中考数学代数总复习
- 格式:ppt
- 大小:557.00 KB
- 文档页数:11
中考数学代数知识点总结一、基本代数运算1. 加减乘除加减乘除是代数运算的基本内容,也是中考考查的重点。
在加减乘除的运算中,学生需要掌握整数、分数、小数等相关概念,以及它们在运算中的应用。
2. 整式的加减乘除整式是由字母和数字及其运算符号组成的代数式,整式的加减乘除是中考代数题中的必考内容,需要学生掌握整式的加减乘除法则,例如同类项相加、互化成法等方法。
3. 代数式的计算在代数式的计算中,学生需要掌握二项式和多项式的加减乘除法则,以及含有方程式的复合运算等内容。
二、一元一次方程1. 一元一次方程的概念一元一次方程是解决实际问题中常见的代数问题,学生需要掌握一元一次方程的定义、解法以及应用。
2. 一元一次方程的解法一元一次方程的解法包括整式移项、合并同类项、去括号、去分母、得到等价方程、方程变形、化简、合并同类项、移项、通分、求解等步骤。
3. 一元一次方程的应用一元一次方程是一种常用的数学模型,学生需要学会将实际问题转化为代数方程,并求解出方程的未知数的值。
三、一元一次不等式1. 一元一次不等式的概念一元一次不等式是一元一次方程的推广,学生需要掌握不等式的概念、性质以及解法。
2. 一元一次不等式的解法解一元一次不等式的方法包括整式移项、合并同类项、去括号、去分母、得到等价不等式、不等式变形、化简、合并同类项、移项、通分、求解等步骤。
四、二元一次方程组1. 二元一次方程组的概念二元一次方程组是由两个关于同两个未知数的一次方程组成的代数方程组,解二元一次方程组需要用到方程相加消元的方法。
2. 二元一次方程组的解法解二元一次方程组的方法包括加法、减法、代入法等,学生需要掌握这些解法,并且能够根据实际问题将其转化为方程组进行求解。
五、一元二次方程1. 一元二次方程的概念一元二次方程是一元二次多项式的零点集合,学生需要掌握一元二次方程的定义、性质以及应用。
2. 一元二次方程的解法解一元二次方程的方法包括配方法、因式分解、公式法、求判别式、根的关系、三种情况等。
中考数学专题复习:代数综合题【知识梳理】代数综合题是指以代数知识为主的或以代数变形技巧为主的一类综合题.主要包括方程、函数、不等式等内容,用到的数学思想方法有化归思想、分类思想、数形结合思想以及代人法、待定系数法、配方法等.解代数综合题要注意归纳整理教材中的基础知识、基本技能、基本方法,要注意各知识点之间的联系和数学思想方法、解题技巧的灵活运用,要抓住题意,化整为零,层层深人,各个击破.注意知识间的横向联系,从而达到解决问题的目的. 【课前预习】1、已知关于x 的一元二次方程x 2-(k +1) x -6=0的一个根是2,求方程的另一根和k 的值.2、已对方程 2x 2 +3x -l =0.求作一个二次方程,使它的两根分别是已知方程两根的倒数.3、已知反比例函数(0)k yk x=≠和一次函数6y x =--。
⑴ 若一次函数和反比例函数的图象交于点(-3,m )求m 和k 的值. ⑵ 当k 满足什么条件时.这两个函数的图象有两个不同的交点?⑶ 当k=-2时,设(2)中的两个函数图象的交点分别为 A 、B ,试判断A 、B 两点分别在第几象限,∠AOB 是锐角还是钝角(只要求直接写出结论).【例题精讲】【例1】某产品每件成本10元,试销阶段每件产品的日销售价x (元)与产品的日销售量y (件)之间的关系如下表:⑴在草稿纸上描点,观察点的颁布,建立y 与x 的恰当函数模型。
⑵要使每日的销售利润最大,每件产品的销售价应定为多少元?此时每日销售利润是多少元?【例2】一次函数y=kx+b 和反比例函数y=2k x的图象相交于点P(n -l ,n +l ),点Q(0,a )在函数y=k 1x+b 的图象上,且m 、n 是关于x 的方程2(31)2(1)0ax a x a -+++=的两个不相等的整数根.其中a 为整数,求一次函数和反比例函数的解析式.【巩固练习】1、某市近年来经济发展速度很快,根据统计,该市国内生产总值1990年为8.6亿元人民币,1995年为10.4亿元人民币,2000年为12. 9亿元人民币,经论证,上述数据适合一个二次函数关系.请你根据这个函数关系预测2005年该市国内生产总 值将达到多少?2、二次函数2y ax bx c =++的图象的一部分如图2-3-1所示。
第二章代数式考点一、整式的有关概念(3分)1.代数式用运算符号把数或表示数的字母连接而成的式子叫做代数式。
单独的一个数或一个字母也是代数式。
2.单项式只含有数字与字母的积的代数式叫做单项式。
注意:单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示,如,这种表示就是错误的,应写成。
一个单项式中,所有字母的指数的和叫做这个单项式的次数。
如是6次单项式。
考点二、多项式(11分)1.多项式几个单项式的和叫做多项式。
其中每个单项式叫做这个多项式的项。
多项式中不含字母的项叫做常数项。
多项式中次数最高的项的次数, 叫做这个多项式的次数。
单项式和多项式统称整式。
用数值代替代数式中的字母, 按照代数式指明的运算, 计算出结果, 叫做代数式的值。
注意: (1)求代数式的值, 一般是先将代数式化简, 然后再将字母的取值代入。
(2)求代数式的值, 有时求不出其字母的值, 需要利用技巧, “整体”代入。
2.同类项所有字母相同, 并且相同字母的指数也分别相同的项叫做同类项。
几个常数项也是同类项。
3.去括号法则(1)括号前是“+”, 把括号和它前面的“+”号一起去掉, 括号里各项都不变号。
(2)括号前是“﹣”, 把括号和它前面的“﹣”号一起去掉, 括号里各项都变号。
4.整式的运算法则整式的加减法: (1)去括号;(2)合并同类项。
整式的乘法:),(都是正整数)(n m a a mn n m = )()(都是正整数n b a ab n n n =22))((b a b a b a -=-+2222)(b ab a b a ++=+2222)(b ab a b a +-=-整式的除法:注意: (1)单项式乘单项式的结果仍然是单项式。
(2)单项式与多项式相乘, 结果是一个多项式, 其项数与因式中多项式的项数相同。
(3)计算时要注意符号问题, 多项式的每一项都包括它前面的符号, 同时还要注意单项式的符号。
(4)多项式与多项式相乘的展开式中, 有同类项的要合并同类项。
中考数学复习知识点归纳总结6篇篇1一、数与代数1. 数的基本概念:整数、分数、小数、百分数、比例、方程等。
2. 数的运算:加减乘除四则运算,乘方、开方运算,分数运算,小数运算等。
3. 代数表达式:用字母表示数,表达数量关系和变化规律。
4. 方程与不等式:解一元一次方程,解一元一次不等式,理解函数的概念。
二、几何与图形1. 几何概念:点、线、面、体,角、度数,平行、垂直等基本几何概念。
2. 图形与变换:平移、旋转、对称等图形变换,相似图形,全等图形。
3. 面积与体积:计算平面图形的面积,计算立体图形的体积。
4. 解析几何:理解直线的方程,理解圆及其方程。
三、函数与图像1. 函数的概念:理解变量间的关系,用解析式表示函数关系。
2. 函数的运算:函数的加减法,函数的乘法,复合函数。
3. 函数的图像:理解函数的图像及其变换,根据图像理解函数的性质。
4. 反函数与对称函数:理解反函数的概念,理解对称函数的概念。
四、数据与概率1. 数据收集与整理:理解数据收集的方法,会用统计图表表示数据。
2. 数据的计算:平均数、中位数、众数等统计量的计算,方差和标准差的计算。
3. 概率的概念:理解概率的基本概念,会计算事件的概率。
4. 概率的应用:理解概率在生活中的应用,会解决与概率相关的问题。
五、综合与实践1. 图形的变换与对称:运用几何知识解决实际问题,理解图形的变换和对称。
2. 函数的实际应用:理解函数在实际问题中的应用,如利润、成本等问题。
3. 数据的分析与决策:运用统计知识解决实际问题,理解数据的分析与决策。
4. 课题学习与研究性学习:理解课题学习与研究性学习的意义和方法。
在中考数学复习过程中,我们需要对以上知识点进行全面的梳理和总结,形成系统的知识框架。
同时,我们需要关注考试动态和命题趋势,结合历年真题进行有针对性的练习和巩固。
此外,我们还要注重解题技巧和策略的学习和应用,提高解题效率和准确性。
希望同学们能够认真复习备考,取得优异的成绩!篇2一、数与代数(一)数的认识复习要点:整数、小数、分数、百分数的认识及其关系,数的运算规则和运算性质。
中考数学总复习经典(代数)题(一)代数试题1、小高从家门口骑车去单位上班,先走平路到达点A ,再走上坡路到达点B ,最后走下坡路到达工作单位,所用的时间与路程的关系如图所示.下班后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上班时一致,那么他从单位到家门口需要的时间是( ) A .12分钟 B .15分钟 C .25分钟 D .27分钟2、小强从如图所示的二次函数2y ax bx c =++的图象中,观察得出了下面五条信息:(1)0a <;(2)1c >;(3)0b >;(4)0a b c ++>;(5)0a b c -+>.你认为其中正确信息的个数有( )A .2个B .3个C .4个D .5个3、. 在同一直角坐标系中,函数y mx m =+和函数222y mx x =-++(m 是常数,且0m ≠)的图象可能..是知αβ、是关于x 的一4、已元二次方程22(23)0x m x m +++=的两个不相等的实数根,且满足111αβ+=-,则m 的值是( ) A.3或-1 B.3 C. 1 D. –3或15、下列图形都是二次函数y=ax2+bx+a2-1的图象,若b >0,则a 的值等于( )A 、B 、-1C 、D 、16、如图,已知函数y ax b =+和y kx =的图象交于点P, 则根据图象可得,关于y ax b y kx=+⎧⎨=⎩的二元一次方程组的解是7、如图,已知点F 的坐标为(3,0),点A B ,分别是某函数图象与x 轴、y 轴的交点,点P 是此图象上的一动点...设点P 的横坐标为x ,PF 的长为d ,且d 与x 之间满足关系:355d x =-(05x ≤≤),则结论:①2AF =;②5BF =;③5OA =;④3OB =中,正确结论的序号是_ . 8、二次函数c bx ax y ++=2的图象如图6所示,则下列关系式不正确的是( )A .a <0B.abc >0C.c b a ++>0D.ac b 42->09、已知二次函数y=ax 2+bx+c(a ≠0)的图象如图所示,则下列结论中不正确的有( )个.①abc>0②2a+b=0③方程ax 2+bx+c=0(a ≠0)必有两个不相等的实根 ④a+b+c>0⑤当函数值y 随x 的逐渐增大而减小时,必有x ≤1A 、1B 、2C 、3D 、410、如图101,二次函数2y ax bx c =++的图象开口向上,图象经过点(-1,2)和(1,0),且与y 轴相交于负半轴.(以下有(1)、(2)两问,每个考生只须选答一问,若两问都答,则只以第(2)问计分)第(1)问:给出四个结论:① 0a >;② 0b >;③ 0c >;④ 0a b c ++=.其中正确结论的序号是 (答对得3分,少选、错选均不得分).第(2)问:给出四个结论:① 0abc <;② 20a b +>;③ 1a c +=;④1a >.其中正确结论的序号是 (答对得5分,少选、错选均不得分). 11、如图,矩形ABCD 的对角线BD 经过坐标原点,矩形的边分别平行于坐标轴,点C 在反比例函数的图象上.若点A 的坐标为(-2,-2),则k 的值为( )(11题图)A 、1B 、-3C 、4D 、1或-3 (第7题) 图1018题12、如图8,点A 、B 、C 、D 为圆O 的四等分点,动点P 从圆心O 出发, 沿O-C-D-O 的路线作匀速运动.设运动时间为t 秒, ∠APB 的度数 为y 度,则下列图象中表示y 与t 之间函数关系最恰当的是13、 如图11,若正方形OABC 的顶点B 和正方形ADEF 的顶点E 都在函数 1y x=(0x >)的 图象上,则点E 的坐标是( , ).14、如图所示的二次函数y=ax 2+bx+c 的图象中,刘星同学观察得出了下面四条信息: (1)b2-4ac >0;(2)c >1;(3)2a-b <0;(4)a+b+c <0.你认为其中错误的有( )14题 A 、2个 B 、3个 C 、4个 D 、1个15、已知:如图所示,抛物线y=ax 2+bx+c 的对称轴为x=-1,与x 轴交于A 、B 两点,交y 轴于点C ,且OB=OC ,则下列结论正确的个数是 . ①b=2a ②a-b+c>-1 ③0<b 2-4ac<4 ④ac+1=bA.1个B.2个C.3个D.4个16、阅读材料:设一元二次方程ax 2+bx +c =0(a ≠0)的两根为x 1,x 2,则两根与方程系数之间有如下关系:x 1+x 2=-b a ,x 1·x 2=ca.根据该材料填空:已知x 1、x 2是方程x 2+6x +3=0的两实数根,则21x x +12x x 的值为 . 17、已知二次函数2(0)y ax bx c a =++≠的图象如图(1)所示,则直线y ax b =+与反比例函数acy x=,在同一坐标系内的大致图象为( ) (18题图)xA .xB .D .xC .18、二次函数y=ax 2+bx+c(a ≠0)的图像如图所示,下列结论正确的是( )A.ac <0B.当x=1时,y >0C.方程ax 2+bx+c=0(a ≠0)有两个大于1的实数根D.存在一个大于1的实数x 0,使得当x <x 0时,y 随x 的增大而减小; 当x >x 0时,y 随x 的增大而增大. 19、甲、乙两个工程队完成某项工程,首先是甲单独做了10天,然后乙队加入合做,完成剩下的全部工程,设工程总量为单位1, 工程进度满足如图所示的函数关系,那么实际完成这项工程所用的时间比由甲单独完成这项工程所需时间少( )A.12天B.14天C.16天D.18天20、关于x 的一次函数21y kx k =++的图象可能正确的是( )21、(2010年杭州月考)如图,C 为⊙O 直径AB 上一动点,过点C 的直线交⊙O 于D 、E 两点, 且∠ACD=45°,DF ⊥AB 于点F,EG ⊥AB 于点G ,当点C 在AB 上运动时,设AF=x ,DE=y ,下列中图象中,能表示y 与x 的函数关系式的图象大致是( )22、如图所示是二次函数.2y ax bx c =++图象的一部分,图象过A 点(3,0),二次函数图象对称轴为1x =,给出四个结论:①24b ac >;②0bc <;③20a b +=;④0a b c ++=,其中正确结论是( ) A .②④B .①③C .②③D .①④23、如图6所示的计算程序中,y 与x 之间的函数关系所对应的图象应为( )24、若A (1,413y -),B (2,45y-),C (3,41y )为二次函数245y x x =+-的图象上的三点,则1,y 2,y 3y的大小关系是A .123y y y <<B .213y y y <<C .312y y y <<D .132y y y <<xxxxD.第20题图ADCB图6(第1925、已知αβ,为方程2420x x ++=的二实根,则31450αβ++= . 26、在反比例函数4y x=的图象中,阴影部分的面积不等于4的是( )A .B .C .D .27、如图4,直线24y x =-+与x 轴,y 轴分别相交于A B ,两点,C 为OB 上一点,且12∠=∠,则ABC S =△ ( ) A .1 B .2 C .3 D .428、 如图已知一次函数y=kx+b 和y=mx+n 的图象交于点P ,则根据图象可得不等式组0<mx+n <kx+b 的 解集是-29、如图,直线y 1=kx+b 过点A (0,2),且与直线y 2=mx 交于点P (1,m ),则不等式组mx>kx+b>mx-2的解集是------29题图 30题图 31题图 30、如图,已知A (-4,2)、B (2,-4)是一次函数y=kx+b 的图象和反比例函数的图象上的两个交点.(1)求反比例函数和一次函数的解析式;(2)求直线AB 与y 轴的交点C 的坐标及△AOB 的面积; (3)直接写出方程kx+b=0的解; (4)直接写出不等式kx+b >0的解.31、如图:已知A (-4,n )、B (2,-4)是一次函数y 1=kx+b 的图象与反比例函数 的图象的两个交点.(1)求反比例函数和一次函数的解折式.(2)求直线AB 与x 轴的交点C 的坐标及△AOB 的面积. (3)求不等式y 1<y 2的解集(请直接写出答案).图432题图32、如图,已知一次函数y=kx+b 的图象过点(1,-2),则关于x 的不等式kx+b+2≤0的解集是 33、已知一次函数y=kx+b 的图象经过点(1,2),且不经过第三象限,那么关于x 的不等式kx+b >2的解集是34、小明从图5所示的二次函数2y ax bx c =++的图象中,观察得出了下面五条信息:①0c <;②0abc >;③0a b c -+>;④230a b -=;⑤40c b ->,你认为其中正确信息的个数有( )A .2个B .3个C .4个D .5个35、小亮用作图象的方法解二元一次方程组时,在同一直角坐标系内作出了相应的两个一次函数的图象l 1、l 2,如图所示,他解的这个方程组是( )A 、B 、C 、D 、136、如图,直线y kx b =+经过A (-2,-1)和B (-3,0)两点,则不等式组102x kx b <+< 的解集为 .37、如图,半径为5的⊙P 与轴交于点M (0,-4),N (0,-10),函数(0)ky x x=<的图像过点P ,则k = . 38、已知点(-1,y 1),(2,y 2),(3,y 3)在反比例函数y= 的图象上.下列结论中正确的是( )A 、y 1>y 2>y 3B 、y 1>y 3>y 2C 、y 3>y 1>y 2D 、y 2>y 3>y 139、已知二次函数2y ax bx c =++(0a ≠)的图象如图所示,有下列结论:①240b ac ->;②0abc >;③80a c +>;④930a b c ++<. 其中,正确结论的个数是(A )1 (B )2 (C )3(D )4第37题第39题图540、 抛物线c bx ax y ++=2图像如图所示,则一次函数24b ac bx y +--=与反比例函数 a b cy x++=在同一坐标系内的图像大致为(41题图)C. D . 41、二次函数y=x 2-x-2的图象如图所示,则函数值y <0时x 的取值范围是( )A 、x <-1B 、x>2 C 、-1<x <2 D 、x <-1或x >242、如图,已知正方形ABCD 的边长为4 ,E 是BC 边上的一个 动点,AE ⊥EF , EF 交DC 于F , 设BE =x ,FC =y ,则当 点E 从点B 运动到点C 时,y 关于x 的函数图象是( ).43、(1)已知点A(2,3),将线段OA 绕点O 逆时针旋转900得到对应线段OA ’,则点A ’关于直线y=1对称的点的坐标是 ;(2)将直线y=2x+3向右平移2个单位长度得到直线L 1,则直线L 1关于直线y=1对称的直线的解析式为 ;(3)写出直线y=kx+b 关于直线y=1对称的直线的解析式 。
2024年中考数学二轮复习:代数式一.选择题(共10小题)1.为了求1+2+22+23+…+22011+22012的值,可令S=1+2+22+23+…+22011+22012,则2S=2+22+23+24+…+22012+22013,因此2S﹣S=22013﹣1,所以1+22+23+…+22012=22013﹣1.仿照以上方法计算1+5+52+53+…+52012的值是()A.52013﹣1B.52013+1C.52013−44D.52013−142.如果单项式x2y m+2与x n y的和仍然是一个单项式,则m、n的值是()A.m=2,n=2B.m=﹣1,n=2C.m=﹣2,n=2D.m=2,n=﹣1 3.已知x﹣2y=3,则代数式6﹣2x+4y的值为()A.0B.﹣1C.﹣3D.3 4.某商店举办促销活动,促销的方法是将原价x元的衣服以(45x﹣10)元出售,则下列说法中,能正确表达该商店促销方法的是()A.原价减去10元后再打8折B.原价打8折后再减去10元C.原价减去10元后再打2折D.原价打2折后再减去10元5.若﹣2a m b4与5a n+2b2m+n可以合并成一项,则m n的值是()A.2B.0C.﹣1D.1 6.当x=1时,代数式12ax3﹣3bx+4的值是7,则当x=﹣1时,这个代数式的值是()A.7B.3C.1D.﹣77.若a是有理数,那么在①a+1,②|a+1|,③|a|+1,④a2+1中,一定是正数的有()A.1个B.2个C.3个D.4个8.下列运算中,正确的是()A.3a+2b=5ab B.2a3+3a2=5a5C.3a2b﹣3ba2=0D.5a2﹣4a2=19.下列各式由等号左边变到右边变错的有()①a﹣(b﹣c)=a﹣b﹣c②(x2+y)﹣2(x﹣y2)=x2+y﹣2x+y2第1页(共14页)。
中考复习初中数学中的代数知识点代数是数学中的一个重要分支,主要研究数与数的关系、算术运算及其性质。
在中考中,代数知识点占据了重要的比重,因此对于初中数学的代数知识点的复习显得尤为重要。
下面将介绍一些常见的代数知识点,并提供相应的解题思路。
一、代数表达式的理解与计算代数表达式是由数、字母及运算符号组成的表示数与数量关系的式子。
在复习初中数学中的代数知识点时,首先要理解代数表达式的含义,并掌握其计算方法。
例如,给定代数表达式:3x + 2y - 4其中,每个字母代表一个数值,并且可以通过给定数值来计算整个表达式的结果。
在计算代数表达式时,可以按照运算顺序逐步进行。
首先计算乘法和除法运算,然后再进行加法和减法运算。
例如,计算给定代数表达式在x=2,y=3时的结果:3x + 2y - 4 = 3*2 + 2*3 - 4 = 6 + 6 - 4 = 8二、一元一次方程与方程的解法一元一次方程是指只包含一个变量的一次方程,其形式通常为ax + b = 0。
解一元一次方程,即求解方程中x的值。
解一元一次方程的基本方法是运用逆运算原则,将方程中的未知数x的系数移到等式的另一侧,并进行运算得到解。
例如,解方程2x + 3 = 7:首先,将3移动到等式的右侧,变为2x = 7 - 3;然后,将系数2移到等式的右侧,变为x = (7-3)/2;最后,计算得到x = 2。
三、因式分解与多项式运算因式分解是将一个多项式分解为两个或多个因式之乘积的过程。
例如,因式分解多项式2x² + 4x:首先,找到公因式2x,得到2x(x + 2)。
多项式运算主要涉及加法和乘法运算。
在计算过程中,需要遵循相应的规则和运算法则。
例如,计算多项式的乘法运算(2x + 3)(x - 1):按照分配律展开,得到2x² + x - 3。
四、解二元一次方程组二元一次方程组是由两个一元一次方程组成的方程组。
解二元一次方程组的基本思路是通过合理的运算,将方程组化简为解一元一次方程的形式。