35+39×3.5-352. (5.6×4.5×8.1)÷(2.8×1.5×2.7)3. 0.7777×0.7+0.1111×2.14. 987654321×123456789-987654320×123456788二、填空题(每空3分,共24分)1. 把一根木头锯成4段需要12分钟,如果锯成8段需要( )分钟。
2. 有三个好朋友,他们的年龄一个比一个大3岁,他们3人年龄数的乘积是3240。
其中最小的年龄是( )岁。
3. 三个不同的自然数的和为2001,它们分别除以19,23,31所得的商相同,所得的余数也相同,这三个数中最大的是( )。
4. 一本书的中间被撕掉了一张,余下的页码数之和正好是907,这本书有( )页。
5. 下列格点中,相邻两个点之间的距离是1cm ,图中三角形的面积是( )平方厘米。
6. 一个最简分数,若分母加上1,分数值是21,若分子加上1,分数值是32,这个分数是( )。
7. 数列1,1,2,3,5,8,13,21…的排列规律是:从第三个数开始,每一个数都是它前面两个数的和,这样的数列叫做斐波拉契数列。
斐波拉契数列的前2017个数中,有( )个偶数。
8. 2008个2008相乘的末位数字是( )。
三、解决问题(每题8分,共64分)1. 图中三角形ABC 的面积是52平方厘米,三角形ABD 与三角形ADC 的面积相等。
新北师大版2016-2017下学期五年级数学核心素养竞赛题班级: 姓名:一、填空(共22分)1、在括号里填上合适的数,9( ) = 0.75 = 3 ÷( )=( )24=( )折 2、5700立方分米 = ( ) 立方米 9.12升 = ( ) 毫升3、至少需要( )个小正方体才能拼成一个大正方体,如果一个小正方体的棱长是6厘米,那么大正方体的表面积是( )平方厘米。
4、 一根绳子长8米,截下34米,还剩下( )米;一根绳子长8米,截下34,还剩下( )米。
5、电脑城有电脑220台,第一天卖出15,第二天卖出的是第一天的119,第二天卖出电脑( )台。
二、判断(共12分)1、 棱长是6厘米的正方体,它的体积与表面积是相等的。
( )2、相邻的两个面是正方形的长方体一定是一个正方体。
( )3、甲数的45 和乙数相等,那么甲数比乙数大14。
( ) 4、一个长方体恰好截成两个正方体,截开后表面积增加18平方米,这个长方体体积是18立方米。
( )三、我会选(共12分)1、两根同样长的铁丝,一根用去全长的14 ,另一根用去全长的14米,剩下的铁丝 ( )。
①第一根长 ②第二根长 ③两根一样长 ④无法比较2、正方体的棱长扩大到原来的2倍,正方体的体积扩大到原来的( ) 。
①2倍 ②6倍 ③4倍 ④ 8倍3、把45米长的铁丝剪成相等的3段,每段是全长的( )。
① 13 米 ② 13 ③ 112 ④ 34米 4、古埃及人想表示,不用“”,而是用“+”来表示。
如果用古埃及 人的方法表示,应为( )① + ② + ③ + ④ ×四、计算。
(1)口算(共10分)+= += ×= 5= 2- =3÷7= ÷= 4= = - =(2)怎样简便就怎样算。
(共8分)35×49 - 49 + 11×49 48×(165+ 1324 - 712 )(3)我会解方程。
2017年小学五年级数学竞赛试题( 完成时间:60分钟 满分:100分。
)班级 姓名1.计算: 5.62×49-5.62×39+43.8= 。
2. 早读课从7时30分开始,到8时下课,一节早读课,钟面上的分针正好旋转了( )( ) 周,时针旋转了( )( )周。
3. 观察右图,“?”代表的数是 。
4.某市市内出租车收费标准如表:(1)张叔叔乘出租车行了1.5千米,应付 元。
(2)李叔叔乘出租车行了4千米,应付 元。
(3)李叔叔乘出租车行了 千米,付9元.5.五(1)班有学生48人。
在学校运动会上,参加比赛的女生占全班人数的61,参加比赛的男生占全班人数的41,参加比赛的男生人数比女生人数多( )( ) 。
6. 五年级一班共有36人,每人参加一个兴趣小组,共有A,B,C,D,E 五个小组,若参加A 组的有15人,参加B 组的仅次于A 组,参加C 组、D 组的人数相同。
参加E 组的人数最少,只有4人,那么,参加B 组的有 人。
7. 从甲地到乙地,原来每隔45米装一根电线杆,加上两端的两根有53根,现改成每隔60米装一根电线杆,除两端两根不移动外,中间还有 根不必移动。
8. 盒子里放有编号为1至10的十个球,小明先后三次从盒中共取出九个球。
如果从第二次开始,每次取出的球的编号之和都是前一次的2倍,那么未取出的球的编号是。
9. 王叔叔开车从甲地到乙地,以每小时40千米的速度行进,下午1点到;以每小时60千米的速度行进,上午11点到。
如果王叔叔希望中午12点到乙地,那么行使的速度是每小时千米。
10.沿如图的虚线折叠,可以围成一个长方体。
这个长方体的体积是立方厘米,表面积是平方厘米。
11.歌德巴赫猜想:任何不小于7的奇数都可以写成三个质数的和。
如7=2+2+3。
请把31写成三个质数的和。
(在下面写出所有式子)12. 有两个长方体水箱,甲水箱里有水,乙水箱空着。
从里面量,甲水箱长40厘米,宽32厘米,水面高20厘米;乙水箱长30厘米,宽24厘米,深25厘米。
2017年下学期五年级数学竞赛试卷
一、填空(共30分,每小题3分)
1. 两个数的和是61.6,其中一个数的小数点向右移动一位,就与另一个数相同。
两个数分别是( )、( )。
2. 有三根木料,打算把每根锯成3段,每锯开一处需要3分钟,全部锯完需要( )分钟。
3. 笑笑同学的家住在5楼,每层楼梯有16级,她从1楼走到5楼,共要走()级楼梯。
4. 把一张边长24厘米的正方形纸对折4次后得到一个小正方形,这个小正方形的面积是()平方厘米。
5. 一副扑克牌有54张,至少抽取()张扑克牌,方能使其中至少有两张牌有相同的点数。
6. 一个长方形的长为9厘米,把它的长的一边减少3厘米,另一边不变,面积就减少9平方厘米,这时变成的梯形面积是()平方厘米。
7. 小明和小英两人同时从甲、乙两地相向而行,小明每分钟行a米,小英每分钟行b米,行了4分钟两人相遇。
甲、乙两地的路程是( )米。
8.街道上有一排路灯,共40根,每相邻两根距离原来是45米,现在要改成30米,可以有( )根路灯不需要移动。
9.小明计算20道题目,规定做对一道题得5分,做错一道题反扣3分。
结果小明20道题都做,却只得了60分,问他做对了()题。
10. 五(1)班的同学去划船。
他们算了一下,如果增加一条船,正好每条船坐6人;如果减少一条船,正好每条船坐9人。
这个班共有()名同学。
二、判断(正确的在括号里画“√”,错误的画“×”。
共15分,每小题3分)
11. 用10张同样长的纸条接成一条长31厘米的纸带,如果每个接头都重叠1厘米,那么每张纸条长4.1厘米。
( )
12. 用三个长3厘米、宽2厘米,高1厘米的长方体,拼成一个大长方体,有3种拼法。
()
13. 把一批圆木自上而下按1、2、3……14、15根放在一起,这批圆木共有240根。
()
14. 在a÷b=5……3中,把a、b同时扩大3倍,商是5,余数是3。
( )
15.右图中长方形的面积与阴影部分的面积相等。
()
三、选择(把正确答案的序号填在括号里。
共15分,每小题3分)
16. “IMO”是国际数学奥林匹克竞赛的缩写,如果要把这三个字母写成三种不同的颜色,现有五种不同的颜色,按上述要求可以写出()种不同颜色搭配的“IMO”。
A . 15 B. 20 C. 45 D. 60、
17.五(2)班有56个学生,在一次测验中,答对第一题的34人,答对第二题的29人,两题都答对的15人。
那么,两题都不对的有(
)人。
A.7 B.8 C.12 D.20
A. 6
B. 7
C. 8
D. 9
19. 如果用一个通用公式来概括正方形、长方形、平行四边形、角形和梯形的面积,应该是()面积公式。
A. 长方形
B. 平行四边形
C. 三角形
D. 梯形
20. 小红、小明和小军在一起,一位是工人,一位是农民,一位是战士。
现在只知道:(1)小徐比战士年龄大;(2)小刘和农民不同岁;(3)农民比小张年龄小;那么,( )工人。
A. 小红
B. 小明
C. 小军
D. 说不准
四、简算与计算(要写出简算过程,共10分,每小题5分)
21. 3600000÷125÷32÷25 22 . 1.25×6.78+253.47+125×0.0382
五、解决问题(共24分,每小题8分)
24.一座铁路桥长1200米,一列火车开过大桥需75秒;火车开过路旁一根信号杆需要15 秒。
求火车的速度和车长。
25.甲、乙两个书店存书册数相等,甲书店售出3000册,乙书店购入2000册,这时乙书店存书的册数是甲的2倍,甲、乙两书店原来共存书多少册?
26. 甲乙丙丁四个人共买了10个面包平均分着吃,甲拿出了6个面包的钱,乙和丙都只拿出了2个面包的钱,丁没带钱。
吃完后一算,丁应该拿出1.25元,甲应收回多少元?。