中考数学—圆与相似的综合压轴题专题复习及答案.doc
- 格式:doc
- 大小:1.39 MB
- 文档页数:28
中考数学压轴题专题圆与相似的经典综合题及答案一、相似1.如图所示,△ ABC 中, AB=AC,∠ BAC=90°, AD⊥ BC, DE⊥ AC,△ CDE 沿直线 BC 翻折到△ CDF,连结 AF 交 BE、 DE、 DC分别于点 G、 H、I.(1)求证: AF⊥ BE;(2)求证: AD=3DI.【答案】(1)证明:∵在△ ABC中, AB=AC,∠ BAC=90°, D 是 BC 的中点,∴AD=BD=CD,∠ ACB=45 ,°∵在△ ADC中, AD=DC,DE⊥ AC,∴A E=CE,∵△ CDE沿直线 BC 翻折到△ CDF,∴△ CDE≌ △CDF,∴C F=CE,∠ DCF=∠ACB=45 ,°∴C F=AE,∠ ACF=∠DCF+∠ACB=90 ,°在△ ABE 与△ ACF中,,∴△ ABE≌ △ ACF(SAS),∴∠ ABE=∠ FAC,∵∠ BAG+∠ CAF=90 ,°∴∠ BAG+∠ ABE=90 ,°∴∠ AGB=90 ,°∴AF⊥BE(2)证明:作IC 的中点 M,连接 EM,由( 1)∠ DEC=∠ECF=∠ CFD=90°∴四边形 DECF是正方形,∴EC∥ DF, EC=DF,∴∠ EAH=∠ HFD, AE=DF,在△ AEH 与△FDH 中,∴△ AEH≌ △FDH( AAS),∴EH=DH,∵∠ BAG+∠ CAF=90 ,°∴∠ BAG+∠ ABE=90 ,°∴∠ AGB=90 ,°∴AF⊥BE,∵M 是 IC 的中点, E 是 AC 的中点,∴EM∥AI,∴,∴DI=IM ,∴CD=DI+IM+MC=3DI,∴AD=3DI【解析】【分析】( 1)根据翻折的性质和SAS 证明△ ABE≌ △ ACF,利用全等三角形的性质得出∠ ABE=∠ FAC,再证明∠ AGB=90°,可证得结论。
中考数学压轴题专题复习——圆与相似的综合及详细答案一、相似1.如图,在中,,于点,点在上,且,连接.(1)求证:(2)如图,将绕点逆时针旋转得到(点分别对应点),设射线与相交于点,连接,试探究线段与之间满足的数量关系,并说明理由.【答案】(1)证明:在Rt△AHB中,∠ABC=45°,∴AH=BH,在△BHD和△AHC中,,∴△BHD≌△AHC,∴(2)解:方法1:如图1,∵△EHF是由△BHD绕点H逆时针旋转30°得到,∴HD=HF,∠AHF=30°∴∠CHF=90°+30°=120°,由(1)有,△AEH和△FHC都为等腰三角形,∴∠GAH=∠HCG=30°,∴CG⊥AE,∴点C,H,G,A四点共圆,∴∠CGH=∠CAH,设CG与AH交于点Q,∵∠AQC=∠GQH,∴△AQC∽△GQH,∴,∵△EHF是由△BHD绕点H逆时针旋转30°得到,由(1)知,BD=AC,∴EF=AC∴即:EF=2HG.方法2:如图2,取EF的中点K,连接GK,HK,∵△EHF是由△BHD绕点H逆时针旋转30°得到,∴HD=HF,∠AHF=30°∴∠CHF=90°+30°=120°,由(1)有,△AEH和△FHC都为等腰三角形,∴∠GAH=∠HCG=30°,∴CG⊥AE,由旋转知,∠EHF=90°,∴EK=HK= EF∴EK=GK= EF,∴HK=GK,∵EK=HK,∴∠FKG=2∠AEF,∵EK=GK,∴∠HKF=2∠HEF,由旋转知,∠AHF=30°,∴∠AHE=120°,由(1)知,BH=AH,∵BH=EH,∴AH=EH,∴∠AEH=30°,∴∠HKG=∠FKG+∠HKF=2∠AEF+2∠HEF=2∠AEH=60°,∴△HKG是等边三角形,∴GH=GK,∴EF=2GK=2GH,即:EF=2GH.【解析】【分析】(1)根据等腰直角三角形的性质得出AH=BH,然后由SAS判断出△BHD≌△AHC,根据全等三角形对应角相等得出答案;(2)方法1:如图1,根据旋转的性质得出HD=HF,∠AHF=30°根据角的和差得出∠CHF=90°+30°=120°,由(1)有,△AEH和△FHC都为等腰三角形,根据等腰三角形若顶角相等则底角也相等得出∠GAH=∠HCG=30°,根据三角形的内角和得出CG⊥AE,从而得出点C,H,G,A四点共圆,根据圆周角定理同弧所对的圆周角相等得出∠CGH=∠CAH,根据对顶角相等得出∠AQC=∠GQH,从而得出△AQC∽△GQH,根据全等三角形对应边成比例得出 A C∶ H G = A Q∶ G Q = 1 ∶sin 30 ° = 2,根据旋转的性质得出EF=BD,由(1)知,BD=AC,从而得出EF=ACEF=BD,由E F∶ H G = A C∶ G H = A Q∶ G Q = 1∶ sin 30 ° = 2得出结论;方法2:如图2,取EF的中点K,连接GK,HK,根据旋转的性质得出HD=HF,∠AHF=30°根据角的和差得出∠CHF=90°+30°=120°,由(1)有,△AEH和△FHC都为等腰三角形,根据等腰三角形若顶角相等则底角也相等得出∠GAH=∠HCG=30°,根据三角形的内角和得出CG⊥AE,由旋转知,∠EHF=90°,根据直角三角形斜边上的中线等于斜边的一半得出EK=HK= EF,EK=GK= EF,从而得出HK=GK,根据等边对等角及三角形的外角定理得出∠FKG=2∠AEF,∠HKF=2∠HEF,由旋转知,∠AHF=30°,故∠AHE=120°,由(1)知,BH=AH,根据等量代换得出AH=EH,根据等边对等角得出∠AEH=30°,∠HKG=∠FKG+∠HKF=2∠AEF+2∠HEF=2∠AEH=60°,根据有一个角为60°的等腰三角形是等边三角形得出△HKG是等边三角形,根据等边三角形三边相等得出GH=GK,根据等量代换得出EF=2GK=2GH。
中考数学压轴题专题复习——圆与相似的综合含答案解析一、相似1.如图①,已知直线l1∥l2,线段AB在直线l1上,BC垂直于l1交l2于点C,且AB=BC,P是线段BC上异于两端点的一点,过点P的直线分别交l2,l1于点D,E(点A,E位于点B的两侧,满足BP=BE,连接AP,CE.(1)求证:△ABP≌△CBE.(2)连接AD、BD,BD与AP相交于点F,如图②.①当时,求证:AP⊥BD;②当 (n>1)时,设△PAD的面积为S1,△PCE的面积为S2,求的值.【答案】(1)证明:BC⊥直线l1,∴∠ABP=∠CBE.在△ABP和△CBE中,(2)①证明:如图,延长AP交CE于点H.∵△ABP≌△CBE,∴∠PAB=∠ECB,∴∠PAB+∠AEH=∠ECB+∠AEH=90°,∴∠AHE=90°,∴AP⊥CE.∵,即P为BC的中点,直线l1∥直线l2,∴△CPD∽△BPE,∴,∴DP=EP.∴四边形BDCE是平行四边形,∴CE∥BD.∵AP⊥CE,∴AP⊥BD.②解:∵,∴BC=nBP,∴CP=(n-1)BP.∵CD∥BE,∴△CPD∽△BPE,∴.令S△BPE=S,则S2=(n-1)S,S△PAB=S△BCE=nS,S△PAE=(n+1)S.∵,∴S1=(n+1)(n-1)S,∴.【解析】【分析】(1)由已知条件用边角边即可证得△ABP≌△CBE;(2)①、延长AP交CE于点H,由(1)知△ABP≌△CBE,所以可得∠PAB=∠ECB,而∠∠ECB+∠BEC=,所以可得∠PAB+∠BEC=,即∠AHE=,所以AP⊥CE;已知=2,则点P为BC的中点,所以易证得BE=CD,由有一组对边平行且相等的四边形是平行四边形可得四边形BDCE是平行四边形,由平行四边形的性质可得CE∥BD,再根据平行线的性质即可求得AP⊥BD;②方法与①类似,由已知条件易证得△CPD∽△BPE,则可得对应线段的比相等,然后可将△PAD的面积和△PCE的面积用三角形BPE的面积表示出来,则这两个三角形的比值即可求解。
中考数学——圆与相似的综合压轴题专题复习含答案解析一、相似1.已知直线y=kx+b与抛物线y=ax2(a>0)相交于A、B两点(点A在点B的左侧),与y轴正半轴相交于点C,过点A作AD⊥x轴,垂足为D.(1)若∠AOB=60°,AB∥x轴,AB=2,求a的值;(2)若∠AOB=90°,点A的横坐标为﹣4,AC=4BC,求点B的坐标;(3)延长AD、BO相交于点E,求证:DE=CO.【答案】(1)解:如图1,∵抛物线y=ax2的对称轴是y轴,且AB∥x轴,∴A与B是对称点,O是抛物线的顶点,∴OA=OB,∵∠AOB=60°,∴△AOB是等边三角形,∵AB=2,AB⊥OC,∴AC=BC=1,∠BOC=30°,∴OC= ,∴A(-1,),把A(-1,)代入抛物线y=ax2(a>0)中得:a= ;(2)解:如图2,过B作BE⊥x轴于E,过A作AG⊥BE,交BE延长线于点G,交y轴于F,∵CF∥BG,∴,∵AC=4BC,∴ =4,∴AF=4FG,∵A的横坐标为-4,∴B的横坐标为1,∴A(-4,16a),B(1,a),∵∠AOB=90°,∴∠AOD+∠BOE=90°,∵∠AOD+∠DAO=90°,∴∠BOE=∠DAO,∵∠ADO=∠OEB=90°,∴△ADO∽△OEB,∴,∴,∴16a2=4,a=± ,∵a>0,∴a= ;∴B(1,);(3)解:如图3,设AC=nBC,由(2)同理可知:A的横坐标是B的横坐标的n倍,则设B(m,am2),则A(-mn,am2n2),∴AD=am2n2,过B作BF⊥x轴于F,∴DE∥BF,∴△BOF∽△EOD,∴,∴,∴,DE=am2n,∴,∵OC∥AE,∴△BCO∽△BAE,∴,∴,∴CO= =am2n,∴DE=CO.【解析】【分析】(1)抛物线y=ax2关于y轴对称,根据AB∥x轴,得出A与B是对称点,可知AC=BC=1,由∠AOB=60°,可证得△AOB是等边三角形,利用解直角三角形求出OC的长,就可得出点A的坐标,利用待定系数法就可求出a的值。
备战中考数学——圆与相似的综合压轴题专题复习及答案解析一、相似1.如图,在□ABCD中,对角线AC、BD相交于点O,点E、F是AD上的点,且AE=EF=FD.连结BE、BF。
使它们分别与AO相交于点G、H(1)求EG :BG的值(2)求证:AG=OG(3)设AG =a ,GH =b,HO =c,求a : b : c的值【答案】(1)解:∵四边形ABCD是平行四边形,∴AO= AC,AD=BC,AD∥BC,∴△AEG∽△CBG,∴ = = .∵AE=EF=FD,∴BC=AD=3AE,∴GC=3AG,GB=3EG,∴EG:BG=1:3(2)解:∵GC=3AG(已证),∴AC=4AG,∴AO= AC=2AG,∴GO=AO﹣AG=AG(3)解:∵AE=EF=FD,∴BC=AD=3AE,AF=2AE.∵AD∥BC,∴△AFH∽△CBH,∴ = = = ,∴ = ,即AH= AC.∵AC=4AG,∴a=AG= AC,b=AH﹣AG= AC﹣ AC= AC,c=AO﹣AH= AC﹣ AC= AC,∴a:b:c= :: =5:3:2【解析】【分析】(1)根据平行四边形的性质可得AO=AC,AD=BC,AD∥BC,从而可证得△AEG∽△CBG,得出对应边成比例,由AE=EF=FD可得BC=3AE,就可证得GB=3EG,即可求出EG:BG的值。
(2)根据相似三角形的性质可得GC=3AG,就可证得AC=4AG,从而可得AO=2AG,即可证得结论。
(3)根据平行可证得三角形相似,再根据相似三角形的性质可得AG=AC,AH=AC,结合AO=AC,即可得到用含AC的代数式分别表示出a、b、c,就可得到a:b:c的值。
2.定义:如图1,点M,N把线段AB分割成AM,MN和BN,若以AM,MN,BN为边的三角形是一个直角三角形,则称点M,N是线段AB的勾股分割点.(1)已知点M,N是线段AB的勾股分割点,若AM=3,MN=4求BN的长;(2)已知点C是线段AB上的一定点,其位置如图2所示,请在BC上画一点D,使C,D 是线段AB的勾股分割点(要求尺规作图,保留作图痕迹,画出一种情形即可);(3)如图3,正方形ABCD中,M,N分别在BC,DC上,且BM≠DN,∠MAN=45°,AM,AN分别交BD于E,F.求证:①E、F是线段BD的勾股分割点;②△AMN的面积是△AEF面积的两倍.【答案】(1)解:(1)①当MN为最大线段时,∵点M,N是线段AB的勾股分割点,∴BM= = = ,②当BN为最大线段时,∵点M,N是线段AB的勾股分割点,∴BN= = =5,综上,BN= 或5;(2)解:作法:①在AB上截取CE=CA;②作AE的垂直平分线,并截取CF=CA;③连接BF,并作BF的垂直平分线,交AB于D;点D即为所求;如图2所示.(3)解:①如图3中,将△ADF绕点A顺时针性质90°得到△ABH,连接HE.∵∠DAF+∠BAE=90°﹣∠EAF=45°,∠DAF=∠BAH,∴∠EAH=∠EAF=45°,∵EA=EA,AH=AF,∴△EAH≌△EAF,∴EF=HE,∵∠ABH=∠ADF=45°=∠ABD,∴∠HBE=90°,在Rt△BHE中,HE2=BH2+BE2,∵BH=DF,EF=HE,∵EF2=BE2+DF2,∴E、F是线段BD的勾股分割点.②证明:如图4中,连接FM,EN.∵四边形ABCD是正方形,∴∠ADC=90°,∠BDC=∠ADB=45°,∵∠MAN=45°,∴∠EAN=∠EDN,∵∠AFE=∠FDN,∴△AFE∽△DFN,∴∠AEF=∠DNF,,∴,∵∠AFD=∠EFN,∴△AFD∽△EFN,∴∠DAF=∠FEN,∵∠DAF+∠DNF=90°,∴∠AEF+∠FEN=90°,∴∠AEN=90°∴△AEN是等腰直角三角形,同理△AFM是等腰直角三角形;∵△AEN是等腰直角三角形,同理△AFM是等腰直角三角形,∴AM= AF,AN= AE,∵S△AMN= AM•AN•sin45°,S△AEF= AE•AF•sin45°,∴ =2,∴S△AMN=2S△AEF.【解析】【分析】(1)此题分两种情况:①当MN为最大线段时,②当BN为最大线段时,根据线段的勾股分割点的定义,利用勾股定理分别得出BM的长;(2)利用尺规作图,将线段AC,CD,DB转化到同一个直角三角形中,①在AB上截取CE=CA;②作AE的垂直平分线,并截取CF=CA;这样的作图可以保证直角的出现,及AC 是一条直角边,③连接BF,并作BF的垂直平分线,交AB于D;这样的作图意图利用垂直平分线上的点到线段两个端点的距离相等,即BD=DF,从而实现将三条线段转化到同一直角三角形的目的;(3)①如图3中,将△ADF绕点A顺时针性质90°得到△ABH,连接HE.根据正方形的性质及旋转的性质得出∠EAH=∠EAF=45°,AH=AF,利用SAS判断出△EAH≌△EAF,根据全等三角形对应边相等得出EF=HE,根据正方形的每条对角线平分一组对角,及旋转的性质得出∠ABH=∠ADF=45°=∠ABD,故∠HBE=90°,在Rt△BHE中,HE2=BH2+BE2,根据等量代换得出结论;②证明:如图4中,连接FM,EN.根据正方形的性质及对顶角相等判断出△AFE∽△DFN,根据相似三角形对应角相等,对应边成比例得出∠AEF=∠DNF, AF∶DF =EF∶FN ,根据比例的性质进而得出AF∶EF =DF∶FN,再判断出△AFD∽△EFN,根据相似三角形对应角相等得出∠DAF=∠FEN,根据直角三角形两锐角互余,及等量代换由∠DAF+∠DNF=90°,得出∠AEF+∠FEN=90°,即∠AEN=90°,从而判断出△AEN是等腰直角三角形,同理△AFM是等腰直角三角形;根据等腰直角三角形的边之间的关系AM= AF,AN= AE,从而分别表示出S△AMN与S△AEF,求出它们的比值即可得出答案。
中考数学与圆与相似有关的压轴题含答案一、相似1.已知:如图,在矩形ABCD中,AB=6cm,BC=8cm,对角线AC,BD交于点0.点P从点A出发,沿方向匀速运动,速度为1cm/s;同时,点Q从点D出发,沿DC方向匀速运动,速度为1cm/s;当一个点停止运动时,另一个点也停止运动.连接PO并延长,交BC于点E,过点Q作QF∥AC,交BD于点F.设运动时间为t(s)(0<t<6),解答下列问题:(1)当t为何值时,△AOP是等腰三角形?(2)设五边形OECQF的面积为S(cm2),试确定S与t的函数关系式;(3)在运动过程中,是否存在某一时刻t,使S五边形S五边形OECQF:S△ACD=9:16?若存在,求出t的值;若不存在,请说明理由;(4)在运动过程中,是否存在某一时刻t,使OD平分∠COP?若存在,求出t的值;若不存在,请说明理由.【答案】(1)解:∵在矩形ABCD中,Ab=6cm,BC=8cm,∴AC=10,①当AP=PO=t,如图1,过P作PM⊥AO,∴AM= AO= ,∵∠PMA=∠ADC=90°,∠PAM=∠CAD,∴△APM∽△ADC,∴,∴AP=t= ,②当AP=AO=t=5,∴当t为或5时,△AOP是等腰三角形(2)解:作EH⊥AC于H,QM⊥AC于M,DN⊥AC于N,交QF于G,在△APO与△CEO中,∵∠PAO=∠ECO,AO=OC,∠AOP=∠COE,∴△AOP≌△COE,∴CE=AP=t,∵△CEH∽△ABC,∴,∴EH= ,∵DN= = ,∵QM∥DN,∴△CQM∽△CDN,∴,即,∴QM= ,∴DG= = ,∵FQ∥AC,∴△DFQ∽△DOC,∴,∴FQ= ,∴S五边形OECQF=S△OEC+S四边形OCQF= = ,∴S与t的函数关系式为(3)解:存在,∵S△ACD= ×6×8=24,∴S五边形OECQF:S△ACD=():24=9:16,解得t= ,t=0,(不合题意,舍去),∴t= 时,S五边形S五边形OECQF:S△ACD=9:16(4)解:如图3,过D作DM⊥AC于M,DN⊥AC于N,∵∠POD=∠COD,∴DM=DN= ,∴ON=OM= = ,∵OP•DM=3PD,∴OP= ,∴PM= ,∵,∴,解得:t≈15(不合题意,舍去),t≈2.88,∴当t=2.88时,OD平分∠COP.【解析】【分析】(1)根据矩形的性质可得:AB=CD=6,BC=AD=8,所以AC=10;而P、Q 两点分别从A点和D点同时出发且以相同的速度为1cm/s运动,当一个点停止运动时,另一个点也停止运动,所以点P不可能运动到点D;所以△AOP是等腰三角形分两种情况讨论:①当AP=PO=t时,过P作PM⊥AO,易证△CQM∽△CDN,可得比例式即可求解;②当AP=AO=t=5时,△AOP是等腰三角形;(2)作EH⊥AC于H,QM⊥AC于M,DN⊥AC于N,交QF于G,可将五边形转化成一个三角形和一个直角梯形,则五边形OECQF的面积S=三角形OCE的面积+直角梯形OCQF的面积;(3)因为三角形ACD的面积=AD CD=24,再将(2)中的结论代入已知条件S五边形S :S△ACD=9:16中,可得关于t的方程,若有解且符合题意,则存在,反之,不存五边形OECQF在;(4)假设存在。
备战中考数学—圆与相似的综合压轴题专题复习及详细答案一、相似1.正方形ABCD的边长为6cm,点E,M分别是线段BD,AD上的动点,连接AE并延长,交边BC于F,过M作MN⊥AF,垂足为H,交边AB于点N.(1)如图①,若点M与点D重合,求证:AF=MN;(2)如图②,若点M从点D出发,以1cm/s的速度沿DA向点A运动,同时点E从点B 出发,以 cm/s的速度沿BD向点D运动,运动时间为ts.①设BF=ycm,求y关于t的函数表达式;②当BN=2AN时,连接FN,求FN的长.【答案】(1)证明:∵四边形ABCD为正方形,∴AD=AB,∠DAN=∠FBA=90°.∵MN⊥AF,∴∠NAH+∠ANH=90°.∵∠NDA+∠ANH=90°,∴∠NAH=∠NDA,∴△ABF≌△MAN,∴AF=MN.(2)解:①∵四边形ABCD为正方形,∴AD∥BF,∴∠ADE=∠FBE.∵∠AED=∠BEF,∴△EBF∽△EDA,∴= .∵四边形ABCD为正方形,∴AD=DC=CB=6cm,∴BD=6 cm.∵点E从点B出发,以 cm/s的速度沿BD向点D运动,运动时间为ts,∴BE= tcm,DE=(6 - t)cm,∴=,∴y= .②∵四边形ABCD为正方形,∴∠MAN=∠FBA=90°.∵MN⊥AF,∴∠NAH+∠ANH=90°.∵∠NMA+∠ANH=90°,∴∠NAH=∠NMA.∴△ABF∽△MAN,∴= .∵BN=2AN,AB=6cm,∴AN=2cm.∴=,∴t=2,∴BF==3(cm).又∵BN=4cm,∴FN==5(cm).【解析】【分析】(1)根据正方形的性质得出AD=AB,∠DAN=∠FBA=90°.再根据同角的余角相等得出∠NAH=∠NDA,进而证出△ABF≌△MAN即可解答,(2)根据正方形的性质得出两角相等证出△EBF∽△EDA,得出BD的长度,利用△EBF∽△EDA得出比例式,得出y和t之间的函数解析式,据正方形的性质得出两角相等证出△ABF∽△MAN,得出比例式,进而解答.2.如图,已知抛物线y=﹣x2+bx+c交y轴于点A(0,4),交x轴于点B(4,0),点P 是抛物线上一动点,过点P作x轴的垂线PQ,过点A作AQ⊥PQ于点Q,连接AP.(1)填空:抛物线的解析式为________,点C的坐标________;(2)点P在抛物线上运动,若△AQP∽△AOC,求点P的坐标.【答案】(1)y=﹣x2+3x+4;(-1,0)(2)解:∵点A的坐标为(0,4),点C的坐标为(-1,0),∴.∵点P的横坐标为m,∴P(m,﹣m2+3m+4).①当点P在直线AQ下方时,QP=4-(﹣m2+3m+4)= m2-3m,由△AQP∽△AOC得:,即:,∴(舍去)或.当时,﹣m2+3m+4=,此时点P的坐标为();②当点P在直线AQ上方时,PQ=﹣m2+3m+4-4=﹣m2+3m,由△AQP∽△AOC得:,即:,∴=0(舍去)或=,此时P点坐标为().综上所述:点P的坐标为()或().【解析】【解答】解:(1)∵抛物线y=﹣x2+bx+c交y轴于点A(0,4),交x轴于点B(4,0),∴,解得:,∴抛物线的解析式为:y=﹣x2+3x+4.令y=0,得:﹣x2+3x+4=0,解得:x=4或x=-1,∴点C的坐标为(-1,0).【分析】(1)根据题意,将A,B两点的坐标代入到解析式中,分别求出b,c,可以求出抛物线的解析式;(2)C为x轴上的交点,令y=0,通过解一元二次方程,解得C点坐标。
备战中考数学压轴题专题复习——圆与相似的综合含详细答案一、相似1.如图,抛物线y=﹣x2+bx+c与x轴分别交于点A、B,与y轴交于点C,且OA=1,OB=3,顶点为D,对称轴交x轴于点Q.(1)求抛物线对应的二次函数的表达式;(2)点P是抛物线的对称轴上一点,以点P为圆心的圆经过A、B两点,且与直线CD相切,求点P的坐标;(3)在抛物线的对称轴上是否存在一点M,使得△DCM∽△BQC?如果存在,求出点M 的坐标;如果不存在,请说明理由.【答案】(1)解:∴代入,得解得∴抛物线对应二次函数的表达式为:(2)解:如图,设直线CD切⊙P于点E.连结PE、PA,作点.由得对称轴为直线x=1,∴∴∴为等腰直角三角形.∴∴∴∴为等腰三角形.设∴在中,∴∴整理,得解得,∴点P的坐标为或(3)解:存在点M,使得∽.如图,连结∵∴为等腰直角三角形,∴由(2)可知,∴∴分两种情况.当时,∴,解得.∴∴当时,∴,解得∴∴综上,点M的坐标为或【解析】【分析】(1)用待定系数法即可求解;(2)由(1)中的解析式易求得抛物线的对称轴为直线x=1,顶点D(1,4),点C(0,3),由题意可设点P(1,m),计算易得△DCF为等腰直角三角形,△DEP为等腰三角形,在直角三角形PED和APQ中,用勾股定理可将PE、PA用含m的代数式表示出来,根据PA=PE可列方程求解;(3)由△DCM∽△BQC所得比例式分两种情况:或,根据所得比例式即可求解。
2.如图1,经过原点O的抛物线y=ax2+bx(a≠0)与x轴交于另一点A(,0),在第一象限内与直线y=x交于点B(2,t).(1)求这条抛物线的表达式;(2)在第四象限内的抛物线上有一点C,满足以B,O,C为顶点的三角形的面积为2,求点C的坐标;(3)如图2,若点M在这条抛物线上,且∠MBO=∠ABO,在(2)的条件下,是否存在点P,使得△POC∽△MOB?若存在,求出点P的坐标;若不存在,请说明理由.【答案】(1)解:∵B(2,t)在直线y=x上,∴t=2,∴B(2,2),把A、B两点坐标代入抛物线解析式可得,解得,∴抛物线解析式为y=2x2﹣3x(2)解:如图1,过C作CD∥y轴,交x轴于点E,交OB于点D,过B作BF⊥CD于点F,∵点C是抛物线上第四象限的点,∴可设C(t,2t2﹣3t),则E(t,0),D(t,t),∴OE=t,BF=2﹣t,CD=t﹣(2t2﹣3t)=﹣2t2+4t,∴S△OBC=S△CDO+S△CDB= CD•OE+ CD•BF= (﹣2t2+4t)(t+2﹣t)=﹣2t2+4t,∵△OBC的面积为2,∴﹣2t2+4t=2,解得t1=t2=1,∴C(1,﹣1)(3)解:存在.设MB交y轴于点N,如图2,∵B(2,2),∴∠AOB=∠NOB=45°,在△AOB和△NOB中∴△AOB≌△NOB(ASA),∴ON=OA= ,∴N(0,),∴可设直线BN解析式为y=kx+ ,把B点坐标代入可得2=2k+ ,解得k= ,∴直线BN的解析式为y= x+ ,联立直线BN和抛物线解析式可得,解得或,∴M(﹣,),∵C(1,﹣1),∴∠COA=∠AOB=45°,且B(2,2),∴OB=2 ,OC= ,∵△POC∽△MOB,∴ = =2,∠POC=∠BOM,当点P在第一象限时,如图3,过M作MG⊥y轴于点G,过P作PH⊥x轴于点H,∵∠COA=∠BOG=45°,∴∠MOG=∠POH,且∠PHO=∠MGO,∴△MOG∽△POH,∴ = = =2,∵M(﹣,),∴MG= ,OG= ,∴PH= MG= ,OH= OG= ,∴P(,);当点P在第三象限时,如图4,过M作MG⊥y轴于点G,过P作PH⊥y轴于点H,同理可求得PH= MG= ,OH= OG= ,∴P(﹣,);综上可知存在满足条件的点P,其坐标为(,)或(﹣,)【解析】【分析】(1)根据已知抛物线在第一象限内与直线y=x交于点B(2,t),可求出点B的坐标,再将点A、B的坐标分别代入y=ax2+bx,建立二元一次方程组,求出a、b的值,即可求得答案。
中考数学—圆与相似的综合压轴题专题复习附详细答案一、相似1.如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c(a>0)与x轴相交于点A(﹣1,0)和点B,与y轴交于点C,对称轴为直线x=1.(1)求点C的坐标(用含a的代数式表示);(2)联结AC、BC,若△ABC的面积为6,求此抛物线的表达式;(3)在第(2)小题的条件下,点Q为x轴正半轴上一点,点G与点C,点F与点A关于点Q成中心对称,当△CGF为直角三角形时,求点Q的坐标.【答案】(1)解:∵抛物线y=ax2+bx+c(a>0)的对称轴为直线x=1,而抛物线与x轴的一个交点A的坐标为(﹣1,0)∴抛物线与x轴的另一个交点B的坐标为(3,0)设抛物线解析式为y=a(x+1)(x﹣3),即y=ax2﹣2ax﹣3a,当x=0时,y=﹣3a,∴C(0,﹣3a)(2)解:∵A(﹣1,0),B(3,0),C(0,﹣3a),∴AB=4,OC=3a,∴S△ACB= AB•OC=6,∴6a=6,解得a=1,∴抛物线解析式为y=x2﹣2x﹣3(3)解:设点Q的坐标为(m,0).过点G作GH⊥x轴,垂足为点H,如图,∵点G与点C,点F与点A关于点Q成中心对称,∴QC=QG,QA=QF=m+1,QO=QH=m,OC=GH=3,∴OF=2m+1,HF=1,当∠CGF=90°时,∵∠QGH+∠FGH=90°,∠QGH+∠GQH=90°,∴∠GQH=∠HGF,∴Rt△QGH∽Rt△GFH,∴ = ,即,解得m=9,∴Q的坐标为(9,0);当∠CFG=90°时,∵∠GFH+∠CFO=90°,∠GFH+∠FGH=90°,∴∠CFO=∠FGH,∴Rt△GFH∽Rt△FCO,∴ = ,即 = ,解得m=4,∴Q的坐标为(4,0);∠GCF=90°不存在,综上所述,点Q的坐标为(4,0)或(9,0).【解析】【分析】(1)根据抛物线是轴对称图形和已知条件可求得抛物线与x轴的另一个交点B的坐标,再用交点式可求得抛物线的解析式,然后根据抛物线与y轴交于点C可得x=0,把x=0代入解析式即可求得点C的坐标;(2)由(1)的结论可求得AB=4,OC=3a,根据三角形ABC的面积=AB•OC=6可求得a的值,则解析式可求解;(3)设点Q的坐标为(m,0).过点G作GH⊥x轴,垂足为点H,根据中心对称的性质可得QC=QG,QA=QF=m+1,QO=QH=m,OC=GH=3。
中考数学—圆与相似的综合压轴题专题复习及详细答案一、相似1.如图所示,将二次函数y=x2+2x+1的图象沿x轴翻折,然后向右平移1个单位,再向上平移4个单位,得到二次函数y=ax2+bx+c的图象.函数y=x2+2x+1的图象的顶点为点A.函数y=ax2+bx+c的图象的顶点为点B,和x轴的交点为点C,D(点D位于点C的左侧).(1)求函数y=ax2+bx+c的解析式;(2)从点A,C,D三个点中任取两个点和点B构造三角形,求构造的三角形是等腰三角形的概率;(3)若点M是线段BC上的动点,点N是△ABC三边上的动点,是否存在以AM为斜边的Rt△AMN,使△AMN的面积为△ABC面积的?若存在,求tan∠MAN的值;若不存在,请说明理由.【答案】(1)解:y=x2+2x+1=(x+1)2的图象沿x轴翻折,得y=﹣(x+1)2,把y=﹣(x+1)2向右平移1个单位,再向上平移4个单位,得y=﹣x2+4,∴所求的函数y=ax2+bx+c的解析式为y=﹣x2+4(2)解:∵y=x2+2x+1=(x+1)2,∴A(﹣1,0),当y=0时,﹣x2+4=0,解得x=±2,则D(﹣2,0),C(2,0);当x=0时,y=﹣x2+4=4,则B(0,4),从点A,C,D三个点中任取两个点和点B构造三角形的有:△ACB,△ADB,△CDB,∵AC=3,AD=1,CD=4,AB= ,BC=2 ,BD=2 ,∴△BCD为等腰三角形,∴构造的三角形是等腰三角形的概率=(3)解:存在,易得BC的解析是为y=﹣2x+4,S△ABC= AC•OB= ×3×4=6,M点的坐标为(m,﹣2m+4)(0≤m≤2),①当N点在AC上,如图1,∴△AMN的面积为△ABC面积的,∴(m+1)(﹣2m+4)=2,解得m1=0,m2=1,当m=0时,M点的坐标为(0,4),N(0,0),则AN=1,MN=4,∴tan∠MAC= =4;当m=1时,M点的坐标为(1,2),N(1,0),则AN=2,MN=2,∴tan∠MAC= =1;②当N点在BC上,如图2,BC= =2 ,∵BC•AN= AC•BC,解得AN= ,∵S△AMN= AN•MN=2,∴MN= = ,∴∠MAC= ;③当N点在AB上,如图3,作AH⊥BC于H,设AN=t,则BN= ﹣t,由②得AH= ,则BH= ,∵∠NBG=∠HBA,∴△BNM∽△BHA,∴,即,∴MN= ,∵AN•MN=2,即•(﹣t)• =2,整理得3t2﹣3 t+14=0,△=(﹣3 )2﹣4×3×14=﹣15<0,方程没有实数解,∴点N在AB上不符合条件,综上所述,tan∠MAN的值为1或4或【解析】【分析】(1)将y=x2+2x+1配方成顶点式,根据轴对称的性质,可得出翻折后的函数解析式,再根据函数图像平移的规律:上加下减,左加右减,可得出答案。
中考数学—圆与相似的综合压轴题专题复习及答案一、相似1.如图的中点1,过等边三角形M, N,连接 MN .ABC 边AB 上一点 D 作交边AC 于点E,分别取BC, DE(1)发现:在图 1 中,________;(2)应用:如图2,将绕点 A 旋转,请求出的值;(3)拓展:如图3,和是等腰三角形,且, M , N 分别是底边 BC, DE 的中点,若,请直接写出的值.【答案】(1)(2)解:如图 2 中,连接AM、 AN,,,都是等边三角形,,,,,,,,,∽,(3)解:如图 3 中,连接AM、 AN,延长 AD 交 CE于 H,交 AC 于 O,,,,,,,,,,,,,,,∽,,,,,,≌,,,,,,,,,,【解析】【解答】解:(1)如图 1 中,作于H,连接AM,,,,时等边三角形,,,,,平分线段DE,,、 N、 M 共线,,四边形 MNDH 时矩形,,,故答案为:;【分析】( 1)作DH ⊥ BC 于 H,连接AM.证四边形MNDH 时矩形,所以MN=DH,则MN : BD=DH:BD=sin60 ,°即可求解;(2)利用△ ABC ,△ ADE 都是等边三角形可得AM : AB=AN: AD,易得∠BAD = ∠MAN ,从而得△ BAD ∽ △ MAN,则 NM: BD=AM:AB=sin60 ,°从而求解;(3)连接 AM、 AN,延长 AD 交 CE 于 H,交 AC 于 O.先证明△BAD∽△ MAN可得NM : BD=AM:AB=sin∠ ABC;再证明△ BAD ≌ △ CAE,则∠ ABD = ∠ ACE ,进而可得∠ABC = 45 ,可求出°答案 .2.如图, Rt△ AOB 在平面直角坐标系中,已知:B(0,),点OA=3,∠BAD=30°,将△ AOB 沿 AB 翻折,点O 到点 C 的位置,连接A 在 x 轴的正半轴上,CB 并延长交 x 轴于点D.(1)求点 D 的坐标;(2)动点 P 从点 D 出发,以每秒 2 个单位的速度沿 x 轴的正方向运动,当△ PAB为直角三角形时,求 t 的值;(3)在( 2)的条件下,当△ PAB为以∠ PBA为直角的直角三角形时,在y 轴上是否存在一点 Q 使△ PBQ 为等腰三角形?如果存在,请直接写出Q 点的坐标;如果不存在,请说明理由 .【答案】( 1)解:∵ B(0,),∴OB=.∵OA=OB,∴OA=3,∴AC=3.∵∠ BAD=30 ,°∴∠ OAC=60 .°∵∠ ACD=90 ,°∴∠ ODB=30 ,°∴=,∴O D=3,∴D(﹣ 3,0);(2)解:∵ OA=3,OD=3,∴ A( 3,0), AD=6,∴A B=2,当∠PBA=90时°.∵P D=2t,∴O P=3﹣2t.∵△ OBA∽ △ OPB,2∴3﹣ 2t==1,解得 t=1,当∠APB=90 时°,则 P 与 O 重合,∴t=;(3)解:存在 .①当 BP 为腰的等腰三角形.∵OP=1,∴BP==2,∴Q1( 0,+2), Q3( 0.﹣2);②当 PQ2=Q2B 时,设 PQ2=Q2 B=a,在 Rt△ OPQ2中, 12+(﹣x)2=x2,解得x=,∴Q2( 0,);③当 PB=PQ 时, Q ( 0,﹣)4 4综上所述:满足条件的点Q 的坐标为Q1( 0,+2), Q2( 0 ,), Q3( 0.﹣2), Q4( 0,﹣) .【解析】【分析】( 1)根据已知得出OA、 OB 的值以及∠ DAC 的度数,进而求得∠ ADC,即可求得 D 的坐标;( 2)根据直角三角形的判定,分两种情况讨论求得;(3)求得 PB 的长,分四种情形讨论即可解决问题.3.(1)问题发现:如图① ,正方形 AEFG的两边分别在正方形ABCD的边 AB 和 AD 上,连接 CF.①写出线段CF与 DG 的数量关系;②写出直线CF与 DG 所夹锐角的度数.(2)拓展探究:如图②,将正方形AEFG绕点用图②进行说明 .(3)问题解决如图③,A 逆时针旋转,在旋转的过程中,(1)中的结论是否仍然成立,请利△ABC 和△ ADE 都是等腰直角三角形,D 在直线 BC 上运动,连接OE,则在点∠BAC=∠ DAE=90°, AB=AC=4,O 为 AC 的中点 .若点D 的运动过程中,线段OE 的长的最小值.(直接写出结果)【答案】( 1)①CF=(2)解:如图:DG,②45①连接 AC、 AF,在正方形ABCD中,延长CF交 DG 与 H 点,∠CAD=∠BCD=45,设 AD=CD=a,易得 AC=a=AD,同理在正方形AEFG中,∠FAG=45 ,AF=AG,∠CAD=∠FAG,∠ CAD-∠ 2=∠ FAG-∠ 2,∠1=∠ 3又△CAF∽ DAG,=,CF=DG;②由△ CAF∽ DAG,∠ 4=∠ 5,∠ACD=∠ 4+∠ 6=45 ,∠5+∠ 6=45,∠5+∠ 6+∠ 7=135 ,在△ CHD中,∠CHD=180 -135 =45,(1)中的结论仍然成立(3) OE 的最小值为.【解析】【解答】( 3)如图:由∠ BAC=∠ DAE=90 ,可得∠ BAD=∠ CAE,又AB=AC,AD=AE, 可得△ BAD≌ △ CAE,∠A CE=∠ ABC=45 ,又∠ ACB=45 ,∠ BCE=90 ,即CE⊥ BC,根据点到直线的距离垂线段最短,OE⊥ CE时, OE 最短,此时OE=CE,△ OEC为等腰直角三角形,OC=AC=2,由等腰直角三角形性质易得,OE=,OE 的最小值为.【分析】( 1 )①易得CF=DG;②45;(2)连接AC、 AF,在正方形ABCD 中,可得△CAF∽ DAG,=,CF=DG,在△ CHD 中,∠ CHD=180 -135 =45,(1)中的结论是否仍然成立;(3) OE⊥ CE 时, OE 最短,此时OE=CE,△ OEC 为等腰直角三角形, OC=AC=2,可得 OE 的值 .4.已知菱形的一个角与三角形的一个角重合,然后它的对角顶点在这个重合角的对边上,这个菱形称为这个三角形的亲密菱形,如图,在△ CFE中, CF=6,CE=12,∠ FCE=45°,以点 C 为圆心,以任意长为半径作AD,再分别以点 A 和点 D 为圆心,大于AD 长为半径做弧,交于点 B,AB∥ CD.(1)求证:四边形 ACDB为△ CFE的亲密菱形;(2)求四边形 ACDB的面积 .【答案】( 1)证明:由已知得:AC=CD,AB=DB,由已知尺规作图痕迹得:BC 是∠ FCE 的角平分线 ,∴∠ ACB=∠ DCB,又∵ AB∥ CD,∴∠ ABC=∠ DCB,∴∠ ACB=∠ ABC,∴AC=AB,又∵ AC=CD,AB=DB,∴AC=CD=DB=BA,四边形 ACDB是菱形,又∵∠ ACD与△ FCE中的∠ FCE重合,它的对角∠ABD顶点在EF上,∴四边形 ACDB为△ FEC的亲密菱形 .(2)解:设菱形 ACDB的边长为 x,∵ CF=6,CE=12,∴FA=6-x,又∵ AB∥ CE,∴△ FAB∽ △ FCE,∴,即,解得: x=4,过点 A 作 AH⊥ CD于点 H,在Rt△ ACH中,∠ ACH=45°,∴s in∠ ACH= ,∴AH=4 ×=2,∴四边形 ACDB的面积为:.【解析】【分析】( 1)依题可得: AC=CD,AB=DB,BC是∠ FCE 的角平分线 ,根据角平分线的定义和平行线的性质得∠ ACB=∠ ABC,根据等角对等边得 AC=AB,从而得 AC=CD=DB=BA,根据四边相等得四边形是菱形即可得四边形ACDB是菱形;再根据题中的新定义即可得证. (2)设菱形ACDB 的边长为x,根据已知可得CF=6,CE=12,FA=6-,x根据相似三角形的判定和性质可得,解得: x=4,过点 A 作 AH⊥CD 于点 H,在 Rt△ ACH 中,根据锐角三角形函数正弦的定义即可求得AH ,再由四边形的面积公式即可得答案.5.如果三角形的两个内角α与β满足2α +β =90,那°么我们称这样的三角形为“准互余三角形”.(1)若△ ABC 是“准互余三角形”,∠ C> 90°,∠ A=60°,则∠B=________°;(2)如图①,在 Rt△ ABC中,∠ ACB=90°, AC=4, BC=5.若 AD 是∠BAC 的平分线,不难证明△ ABD 是“准互余三角形”试.问在边 BC上是否存在点 E(异于点 D),使得△ ABE 也是“准互余三角形”?若存在,请求出 BE的长;若不存在,请说明理由 .(3)如图②,在四边形 ABCD 中, AB=7, CD=12, BD⊥ CD,∠ ABD=2∠BCD,且△ABC 是“准互余三角形”,求对角线AC 的长 .【答案】( 1) 15(2)解:如图①中,在Rt△ ABC中,∵ ∠ B+∠ BAC=90°,∠ BAC=2∠ BAD,∴∠ B+2∠BAD=90 ,°∴△ ABD 是“准互余三角形”,∵△ ABE 也是“准互余三角形”,∴只有 2∠ B+∠ BAE=90 ,°∵∠ B+∠BAE+∠ EAC=90 ,°∴∠ CAE=∠ B,∵∠ C=∠ C=90 ,°∴△ CAE∽ △ CBA,可得 CA2=CE?CB,∴C E= ,∴B E=5﹣= .(3)解:如图②中,将△ BCD沿 BC 翻折得到△BCF.∴CF=CD=12,∠BCF=∠ BCD,∠CBF=∠ CBD,∵∠ ABD=2∠ BCD,∠BCD+∠CBD=90 ,°∴∠ ABD+∠ DBC+∠CBF=180 ,°∴A、B、 F 共线,∴∠ A+∠ ACF=90 °∴2∠ ACB+∠ CAB≠ 90,°∴只有 2∠ BAC+∠ ACB=90 ,°∴∠ FCB=∠ FAC,∵ ∠ F=∠ F,∴△ FCB∽ △ FAC,∴CF2=FB?FA,设 FB=x,则有: x( x+7) =122,∴x=9 或﹣ 16(舍去),∴AF=7+9=16,在 Rt△ ACF中, AC=【解析】【解答】( 1)∵ △ ABC是“准互余三角形”,∠ C> 90°,∠ A=60°,∴2∠ B+∠A=90 ,°解得,∠ B=15°;【分析】( 1 )根据“准互余三角形”的定义构建方程即可解决问题;( 2 )只要证明△CAE∽△ CBA,可得 CA2=CE?CB,由此即可解决问题;( 3)如图②中,将△ BCD沿 BC翻折得到△ BCF只.要证明△ FCB∽ △ FAC,可得 CF2=FB?FA,设 FB=x,则有: x( x+7)=122 ,推出 x=9 或﹣ 16(舍弃),再利用勾股定理求出AC即可;6.如图,点O 为矩形 ABCD的对称中心,AB= 5cm, BC= 6cm,点 E.F.G分别从 A.B.C 三点同时出发,沿矩形的边按逆时针方向匀速运动,点 E 的运动速度为1cm/s ,点 F 的运动速度为 3cm/s ,点 G 的运动速度为 1.5cm/s,当点 F 到达点 C(即点 F 与点 C 重合)时,三个点随之停止运动 .在运动过程中,△ EBF 关于直线 EF 的对称图形是△ EB′设F.点 E.F.G运动的时间为 t(单位: s) .(1)当 t 等于多少s 时,四边形EBFB′为正方形;(2)若以点E、 B、 F 为顶点的三角形与以点F, C, G 为顶点的三角形相似,求t 的值;(3)是否存在实数t ,使得点B’与点 O 重合?若存在,求出t 的值;若不存在,请说明理由.【答案】( 1)解:若四边形 EBFB′为正方形,则 BE= BF, BE= 5﹣ t, BF=3t,即: 5﹣ t = 3t,解得 t= 1.25;故答案为: 1.25(2)解:分两种情况,讨论如下:①若△ EBF∽ △ FCG,则有,即,解得: t= 1.4;②若△ EBF∽ △ GCF,则有,即,解得: t=﹣ 7﹣(不合题意,舍去)或∴当 t= 1.4s 或 t =(﹣ 7+)s时,以点点的三角形相似. t =﹣ 7+.E、 B、F 为顶点的三角形与以点F, C, G 为顶(3)解:假设存在实数t,使得点B′与点 O 重合 .如图,过点O 作 OM⊥ BC于点 M,则在 Rt△ OFM 中, OF= BF= 3t ,FM=BC﹣ BF= 3﹣ 3t, OM = 2.5,由勾股定理得: OM 2+FM 2= OF2,即: 2.52+( 3﹣ 3t)2=( 3t )2解得: t=;过点 O 作 ON⊥AB 于点 N,则在Rt△ OEN 中, OE=BE=5 ﹣t , EN= BE﹣ BN=5﹣ t ﹣2.5=2.5﹣t ,ON= 3,由勾股定理得:ON2+EN2= OE2,即: 32+( 2.5﹣ t)2=( 5﹣ t )2解得: t=.∵≠,∴不存在实数t ,使得点B′与点 O 重合【解析】【分析】( 1 )利用正方形的性质,得到BE= BF,列一元一次方程求解即可;( 2)△ EBF 与△ FCG 相似,分两种情况,需要分类讨论,逐一分析计算;(3)本问为存在型问题 .假设存在,则可以分别求出在不同条件下的t 值,它们互相矛盾,所以不存在7.如图,在 Rt△ ABC中,∠ ACB= 90°,AC= 6cm, BC=8cm.动点 M 从点 B 出发,在 BA 边上以每秒 3cm 的速度向定点 A 运动,同时动点 N 从点 C 出发,在 CB 边上以每秒 2cm 的速度向点 B 运动,运动时间为t 秒,连接MN.(1)若△ BMN 与△ABC 相似,求t 的值;(2)连接 AN, CM,若 AN⊥ CM,求 t 的值.【答案】(1)解:∵∠ ACB= 90°, AC= 6cm, BC= 8cm,∴ BA==10(cm).由题意得BM=3tcm ,CN= 2tcm,∴ BN= (8- 2t)cm.当△ BMN∽ △ BAC时,,∴=,解得t=;当△ BMN∽ △ BCA时,=,∴=,解得t=.综上所述,△ BMN 与△ ABC相似时, t 的值为或(2)解:如图,过点M 作 MD ⊥CB 于点 D,∴∠ BDM=∠ACB= 90 °,又∵ ∠B=∠ B,∴ △BDM ∽ △ BCA,∴==. ∵ AC= 6cm, BC= 8cm, BA= 10cm, BM=3tcm ,∴DM =tcm, BD=tcm ,∴CD=cm.∵AN⊥CM,∠ ACB= 90 °,∴∠ CAN+∠ ACM= 90 °,∠ MCD+∠ ACM= 90 °,∴∠ CAN=∠MCD. ∵ MD ⊥CB,∴ ∠ MDC=∠ ACB= 90 °,∴ △ CAN∽ △ DCM,∴=,∴=,解得t=.【解析】【分析】( 1)在直角三角形ABC 中,由已知条件用勾股定理可求得AB 的长,再根据路程 =速度时间可将BM、 CN 用含 t 的代数式表示出来,则BN=BC-CN也可用含t 的代数式表示出来,因为△ BMN与△ABC相似,由题意可分两种情况,①当△BMN ∽△ BAC 时,由相似三角形的性质可得比例式:,将已知的线段代入计算即可求解;②当△ BMN∽ △BCA 时,由相似三角形的性质可得比例式:的线段代入计算即可求解;( 2 )过点M作MD ⊥ CB 于点 D ,根据有两个角对应相等的两个三角形相似可得,将已知△BDM ∽ △ BCA,于是可得比例式数式表示 DM 、 BD 的长,则,将已知的线段代入计算即可用含CD=CB-BD 也可用含t的代数式表示出来,同理易证t 的代△CAN∽ △ DCM,可得比例式,将已表示的线段代入计算即可求得t 的值。