二次函数应用拱桥问题
- 格式:ppt
- 大小:654.50 KB
- 文档页数:13
用二次函数解决抛物线型拱桥问题的教学思考
一、二次函数解决抛物线型拱桥问题
1. 抛物线型拱桥问题具有特殊的形式:抛物线型拱桥系统通常会出现
三维变形,其形态类似抛物线;
2. 二次函数可以用来解决抛物线型拱桥问题,因为它能够描述抛物线
型轮廓和大量的非线性关系;
3. 二次函数可以用来描述抛物线型拱桥的三维变形,可以进行模态变换,也可以完善抛物线型拱桥的结构模型,以便以最佳方式进行设计;
4. 通过使用二次函数,可以快速有效地解决复杂的抛物线型拱桥问题,用以描述拱桥的三维弧形特性,提高拱桥的稳定性;
5. 二次函数还可以与大量的有限元元素节点连接,以便更准确的表达
抛物线型构件的变形过程,便于拱桥本身的研究;
6. 二次函数还可以用来解决拱桥的非连续性,以提高拱桥的稳定性,
并达到最佳的结构性能。
二、二次函数解决抛物线型拱桥问题的步骤
1.首先对拱桥进行可靠的分析,实现拱桥几何图形模型的建立;
2. 建立起相关的参数模型,进行完整的原形映射,并分析拱桥的三维
变形特征;
3. 选择适当的二次函数来拟合抛物线型的拱桥特征,并结合参数模型,使拱桥获得最佳的状态;
4. 将拟合后的二次函数与有限元元素节点进行连接,实现对拱桥变形
过程的分析,以达到拱桥稳定性的最优解;
5. 最后,根据逐次考虑的设计要求,进行系统优化设计,直至抛物线型拱桥有力地满足设计要求,实现最优的结构实现。
三、总结
通过使用二次函数,可以对抛物线型拱桥采取有效的解决方案,在高效的设计过程中,更快更好的满足拱桥的设计要求,以保证拱桥的安全和有效解决拱桥的后续问题。
建立二次函数模型解决建筑类实际问题的一般步骤:(1) 根据题意建立适当的 ________________________ ; (2) 把已知条件转化为 __________________ ; (3) 合理设出函数 ___________________ ; (4) 利用 _________________ 法求出函数解析式;(5) 根据求得的解析式进一步分析、判断并进行有关的计算. 知识点1 :二次函数在桥梁中的应用1. 有一座抛物线拱桥,正常水位时桥下水面宽度为 20米,拱顶距离水面4米.在如图所示 的直角坐标系中,该抛物线的解析式为 ________________________ .2.有一座抛物线形的立交桥拱 ,这个桥拱的最大高度为 16 m ,跨度为40 m ,现把它的图形放在坐标系中(如图).若在离跨度中心 M 点5 m 处垂直竖立一根铁柱支撑拱顶 ,则这根铁柱的长为 _____ m.3. 如图是一座抛物线形拱桥,桥拱在竖直平面内与水平桥面相交于 A , B 两点,拱桥最高 点C 到AB 的距离为9 m , AB = 36 m , D , E 为拱桥底部的两点,且DE // AB ,点E 到直线 AB 的距离为7 m ,则DE 的长为 ___________ m .知识点2 :二次函数在隧道中的应用 4. 某隧道横断面由抛物线与矩形的三边组成,尺寸如图如示,以隧道横断面抛物线的顶点16为原点,以抛物线的对称轴为y 轴,建立直角坐标系,则该抛物线的解析式为 知识点3:二次函数在其他建筑问题中的应用5.如图,某工厂大门是抛物线形水泥建筑, 大门底部地面宽4米,顶部距地面的高度为 4.4 米,现有一辆满载货物的汽车欲通过大门,其装货宽度为 2.4米,该车要想通过此门, 装货 后的高度应小于( ) A. 2.80 米B . 2.816 米C . 2.82 米D. 2.826 米\比米L -4 棊_'6•如图,某建筑的屋顶设计成横截面为抛物线形(曲线AOB 的薄壳屋顶.它的拱宽AB 为4 m拱高CO 为0.8 m •建立如图的直角坐标系,则屋顶的轮廓线所在的抛物线的解析式为知识点4 :二次函数在运动中的应用7.某广场有一喷水池,水从地面喷出,如图,以水平地面为x 轴,出水点为原点,建立平 面直角坐标系,水在空中划出的曲线是抛物线 y = — x 2 + 4x(单位:米)的一部分,则水喷出 的最大高度是( )A . 4米B . 3米C . 2米D .1米----- 6m ----- ►A .第3秒B .第3.5秒C .第4.2秒D .第6.5秒&军事演习在平坦的草原上进行 ,一门迫击炮发射的一发炮弹飞行的高度 y(m)与飞行时间 x(s)的关系满足y = — 5X 2 + 10x.经过 ________ 秒炮弹到达它的最高点,最高点的高度是________ 米,经过 ________ 秒炮弹落到地上爆炸了.9•竖直向上发射的小球的高度 h(m)关于运动时间t(s)的函数解析式为h = at + bt ,其图象如图所示.若小球在发射后第 2秒与第6秒时的高度相等,则下列时刻中小球的高度最高的是y(m)与滑行时间x(s)之间的函数关系式是 m 才能停下来.12.如图,杂技团进行杂技表演,演员从跷跷板右端A 处弹跳到人梯顶端椅子B 处,其身体(看成一点)的路线是抛物线y = — 3x 1 2+ 3x + 1的一部分.5 (1)求演员弹跳离地面的最大高度;⑵已知人梯高BC = 3.4米,在一次表演中,人梯到起跳点 A 的水平距离是4米,问这次表 演是否成功?请说明理由.13•如图,小河上有一座拱桥,拱桥及河道的截面轮廓线由抛物线的一部分 ACB 和矩形的三 边AE, ED, DB 组成.已知河底 ED 是水平的,ED = 16米,AE = 8米,抛物线的顶点 C 到ED 的距离是11米,以ED 所在的直线为x 轴,抛物线的对称轴为 y 轴建立平面直角坐标系. (1) 求抛物线的解析式;(2) 已知从某时刻开始的 40小时内,水面与河底 ED 的距离h(单位:米)随时间t(单位:时) 的变化满足函数关系 h =- ±(t — 19)2+ 8(0 w tw 40),且当水面到顶点 C 的距离不大于5米 时,需禁止船只通行,请过计算说明:在这一时段内 ,需多少小时禁止船只通行?1 当h = 2.6时,求y 与x 的关系式;(不要求写出自变量 x 的取值范围)2 当h = 2.6时,球能否越过球网?球会不会出界?请说明理由?10.如图,有一座抛物线形拱桥 水面下降1 m 后,水面宽为( ,当水位线在AB 位置时,拱顶离水面2 m ,水面宽为4 m , ) A . 5 mB . 6 mC/, 6 mD . 2 6m11.某一型号飞机着陆后滑行的距离 1.5x 2,该型号飞机着陆后滑行 —y = 60x —14.如图,排球运动员站在点O处练习发球,将球从O点正上方2 m的A处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式y = a(x —6)2 + h.已知球网与O 点的水平距离为9 m,高度为2.43 m,球场的边界距O点的水平距离为18 m.4、有座抛物线形拱桥(如图),正常水位时桥下河面宽20m,河面距拱顶4m为了保证过往船只顺利航行,桥下水面的宽度不得小于18m,求水面在正常水位基础上上涨多少米时,就会影响过往船只航行。
二次函数的实际应用(拱桥问题)教师work Information Technology Company.2020YEAR二次函数中抛物线形与拱桥问题1 有一座抛物线形拱桥,正常水位时,桥下水面宽度为20m ,拱顶距离水面4m .(1)在如图所示的直角坐标系中,求出该抛物线的表达式;(2)在正常水位的基础上,当水位上升h (m )时,桥下水面的宽度为d (m ),求出将d 表示为h 的函数表达式;(3)设正常水位时桥下的水深为2m ,为保证过往船只顺利航行,桥下水面宽度不得小于18m ,求水深超过多少米时就会影响过往船只在桥下的顺利航行.解:(1)设抛物线的解析式为y =ax 2,且过点(10,-4)∴故 (2)设水位上升h m 时,水面与抛物线交于点()则∴ (3)当d =18时,∴当水深超过2.76m 时会影响过往船只在桥下顺利航行。
2、如图,有一座抛物线形的拱桥,桥下面处在目前的水位时,水面宽AB=10m ,如果水位上升2m ,就将达到警戒线CD ,这时水面的宽为8m.若洪水到来,水位以每小时0.1m速度上升,经过多少小时会达到拱顶解: 以AB 所在的直线为x 轴,AB 中点为原点,建立直角坐标系,则抛物线的顶点E 在y 轴上,且B 、D 两点的坐标分别为(5,0)、(4,2)-==-4101252a a ×,y x =-1252d h 24,-h d -=-412542×d h =-10418104076=-=h h ,.0762276..+=设抛物线为y=ax2+k.由B、D两点在抛物线上,有解这个方程组,得所以,顶点的坐标为(0,)则OE=÷0.1=(h)所以,若洪水到来,水位以每小时0.1m速度上升,经过小时会达到拱顶.3、如图4,有一座抛物线形拱桥,抛物线可用y=表示.在正常水位时水面AB 的宽为20m,如果水位上升3m时,水面CD的宽是10m.(1)在正常水位时,有一艘宽8m、高2.5m的小船,它能通过这座桥吗(2)现有一辆载有救援物资的货车从甲地出发需经过此桥开往乙地,已知甲地距此桥280km(桥长忽略不计).货车正以每小时40km的速度开往乙地,当行驶1小时时,忽然接到紧急通过:前方连降暴雨,造成水位以每小时0.25m的速度持续上涨(货车接到通知时水位在CD处,当水位达到桥拱最高点O时,禁止车辆通行).试问:如果货车按原来的速度行驶,能否安全通过此桥?若能,请说明理由.若不能,要使货车安全通过此桥,速度应超过每小时多少千米?解:(1)由对称性,当x=4时,y=.当x=10时,y=.故正常水位时,AB距桥面4米,由,故小船能通过.(2)水位由CD处涨到点O的时间为1÷0.25=4小时.货车按原来的速度行驶的路程为40×1+40×4=200<280.∴货车按原来的速度行驶不能安全通过此桥.设货车速度提高到x千米/时,当4x+40×1=280时,x=60.∴要使货车安全通过此桥,货车的速度超过60千米/时。
二次函数拱桥应用题.doc 二次函数拱桥应用题拱桥是一种常见的建筑结构,在城市和乡村中都可以见到。
它不仅能够承载重量,还可以美化环境。
在设计和建造拱桥时,数学是一个重要的工具。
其中二次函数在解决与拱桥相关的问题时起到了重要的作用。
二次函数的一般形式为y=ax^2+bx+c,其中a、b和c是实数,且a不等于0。
二次函数的图像是一个抛物线,具有对称轴和顶点。
在拱桥的设计中,二次函数可以用来描述桥梁的曲线形状。
例如,我们可以用二次函数来描述一座拱桥的高度与横轴距离之间的关系。
假设我们要设计一座拱桥,使得拱桥的高度在横轴距离的不同位置上都能达到最大值,那么我们可以使用二次函数来描述这个关系。
首先,我们需要确定二次函数的顶点位置。
顶点是二次函数的最高点或最低点,它位于对称轴上。
对于拱桥来说,我们希望拱桥的高度在横轴距离的不同位置上都能达到最大值,因此我们需要找到二次函数的最高点。
假设拱桥的起点为原点(0,0),终点为坐标为(x,y)的点。
我们可以通过求解二次函数的顶点来确定拱桥的最高点。
顶点的横坐标可以通过求解二次函数的对称轴方程得到,对称轴方程为x=-b/(2a)。
将这个值代入二次函数的表达式中,我们可以求得顶点的纵坐标。
拱桥的高度与横轴距离之间的关系可以用二次函数来描述。
这个二次函数的顶点就是拱桥的最高点,拱桥的形状由这个二次函数的图像来表示。
在实际的拱桥设计中,我们需要考虑到许多因素,如桥梁的承重能力、材料的强度、施工的成本等。
因此,我们需要在满足这些要求的前提下,选择一个合适的二次函数来描述拱桥的形状。
例如,我们可以选择一个顶点为(0,0)的二次函数y=ax^2来描述拱桥的形状。
在确定a的值时,我们需要考虑到桥梁的承重能力。
如果a的值过大,那么拱桥的曲线将会很陡峭,不利于行人和车辆的通行。
如果a的值过小,那么拱桥的曲线将会很平缓,可能无法承受桥梁的重量。
因此,我们需要在满足这些要求的前提下,选择一个合适的a的值。
二次函数拱桥问题技巧拱桥是一种古老而又美丽的建筑结构,广泛应用于城市的交通建设中。
在设计和建造拱桥的过程中,我们必须考虑多个因素,包括拱桥的高度、跨度、荷载以及拱线形状等。
在解决这些问题时,二次函数成为了一种能够帮助我们分析和建模的重要工具。
首先,我们需要明确二次函数的定义。
二次函数是一个以$x$的平方项为最高项的多项式函数。
其一般形式可以表示为$f(x) = ax^2 + bx + c$,其中$a$、$b$和$c$是常系数。
二次函数图像呈现出一条平滑的曲线,其形状可以是开口向上或开口向下的拱形。
在拱桥问题中,我们常常需要根据已知条件建立二次函数模型,以分析和解决实际问题。
例如,假设我们想要设计一座拱桥,使得桥面的高度达到最大值,同时考虑到桥面的跨度应满足一定的要求。
这时,我们可以利用二次函数来描述桥面的高度,并通过优化方法来求解。
为了建立二次函数模型,我们需要首先确定函数的自变量和因变量。
在拱桥问题中,通常$x$轴表示桥面的宽度或跨度,$y$轴表示桥面的高度。
然后,我们需要考虑到已知条件。
例如,已知拱桥的两个支点之间的距离为$d$,那么我们可以设$x$的取值范围为$[0, d]$。
另外,对于一个平滑的拱形,我们可以假设二次函数在两个支点处的斜率为零。
这一条件可以转化为函数的导数为零的条件。
通过求解这些已知条件,我们可以确定二次函数的参数$a$、$b$和$c$的值。
在确定二次函数模型之后,我们可以利用这个模型来解决具体问题。
例如,我们可以利用二次函数模型来求解桥面的最大高度。
首先,求出二次函数的导函数$f'(x)$,然后令其等于零,解得极值点$x_0$。
接下来,我们计算$f(x_0)$,这就是桥面的最大高度。
除了求解最大高度,我们还可以利用二次函数模型来计算拱桥的其他性质。
例如,可以通过求解二次函数的零点来计算拱桥的支点位置。
在这个过程中,我们将二次函数设为零,并解得$x$的值。
这些值就是拱桥的支点的位置。
2022-2023学年人教版数学九年级上册压轴题专题精选汇编专题09 二次函数的实际应用—拱桥问题考试时间:120分钟 试卷满分:100分一.选择题(共10小题,满分20分,每小题2分)1.(2分)(2021九上·虹口期末)如图所示,一座抛物线形的拱桥在正常水位时,水而AB 宽为20米,拱桥的最高点O 到水面AB 的距离为4米.如果此时水位上升3米就达到警戒水位CD ,那么CD 宽为( )A .B .10米C .米D .12米【答案】B 【解析】【解答】以O 点为坐标原点,AB 的垂直平分线为y 轴,过O 点作y 轴的垂线,建立直角坐标系,设抛物线的解析式为y=ax 2,∵O 点到水面AB 的距离为4米,∴A、B 点的纵坐标为-4,∵水面AB 宽为20米,∴A(-10,-4),B (10,-4),将A 代入y=ax 2,-4=100a ,∴125a =-,∴2125y x =-,∵水位上升3米就达到警戒水位CD ,∴C 点的纵坐标为-1,∴21125x -=-∴x=±5,∴CD=10,故答案为:B .【思路引导】先建立平面直角坐标系,设抛物线的解析式为y=ax 2,再求出解析式,最后利用二次函数的性质求解即可。
2.(2分)(2021九上·安阳期中)有一拱桥洞呈抛物线形,这个桥洞的最大高度是16m ,跨度为40m ,现把它的示意图(如图)放在坐标系中,则抛物线的解析式为( )A .y =125 x 2+ 58x B .y =-125 x 2+ 85 x C .y =- 58 x 2- 125 x D .y =- 125 x 2+ 85 x +16【答案】B 【解析】【解答】解:由图可知,该抛物线开口向下,对称轴为x =20,最高点坐标为(20,16),且经过原点,由此可设该抛物线解析式为 ()22016y a x =-+ ,将原点坐标代入可得 400160a += ,解得: 125a =- ,故该抛物线解析式为 ()22118201625255y x x x =--+=-+.故答案为:B.【思路引导】由题意可设抛物线解析式为y=a(x-20)2+16,将(0,0)代入可得a的值,据此可得抛物线的解析式.3.(2分)(2021九上·诸暨月考)如图是抛物线形拱桥,当拱顶离水面2m时,水面宽4m,则水面下降1m时,水面宽度增加( )A.1m B.2mC.(﹣4)m D.(﹣2)m【答案】C【解析】【解答】解:如图,建立直角坐标系,设y=a(x-2)(x+2),∴2=a(0-2)(0+2),∴a=-12,∴y=-12(x-2)(x+2),当水面下降1米时,y=-1,∴-1=-12(x-2)(x+2),解得,∴水平宽度增加:(-4)m.故答案为:C.【思路引导】根据题意建立直角坐标系,结合数据求出二次函数解析式,再把y=-1代入抛物线解析式,则可求出此时的水面宽度,即可得出答案.4.(2分)(2020九上·郁南期末)如图所示,赵州桥的桥拱用抛物线的部分表示,其函数的关系式为 2125y x =- ,当水面宽度 AB 为20m 时,此时水面与桥拱顶的高度 DO 是( )A .2mB .4mC .10mD .16m【答案】B 【解析】【解答】解:根据题意得B 的横坐标为10,把x=10代入 2125y x =-,得y=-4,∴OD=4m,故答案为:B .【思路引导】将x=10代入函数解析式求出y=-4,再求解即可。
专题11二次函数的实际应用考点1:拱桥问题;考点2:抛球、喷泉问题;考点3:面积问题;考点4:利润问题。
1.赵州桥的桥拱是近似的抛物线形,建立如图所示的平面直角坐标系,其函数的关系式为y=−125x2,当水面离桥拱顶的高度DO是4m时,这时水面宽度AB为()A.﹣20m B.10m C.20m D.﹣10m解:根据题意B的纵坐标为﹣4,把y=﹣4代入y=−125x2,得x=±10,∴A(﹣10,﹣4),B(10,﹣4),∴AB=20m.即水面宽度AB为20m.答案:C.2.图2是图1中拱形大桥的示意图,桥拱与桥面的交点为O,B,以点O为原点,水平直线OB为x轴,建立平面直角坐标系,桥的拱形可近似看成抛物线y=−1400(x﹣80)2+16,桥拱与桥墩AC的交点C恰好在水面,有AC ⊥x轴,若OA=10米,则桥面离水面的高度AC为()A.16940米B.174米C.16740米D.154米题型01拱桥问题解:∵AC⊥x轴,OA=10米,∴点C的横坐标为﹣10,当x=﹣10时,y=−1400(x﹣80)2+16=−1400(﹣10﹣80)2+16=−174,∴C(﹣10,−174),∴桥面离水面的高度AC为174m.答案:B.3.(易错题)三孔桥横截面的三个孔都呈抛物线形,两小孔形状、大小完全相同.当水面刚好淹没小孔时,大孔水面宽度为10米,孔顶离水面1.5米;当水位下降,大孔水面宽度为14米时,单个小孔的水面宽度为4米,若大孔水面宽度为20米,则单个小孔的水面宽度为()A.43米B.52米C.213米D.7米解:如图,建立如图所示的平面直角坐标系,由题意可得MN=4,EF=14,BC=10,DO=32,设大孔所在抛物线解析式为y=ax2+32,∵BC=10,∴点B(﹣5,0),∴0=a×(﹣5)2+32,∴a=−350,∴大孔所在抛物线解析式为y=−350x2+32,设点A(b,0),则设顶点为A的小孔所在抛物线的解析式为y=m(x﹣b)2,∵EF=14,∴点E的横坐标为﹣7,∴点E坐标为(﹣7,−3625),∴−3625b)2,∴x1=b,x2=−b,∴MN=4,+b﹣(b)|=4∴m=−925,∴顶点为A的小孔所在抛物线的解析式为y=−925(x﹣b)2,∵大孔水面宽度为20米,∴当x=﹣10时,y=−92,∴−92925(x﹣b)2,∴x1=b,x2∴单个小孔的水面宽度=|+b)﹣(+b)|=52(米),答案:B.4.如图,济南建邦大桥有一段抛物线型的拱梁,抛物线的表达式为y=ax2+bx.小强骑自行车从拱梁一端O沿直线匀速穿过拱梁部分的桥面OC,当小强骑自行车行驶10秒时和26秒时拱梁的高度相同,则小强骑自行车通过拱梁部分的桥面OC共需36秒.解:如图,设从O到A花10秒,从O到B花26秒,则由对称性可知OA=BC,故从B到C也花10秒,故从O到C一共花26+10=36(秒),答案:36.5.如图,一抛物线型拱桥,当拱顶到水面的距离为2米时,水面宽度为4米;那么当水位下降1米后,水面的宽解:如图,建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C点,则通过画图可得知O为原点,抛物线以y轴为对称轴,且经过A,B两点,OA和OB可求出为AB的一半2米,抛物线顶点C坐标为(0,2),通过以上条件可设顶点式y=ax2+2,其中a可通过代入A点坐标(﹣2,0),到抛物线解析式得出:a=﹣0.5,所以抛物线解析式为y=﹣0.5x2+2,当水面下降1米,通过抛物线在图上的观察可转化为:当y=﹣1时,对应的抛物线上两点之间的距离,也就是直线y=﹣1与抛物线相交的两点之间的距离,可以通过把y=﹣1代入抛物线解析式得出:﹣1=﹣0.5x2+2,解得:x=±6,所以水面宽度增加到26米,答案:26米.6.某校想将新建图书楼的正门设计为一个抛物线型门,并要求所设计的拱门的跨度与拱高之积为48m3,还要兼顾美观、大方,和谐、通畅等因素,设计部门按要求价出了两个设计方案.现把这两个方案中的拱门图形放入平面直角坐标系中,如图所示:方案一,抛物线型拱门的跨度ON=12m,拱高PE=4m.其中,点N在x轴上,PE⊥ON,OE=EN.方案二,抛物线型拱门的跨度ON′=8m,拱高P'E'=6m.其中,点N′在x轴上,P′E′⊥O′N′,O′E′=E′N′.要在拱门中设置高为3m的矩形框架,其面积越大越好(框架的粗细忽略不计).方案一中,矩形框架ABCD的面积记为S1,点A、D在抛物线上,边BC在ON上;方案二中,矩形框架A'B'C′D'的面积记为S2,点A',D'在抛物线上,边B'C'在ON'上.现知,小华已正确求出方案二中,当A'B'=3m时,2=1222,请你根据以上提供的相关信息,解答下列问题:(1)求方案一中抛物线的函数表达式;(2)在方案一中,当AB=3m时,求矩形框架ABCD的面积S1并比较S1,S2的大小.解:(1)由题意知,方案一中抛物线的顶点P(6,4),设抛物线的函数表达式为y=a(x﹣6)2+4,把O(0,0)代入得:0=a(0﹣6)2+4,解得:a=−19,∴y=−19(x﹣6)2+4=−19x2+43x;∴方案一中抛物线的函数表达式为y=−19x2+43x;(2)在y=−19x2+43x中,令y=3得:3=−19x2+43x;解得x=3或x=9,∴BC=9﹣3=6(m),∴S1=AB•BC=3×6=18(m2);∵18>122,∴S1>S2.7.(易错题)如图1是一座抛物线型拱桥侧面示意图.水面宽AB与桥长CD均为24m,在距离D点6米的E处,测得桥面到桥拱的距离EF为1.5m,以桥拱顶点O为原点,桥面为x轴建立平面直角坐标系.(1)求桥拱顶部O离水面的距离.(2)如图2,桥面上方有3根高度均为4m的支柱CG,OH,DI,过相邻两根支柱顶端的钢缆呈形状相同的抛物线,其最低点到桥面距离为1m.①求出其中一条钢缆抛物线的函数表达式.②为庆祝节日,在钢缆和桥拱之间竖直装饰若干条彩带,求一条彩带长度的最小值.解:(1)根据题意可知点F的坐标为(6,﹣1.5),可设拱桥侧面所在二次函数表达式为:y1=a1x2.将F(6,﹣1.5)代入y1=a1x2有:﹣1.5=36a1,求得a1=−124,∴y1=−124x2,当x=12时,y1=−124×122=﹣6,∴桥拱顶部离水面高度为6m.(2)①由题意可知右边钢缆所在抛物线的顶点坐标为(6,1),可设其表达式为y2=a2(x﹣6)2+1,将H(0,4)代入其表达式有:4=a2(0﹣6)2+1,求得a2=112,∴右边钢缆所在抛物线表达式为:y2=112(x﹣6)2+1,同理可得左边钢缆所在抛物线表达式为:y3=112(x+6)2+1②设彩带的长度为Lm,则L=y2﹣y1=112(x﹣6)2+1﹣(−124x2)=182−+4=18(−4)2+2,∴当x=4时,L最小值=2,答:彩带长度的最小值是2m.8.某景点的“喷水巨龙”口中C处的水流呈抛物线形,该水流喷出的高度y(m)与水平距离x(m)之间的关系如图所示,D为该水流的最高点,DA⊥OB,垂足为A.已知OC=OB=8m,OA=2m,则该水流距水平面的最大高度AD的长度为()A.9m B.10m C.11m D.12m解:根据题意,设抛物线解析式为y=a(x﹣2)2+k,将点C(0,8)、B(8,0)代入,得:4+=836+=0,解得=−14=9,∴抛物线解析式为y=−14(x﹣2)2+9,所以当x=2时,y=9,即AD=9m,答案:A.9.某幢建筑物,从10米高的窗口A用水管和向外喷水,喷的水流呈抛物线(抛物线所在平面与墙面垂直),(如图)如果抛物线的最高点M离墙1米,离地面403米,则水流下落点B离墙距离OB是()题型02抛球、喷泉问题A.2米B.3米C.4米D.5米解:设抛物线解析式:y=a(x﹣1)2+403,把点A(0,10)代入抛物线解析式得:a=−103,∴抛物线解析式:y=−103(x﹣1)2+403.当y=0时,x1=﹣1(舍去),x2=3.∴OB=3米.答案:B.10.竖直上抛物体离地面的高度h(m)与运动时间t(s)之间的关系可以近似地用公式h=﹣5t2+v0t+h0表示,其中h0(m)是物体抛出时离地面的高度,v0(m/s)是物体抛出时的速度.某人将一个小球从距地面1.5m的高处以20m/s的速度竖直向上抛出,小球达到的离地面的最大高度为()A.23.5m B.22.5m C.21.5m D.20.5m解:由题意可得,h=﹣5t2+20t+1.5=﹣5(t﹣2)2+21.5,因为a=﹣5<0,故当t=2时,h取得最大值,此时h=21.5,答案:C.11.(易错题)如图,水池中心点O处竖直安装一水管,水管喷头喷出抛物线形水柱,喷头上下移动时,抛物线形水柱随之竖直上下平移,水柱落点与点O在同一水平面.安装师傅调试发现,喷头高2.5m时,水柱落点距O点2.5m;喷头高4m时,水柱落点距O点3m.那么喷头高8m时,水柱落点距O点4m.解:由题意可知,在调整喷头高度的过程中,水柱的形状不发生变化,当喷头高2.5m时,可设y=ax2+bx+2.5,将(2.5,0)代入解析式得出6.25a+2.5b+2.5=0,整理得2.5a+b+1=0①;喷头高4m时,可设y=ax2+bx+4;将(3,0)代入解析式得9a+3b+4=0②,联立可求出a=−23,b=23,设喷头高为h时,水柱落点距O点4m,∴此时的解析式为y=−23x2+23x+h,将(4,0)代入可得−23×42+23×4+h=0,解得h=8.答案:8.12.如图,以一定的速度将小球沿与地面成一定角度的方向击出时,小球的飞行路线是一条抛物线.若不考虑空气阻力,小球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有函数关系:h=﹣5t2+20t,则当小球飞行高度达到最高时,飞行时间t=2s.解:∵h=﹣5t2+20t=﹣5(t﹣2)2+20,且﹣5<0,∴当t=2时,h取最大值20,答案:2.13.某学生在一平地上推铅球,铅球出手时离地面的高度为53米,出手后铅球在空中运动的高度y(米)与水平距离x(米)之间的函数关系式为y=−112x2+bx+c,当铅球运行至与出手高度相等时,与出手点水平距离为8米,则该学生推铅球的成绩为10米.解:设铅球出手点为点A,当铅球运行至与出手高度相等时为点B,根据题意建立平面直角坐标系,如图:由题意可知,点A(0,53),点B(8,53),代入y=−112x2+bx+c,得:==−112×82+8+,解得=23=53.∴y=−112x2+23x+53,当y=0时,0=−112x2+23x+53,解得x1=10,x2=﹣2(不符合题意,舍去).∴该学生推铅球的成绩为10m.答案:10.14.一次足球训练中,小明从球门正前方8m的A处射门,球射向球门的路线呈抛物线.当球飞行的水平距离为6m 时,球达到最高点,此时球离地面3m.已知球门高OB为2.44m,现以O为原点建立如图所示直角坐标系.(1)求抛物线的函数表达式,并通过计算判断球能否射进球门(忽略其他因素);(2)对本次训练进行分析,若射门路线的形状、最大高度均保持不变,则当时他应该带球向正后方移动多少米射门,才能让足球经过点O正上方2.25m处?解:(1)∵8﹣6=2,∴抛物线的顶点坐标为(2,3),设抛物线为y=a(x﹣2)2+3,把点A(8,0)代入得:36a+3=0,解得a=−112,∴抛物线的函数表达式为y=−112(x﹣2)2+3;当x=0时,y=−112×4+3=83>2.44,∴球不能射进球门.(2)设小明带球向正后方移动m米,则移动后的抛物线为y=−112(x﹣2﹣m)2+3,把点(0,2.25)代入得:2.25=−112(0﹣2﹣m)2+3,解得m=﹣5(舍去)或m=1,∴当时他应该带球向正后方移动1米射门,才能让足球经过点O正上方2.25m处.15.(易错题)跳台滑雪运动可分为助滑、起跳、飞行和落地四个阶段,运动员起跳后飞行的路线是抛物线的一部分(如图中实线部分所示),落地点在着陆坡(如图中虚线部分所示)上,着陆坡上的基准点K为飞行距离计分的参照点,落地点超过K点越远,飞行距离分越高.2022年北京冬奥会跳台滑雪标准台的起跳台的高度OA为66m,基准点K到起跳台的水平距离为75m,高度为hm(h为定值).设运动员从起跳点A起跳后的高度y(m)与水平距离x(m)之间的函数关系为y=ax2+bx+c(a≠0).(1)c的值为66;(2)①若运动员落地点恰好到达K点,且此时a=−150,b=910,求基准点K的高度h;②若a=−150时,运动员落地点要超过K点,则b的取值范围为b>910;(3)在(2)的条件下,若运动员飞行的水平距离为25m时,恰好达到最大高度76m,试判断他的落地点能否超过K点,并说明理由.解:(1)∵起跳台的高度OA为66m,∴A(0,66),把A(0,66)代入y=ax2+bx+c得:c=66,答案:66;(2)①∵a=−150,b=910,∴y=−150x2+910x+66,∵基准点K到起跳台的水平距离为75m,∴y=−150×752+910×75+66=21,∴基准点K的高度h为21m;②∵a=−150,∴y=−150x2+bx+66,∵运动员落地点要超过K点,∴x=75时,y>21,即−150×752+75b+66>21,解得b>910,答案:b>910;(3)他的落地点能超过K点,理由如下:∵运动员飞行的水平距离为25m时,恰好达到最大高度76m,∴抛物线的顶点为(25,76),设抛物线解析式为y=a(x﹣25)2+76,把(0,66)代入得:66=a(0﹣25)2+76,解得a=−2125,∴抛物线解析式为y=−2125(x﹣25)2+76,当x=75时,y=−2125×(75﹣25)2+76=36,∵36>21,∴他的落地点能超过K点.16.(易错题)科研人员为了研究弹射器的某项性能,利用无人机测量小钢球竖直向上运动的相关数据.无人机上升到离地面30米处开始保持匀速竖直上升,此时,在地面用弹射器(高度不计)竖直向上弹射一个小钢球(忽略空气阻力),在1秒时,它们距离地面都是35米,在6秒时,它们距离地面的高度也相同.其中无人机离地面高度y1(米)与小钢球运动时间x(秒)之间的函数关系如图所示;小钢球离地面高度y2(米)与它的运动时间x(秒)之间的函数关系如图中抛物线所示.(1)直接写出y1与x之间的函数关系式;(2)求出y2与x之间的函数关系式;(3)小钢球弹射1秒后直至落地时,小钢球和无人机的高度差最大是多少米?解:(1)设y1与x之间的函数关系式为y1=kx+b,∵函数图象过点(0,30)和(1,35),则+=35=30,解得:=5=30,∴y1与x之间的函数关系式为y1=5x+30;(2)∵x=6时,y1=5×6+30=60,∵y2的图象是过原点的抛物线,设y2=ax2+bx,∴点(1.35),(6.60)在抛物线y2=ax2+bx上,∴+=3536+6=60,解得:=−5=40,∴y2=﹣5x2+40x,答:y2与x的函数关系式为y2=﹣5x2+40x;(3)设小钢球和无人机的高度差为y米,由﹣5x2+40x=0得,x=0或x=8,①1<x≤6时,y=y2﹣y1=﹣5x2+40x﹣5x﹣30=﹣5x2+35x﹣30=﹣5(x−72)2+1254∵a=﹣5<0,∴抛物线开口向下,又∵1<x≤6,∴当x=72时,y的最大值为1254;②6<x≤8时,y=y1﹣y2=5x+30+5x2﹣40x=5x2﹣35x+30=5(x−72)2−1254,∵a=5>0,∴抛物线开口向上,又∵对称轴是直线x=72,∴当x>72时,y随x的增大而增大,∵6<x≤8,∴当x=8时,y的最大值为70,∵1254<70,∴高度差的最大值为70米.题型03面积问题17.九年级2班计划在劳动实践基地内种植蔬菜,班长买回来8米长的围栏,准备围成一边靠墙(墙足够长)的菜园,为了让菜园面积尽可能大,同学们提出了围成矩形、等腰三角形(底边靠墙)、半圆形这三种方案,最佳方)案是(A.方案1B.方案2C.方案3D.方案1或方案2解:方案1:设AD=x米,则AB=(8﹣2x)米,则菜园面积=x(8﹣2x)=﹣2x2+8x=﹣2(x﹣2)2+8,当x=2时,此时菜园最大面积为8米2;方案2:如图,过点B作BH⊥AC于H,则BH≤AB=4,=12•AC•BH,∵S△ABC;∴当BH=4时,△ABC的面积最大为12×4×4=8方案3:半圆的半径=8米,∴此时菜园最大面积=H(8)22=32米2>8米2;答案:C.18.在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28m长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设AB=m.若在P处有一棵树与墙CD,AD的距离分别是15m和6m,要将这棵树围在花园内(含边界,不考虑树的粗细),则花园面积S的最大值为()A.193B.194C.195D.196解:∵AB=m米,∴BC=(28﹣m)米.则S=AB•BC=m(28﹣m)=﹣m2+28m.即S=﹣m2+28m(0<m<28).由题意可知,≥628−≥15,解得6≤m≤13.∵在6≤m≤13内,S随m的增大而增大,∴当m=13时,S=195,最大值即花园面积的最大值为195m2.答案:C.19.(易错题)如图,利用一个直角墙角修建一个梯形储料场ABCD,其中∠C=120°.若新建墙BC与CD总长为12m,则该梯形储料场ABCD的最大面积是()A.18m2B.183m2C.243m2D.4532m2解:如图,过点C作CE⊥AB于E,则四边形ADCE为矩形,∴CD=AE,∠DCE=∠CEB=90°,设CD=AE=xm,则∠BCE=∠BCD﹣∠DCE=30°,BC=(12﹣x)m,在Rt△CBE中,∵∠CEB=90°,∴BE=12BC=(6−12x)m,∴AD=CE=3BE=(63−32x)m,AB=AE+BE=x+6−12x=(12x+6)m,∴梯形ABCD面积S=12(CD+AB)•CE=12(x+12x+6)•(63−32x)338x2+33x+183=−338(x﹣4)2+243,=243.∴当x=4时,S最大即CD长为4m时,使梯形储料场ABCD的面积最大为243m2;答案:C.20.某农场拟建两间矩形饲养室,一面靠现有墙(墙足够长),中间用一道墙隔开,并在如图所示的三处各留1m宽的门.已知计划中的材料可建墙体(不包括门)总长为27m,则能建成的饲养室面积最大为75m2.解:设垂直于墙的材料长为x米,则平行于墙的材料长为27+3﹣3x=30﹣3x,则总面积S=x(30﹣3x)=﹣3x2+30x=﹣3(x﹣5)2+75,故饲养室的最大面积为75平方米,答案:75.21.如图,一块矩形土地ABCD由篱笆围着,并且由一条与CD边平行的篱笆EF分开.已知篱笆的总长为900m(篱笆的厚度忽略不计),当AB=150m时,矩形土地ABCD的面积最大.解:设AB=xm,则BC=12(900﹣3x),由题意可得,S=AB×BC=x×12(900﹣3x)=−32(x2﹣300x)=−32(x﹣150)2+33750∴当x=150时,S取得最大值,此时,S=33750,∴AB=150m,答案:150.22.(易错题)为了节省材料,某农场主利用围墙(围墙足够长)为一边,用总长为80m的篱笆围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等,则能围成的矩形区域ABCD的面积最大值是300m2.解:如图,∵三块矩形区域的面积相等,∴矩形AEFD面积是矩形BCFE面积的2倍,∴AE=2BE,设BC=x,BE=FC=a,则AE=HG=DF=2a,∴DF+FC+HG+AE+EB+EF+BC=80,即8a+2x=80,∴a=−14x+10,3a=−34x+30,∴矩形区域ABCD的面积S=(−34x+30)x=−34x2+30x,∵a=−14x+10>0,∴x<40,则S=−34x2+30x(0<x<40);∵S=−34x2+30x=−34(x﹣20)2+300(0<x<40),且二次项系数为−34<0,∴当x=20时,S有最大值,最大值为300m2.答案:300.23.为落实国家《关于全面加强新时代大中小学劳动教育的意见》,某校准备在校园里利用围墙(墙长12m)和21m 长的篱笆墙,围成Ⅰ、Ⅱ两块矩形劳动实践基地.某数学兴趣小组设计了两种方案(除围墙外,实线部分为篱笆墙,且不浪费篱笆墙),请根据设计方案回答下列问题:(1)方案一:如图①,全部利用围墙的长度,但要在Ⅰ区中留一个宽度AE=1m的水池,且需保证总种植面积为32m2,试分别确定CG、DG的长;(2)方案二:如图②,使围成的两块矩形总种植面积最大,请问BC应设计为多长?此时最大面积为多少?解:(1)∵(21﹣12)÷3=3(m),∴Ⅰ、Ⅱ两块矩形的面积为12×3=36(m2),设水池的长为am,则水池的面积为a×1=a(m2),∴36﹣a=32,解得a=4,∴DG=4m,∴CG=CD﹣DG=12﹣4=8(m),即CG的长为8m、DG的长为4m;(2)设BC长为xm,则CD长度为21﹣3x,∴总种植面积为(21﹣3x)•x=﹣3(x2﹣7x)=﹣3(x−72)2+1474,∵﹣3<0,∴当x =72时,总种植面积有最大值为1474m 2,即BC 应设计为72m 总种植面积最大,此时最大面积为1474m 2.24.一件工艺品进价为100元,标价135元售出,每天可售出100件.根据销售统计,一件工艺品每降价1元出售,则每天可多售出4件,要使每天获得的利润最大,每件需降价的钱数为()A .5元B .10元C .0元D .36元解:设每件需降价的钱数为x 元,每天获利y 元,则y =(135﹣x ﹣100)(100+4x )即:y =﹣4(x ﹣5)2+3600∵﹣4<0∴当x =5元时,每天获得的利润最大.答案:A .25.某宾馆共有80间客房.宾馆负责人根据经验作出预测:今年7月份,每天的房间空闲数y (间)与定价x (元/间)之间满足y =14x ﹣42(x ≥168).若宾馆每天的日常运营成本为5000元,有客人入住的房间,宾馆每天每间另外还需支出28元的各种费用,宾馆想要获得最大利润,同时也想让客人得到实惠,应将房间定价确定为()A .252元/间B .256元/间C .258元/间D .260元/间解:设每天的利润为W 元,根据题意,得:W =(x ﹣28)(80﹣y )﹣5000=(x ﹣28)[80﹣(14x ﹣42)]﹣5000=−14x 2+129x ﹣8416=−14(x ﹣258)2+8225,∵当x =258时,y =14×258﹣42=22.5,不是整数,∴x =258舍去,∴当x =256或x =260时,函数取得最大值,最大值为8224元,题型04利润问题又∵想让客人得到实惠,∴x=260(舍去)∴宾馆应将房间定价确定为256元时,才能获得最大利润,最大利润为8224元.答案:B.26.“闻起来臭,吃起来香”的臭豆腐是长沙特色小吃,臭豆腐虽小,但制作流程却比较复杂,其中在进行加工煎炸臭豆腐时,我们把“焦脆而不糊”的豆腐块数的百分比称为“可食用率”.在特定条件下,“可食用率”P与加工煎炸时间t(单位:分钟)近似满足的函数关系为:P=at2+bt+c(a≠0,a,b,c是常数),如图记录了三次实验的数据.根据上述函数关系和实验数据,可以得到加工煎炸臭豆腐的最佳时间为()A.3.50分钟B.4.05分钟C.3.75分钟D.4.25分钟解:将图象中的三个点(3,0.8)、(4,0.9)、(5,0.6)代入函数关系P=at2+bt+c中,9+3+=0.816+4+=0.925+5+=0.6,解得=−0.2=1.5=−1.9,所以函数关系式为:P=﹣0.2t2+1.5t﹣1.9,由题意可知:加工煎炸臭豆腐的最佳时间为抛物线顶点的横坐标:t=−2=−1.52×(−0.2)=3.75,则当t=3.75分钟时,可以得到最佳时间.答案:C.27.某快餐店销售A、B两种快餐,每份利润分别为12元、8元,每天卖出份数分别为40份、80份.该店为了增加利润,准备降低每份A种快餐的利润,同时提高每份B种快餐的利润.售卖时发现,在一定范围内,每份A 种快餐利润每降1元可多卖2份,每份B种快餐利润每提高1元就少卖2份.如果这两种快餐每天销售总份数不变,那么这两种快餐一天的总利润最多是1264元.解:设每份A种快餐降价a元,则每天卖出(40+2a)份,每份B种快餐提高b元,则每天卖出(80﹣2b)份,由题意可得,40+2a+80﹣2b=40+80,解得a=b,∴总利润W=(12﹣a)(40+2a)+(8+a)(80﹣2a)=﹣4a2+48a+1120=﹣4(a﹣6)2+1264,∵﹣4<0,∴当a=6时,W取得最大值1264,即两种快餐一天的总利润最多为1264元.答案:1264.28.某食品零售店新上架一款冷饮产品,每个成本为8元,在销售过程中,每天的销售量y(个)与销售价格x(元/个)的关系如图所示,当10≤x≤20时,其图象是线段AB,则该食品零售店每天销售这款冷饮产品的最大利润为121元(利润=总销售额﹣总成本).解:当10≤x≤20时,设y=kx+b,把(10,20),(20,10)代入可得:10+=2020+=10,解得=−1=30,∴每天的销售量y(个)与销售价格x(元/个)的函数解析式为y=﹣x+30,设该食品零售店每天销售这款冷饮产品的利润为w元,w=(x﹣8)y=(x﹣8)(﹣x+30)=﹣x2+38x﹣240=﹣(x﹣19)2+121,∵﹣1<0,∴当x=19时,w有最大值为121,答案:121.29.某电商销售一款夏季时装,进价40元/件,售价110元/件,每天销售20件,每销售一件需缴纳电商平台推广费用a元(a>0).未来30天,这款时装将开展“每天降价1元”的夏令促销活动,即从第1天起每天的单价均比前一天降1元.通过市场调研发现,该时装单价每降1元,每天销量增加4件.在这30天内,要使每天缴纳电商平台推广费用后的利润随天数t(t为正整数)的增大而增大,a的取值范围应为0<a<6.解:设未来30天每天获得的利润为y,y=(110﹣40﹣t)(20+4t)﹣(20+4t)a化简,得y=﹣4t2+(260﹣4a)t+1400﹣20a每天缴纳电商平台推广费用后的利润随天数t(t为正整数)的增大而增大,∴−260−42×(−4)>29.5,解得,a<6,又∵a>0,即a的取值范围是:0<a<6.30.(易错题)某商店销售某种商品的进价为每件30元,这种商品在近60天中的日销售价与日销售量的相关信息如下表:时间:第x(天)1≤x≤3031≤x≤60日销售价(元/件)0.5x+3550日销售量(件)124﹣2x(1≤x≤60,x为整数)设该商品的日销售利润为w元.(1)直接写出w与x的函数关系式w=−2+52+620(1≤≤30)−40+2480(31≤≤60);(2)该商品在第几天的日销售利润最大?最大日销售利润是多少?解:(1)当1≤x≤30时,w=(0.5x+35﹣30)•(﹣2x+124)=﹣x2+52x+620,当31≤x≤60时,w=(50﹣30)•(﹣2x+124)=﹣40x+2480,∴w与x的函数关系式w=−2+52+620(1≤≤30)−40+2480(31≤≤60),答案:w=−2+52+620(1≤≤30)−40+2480(31≤≤60);(2)当1≤x≤30时,w=﹣x2+52x+620=﹣(x﹣26)2+1296,∵﹣1<0,∴当x=26时,w有最大值,最大值为1296;当31≤x≤60时,w=﹣40x+2480,∵﹣40<0,∴当x=31时,w有最大值,最大值为﹣40×31+2480=1240,∵1296>1240,∴该商品在第26天的日销售利润最大,最大日销售利润是1296元.31.(易错题)某工厂计划从A,B两种产品中选择一种生产并销售,每日产销x件.已知A产品成本价m元/件(m 为常数,且4≤m≤6,售价8元/件,每日最多产销500件,同时每日共支付专利费30元;B产品成本价12元/件,售价20元/件,每日最多产销300件,同时每日支付专利费y元,y(元)与每日产销x(件)满足关系式y =80+0.01x2.(1)若产销A,B两种产品的日利润分别为w1元,w2元,请分别写出w1,w2与x的函数关系式,并写出x的取值范围;(2)分别求出产销A,B两种产品的最大日利润.(A产品的最大日利润用含m的代数式表示)(3)为获得最大日利润,该工厂应该选择产销哪种产品?并说明理由.【利润=(售价﹣成本)×产销数量﹣专利费】解:(1)根据题意,得w1=(8﹣m)x﹣30,(0≤x≤500).w2=(20﹣12)x﹣(80+0.01x2)=﹣0.01x2+8x﹣80,(0≤x≤300).(2)∵8﹣m>0,∴w1随x的增大而增大,又0≤x≤500,∴当x=500时,w1有最大值,即w最大=﹣500m+3970(元).∵w2=﹣0.01x2+8x﹣80=﹣0.01(x﹣400)2+1520.又∵﹣0.01<0.对称轴x=400.∴当0≤x≤300时,w2随x的增大而增大,∴当x=300时,w2最大=﹣0.01×(300﹣400)2+1520=1420(元).(3)①若w1最大=w2最大,即﹣500m+3970=1420,解得m=5.1,②若w1最大>w2最大,即﹣500m+3970>1420,解得m<5.1,③若w1最大<w2最大,即﹣500m+3970<1420,解得m>5.1.又4≤m≤6,综上可得,为获得最大日利润:当m=5.1时,选择A,B产品产销均可;当4≤m<5.1时,选择A种产品产销;当5.1<m≤6时,选择B种产品产销.答:当A产品成本价为5.1元时,工厂选择A或B产品产销日利润一样大,当A产品4≤m<5.1时,工厂选择A 产品产销日利润最大,当5.1<m≤6时,工厂选择B产品产销日利润最大.。
二次函数实际问题之拱桥问题拱桥是一种常见而美丽的建筑形式,它不仅具备实用功能,还能展示人类的工程智慧和美感。
在数学中,我们可以通过二次函数来研究拱桥的形状和特性。
在本文中,我将探讨二次函数在拱桥问题中的应用,并深入分析拱桥的建设、维护和设计过程。
1. 什么是二次函数?二次函数是一种常见的函数形式,它的一般表达式为f(x) = ax^2 +bx + c,其中a、b、c为常数。
二次函数的图像呈现出拱形或倒U形,其特点是在抛物线的顶点处有极值,也就是最高点或最低点。
这个性质使得二次函数在拱桥的研究中十分有用。
2. 拱桥问题的背景拱桥是一种由石头、混凝土等材料构成的桥梁,它通常被用于跨越河流、道路等障碍物。
拱桥在建筑和土木工程领域中扮演着重要的角色,因为它具备良好的承重能力和抗压性能。
为了确保拱桥的稳定和安全,工程师需要对其结构进行精确的设计和分析。
3. 拱桥的建设和维护拱桥的建设需要考虑许多因素,包括地理条件、基础设施、荷载等。
为了使拱桥具备足够的承重能力,工程师需要合理地确定拱的形状和高度。
在这个过程中,二次函数可以帮助我们建立与拱桥形状相关的方程。
通过研究这个方程,我们可以了解拱桥的强度和稳定性,并做出相应的调整和改进。
4. 二次函数在拱桥设计中的应用在拱桥设计中,二次函数可以帮助我们确定拱桥的最高点、最低点和抛物线的形状。
通过调整二次函数的参数,工程师可以得到不同形状和高度的拱桥。
二次函数还可以帮助我们计算拱桥的支持点位置、曲率和承重能力。
通过分析二次函数的图像和方程,我们可以预测拱桥在不同荷载下的行为,并为拱桥的设计提供指导。
5. 个人观点和理解作为一个写手,我对拱桥问题有着浓厚的兴趣。
通过研究二次函数在拱桥设计中的应用,我深刻意识到数学在工程中的重要性。
二次函数不仅能描述拱桥的形状和特性,还可以帮助我们预测和优化拱桥的结构。
在今后的工作中,我希望能继续深入研究拱桥问题,并与工程师们合作,为建设更安全、美观的拱桥贡献自己的力量。