一次函数练习题自己整理版
- 格式:pdf
- 大小:151.42 KB
- 文档页数:6
1.小张骑自行车匀速从甲地到乙地,在途中休息了一段时间后,仍按原速行驶.他距乙地的距离与时间的关系如图中折线所示,小李骑摩托车匀速从乙地到甲地,比小张晚出发一段时间,他距乙地的距离与时间的关系如图中线段AB所示.〔1〕小李到达甲地后,再经过___小时小张到达乙地;小张骑自行车的速度是___千米/小时. 〔2〕小张出发几小时与小李相距15千米?〔3〕假设小李想在小张休息期间与他相遇,则他出发的时间x 应在什么范围?〔直接写出答案〕2,甲、乙两人骑自行车前往A 地,他们距A 地的路程(km)s 与行驶时间(h)t 之间的关系如图13所示,请根据图象所提供的信息解答以下问题:〔1〕甲、乙两人的速度各是多少?〔4分〕〔2〕写出甲、乙两人距A 地的路程s 与行驶时间t 之间的函数关系式〔任写一个〕.〔3分〕 〔3〕在什么时间段内乙比甲离A 地更近?〔3分〕3.〔2011福建龙岩,23, 12分) 周六上午8:00小明从家出发,乘车1小时到郊外某基地参加社会实践活动,在基地活动小时后,因家里有急事,他立即按原路以4千米/时的平均速度步行返回.同时爸爸开车从家出发沿同一路线接他,在离家28千米处与小明相遇。
接到小明后保持车速不变,立即按原路返回.设小明离开家的时间为x 小时,小名离家的路程y (干米) 与x (小时)之间的函致图象如下列图,(1)小明去基地乘车的平均速度是________千米/小时,爸爸开车的平均速度应是________千米/小时; (2)求线段CD 所表示的函敛关系式;(3)问小明能否在12:0 0前回到家?假设能,请说明理由:假设不能,请算出12:00时他离家的路程,(第23题图)x (小时)图134.春节期间,某客运站旅客流量不断增大,旅客往往需要长时间排队等候购票.经调查发现,每天开始售票时,约有400人排队购票,同时又有新的旅客不断进入售票厅排队等候购票.售票时售票厅每分钟新增购票人数4人,每分钟每个售票窗口出售的票数3张.某一天售票厅排队等候购票的人数y 〔人〕与售票时间x 〔分钟〕的关系如下列图,已知售票的前a 分钟只开放了两个售票窗口〔规定每人只购一张票〕.〔1〕求a 的值.〔2〕求售票到第60分钟时,售票听排队等候购票的旅客人数.〔3〕假设要在开始售票后半小时内让所有的排队的旅客都能购到票,以便后来到站的旅客随到随购,至少需要同时开放几个售票窗口?5、双蓉服装店老板到厂家选购A 、B 两种型号的服装,假设购进A 种型号服装9件,B 种型号服装10件,需要1810元;假设购进A 种型号服装12件,B 种型号服装8件,需要1880元。
一次函数基础训练题一、一次函数的定义与表达式1. 题目下列函数中,是一次函数的是()A. y = (1)/(x)+1B. y = x^2+1C. y = 2x 1D. y=√(x)+1解析一次函数的一般形式为y = kx + b(k,b为常数,k≠0)。
选项A,y=(1)/(x)+1是反比例函数与常数函数的和,不是一次函数,因为反比例函数y = (1)/(x)不符合一次函数形式。
选项B,y = x^2+1是二次函数,因为自变量x的次数是2,不符合一次函数自变量次数为1的要求。
选项C,y = 2x 1符合一次函数y = kx + b的形式,其中k = 2,b=-1。
选项D,y=√(x)+1,自变量x在根号下,不是一次函数。
所以答案是C。
2. 题目已知一次函数y=(m 1)x+3,求m的取值范围。
解析因为一次函数的一般形式为y = kx + b(k≠0),在函数y=(m 1)x+3中,k = m 1。
要使函数为一次函数,则m 1≠0,解得m≠1。
二、一次函数的图象与性质1. 题目一次函数y = 2x+1的图象经过哪几个象限?解析对于一次函数y = kx + b(k,b为常数,k≠0),当k>0,b>0时,图象经过一、二、三象限。
在函数y = 2x+1中,k = 2>0,b = 1>0,所以图象经过一、二、三象限。
2. 题目已知一次函数y=-3x + b的图象经过点(1, -1),求b的值,并判断函数图象的单调性。
解析因为函数y=-3x + b的图象经过点(1,-1),将x = 1,y=-1代入函数可得:-1=-3×1 + b-1=-3 + b移项可得b=-1 + 3=2。
对于一次函数y = kx + b,这里k=-3<0,所以函数y=-3x + 2的图象是单调递减的,即y随x的增大而减小。
三、一次函数的应用1. 题目某汽车油箱中原有油100升,汽车每行驶50千米耗油9升,求油箱剩余油量y(升)与汽车行驶路程x(千米)之间的函数关系式。
一次函数专题1:小明上午7:05从家里出发以均匀的速度步行上学,途经少年宫时走了1200步,用时10分钟,7:30到达学校.为了估测路程等有关数据,小明特意在学校的田径跑道上,按上学的步行速度,走完100米用了150步.(1) 小明家和少年宫之间的路程是 米;小明上学步行的平均速度是 米/分;少年宫和学校之间的路程是 米. (2) 下午4:00,小明从学校出发,以45米/分的速度行走,按上学时的原路回家,在未到少年宫300米处与同伴玩了半小时后,赶紧以110米/分的速度回家,中途没有再停留.问: ① 小明到家的时间是下午几时?② 小明回家过程中,离家的路程s (米)与时间t (分)之间的函数关系如图,请写出点B 的坐标,并求出线段CD 所在直线的函数关系式.2:甲、乙两观光船分别从A 、B 两港同时出发,相向而行,两船在静水中速度相同,水流速度为5千米/小时,甲船逆流而行4小时到达B 港.下图表示甲观光船距A 港的距离y (千米)与行驶时间x (小时)之间的函数关系式,结合图象解答下列问题:(1)A 、B 两港距离 千米,船在静水中的速度为 千米/小时; (2)在同一坐标系中画出乙船距A 港的距离y (千米)与行驶时间x (小时)之间的函数图象;(3)求出发几小时后,两船相距5千米.y /千米x /小时10203040 1 2 3 4t (分)O s (米) A B CD (第27题)3:甲乙两地相距400 km ,一辆轿车从甲地出发,以80 km/h 的速度匀速驶往乙地.0.5h 后,一辆货车从乙地出发匀速驶往甲地.货车出发2.5h 后与轿车在途中相遇.此后,两车继续行驶,并各自到达目的地.设轿车行驶的时间为x (h ),两车距乙地的距离为y (km ). (1)两车距乙地的距离与x 之间的函数关系,在同一坐标系中画出的图象是( )(2)求货车距乙地的距离y 1与x 之间的函数关系式.(3)在甲乙两地间,距乙地300 km 处有一个加油站,两车在行驶过程中都曾在该加油站加油(加油时间忽略不计).求两车加油的间隔时间是多少?4:A 、B 两地相距630千米,客车、货车分别从A 、B 两地同时出发,匀速相向行驶(客车的终点站是C 站,货车的终点站是A 站).客车需9小时到达C 站,货车2小时可到达途中C 站(如图1所示).货车的速度是客车的 34 ,客车、货车到C 站的距离分别为y 1、y 2(千米),它们与行驶时间x (小时)之间的函数关系(如图2所示).(1)客车的速度是 ▲ 千米/小时,货车的速度是 ▲ 千米/小时;(2)P 点坐标的实际意义是 ▲ ;(3)求两小时后,货车与C 站的距离y 2与行驶时间x 之间的函数关系式; (4)求客车与货车同时出发后,经过多长时间两车相距360千米?400O yx ADBC 400OyxA DBC 400O y xADBC400Oy xADBC A .B .C .D .(第25题)5:如图1,将底面为正方形的两个完全相同......的长方体放入一圆柱形水槽内,并向 水槽内匀速注水,速度为v cm 3/s ,直至水面与长方体顶面平齐为止.水槽内的水深h (cm )与注水时间 t (s )的函数关系如图2所示.根据图象完成下列问题: (1)一个长方体的体积是_____________ cm 3; (2)求图2中线段AB 对应的函数关系式; (3)求注水速度v 和圆柱形水槽的底面积S .6:【童话故事】“龟兔赛跑”:兔子和乌龟同时从起点出发,比赛跑步,领先的兔子看着缓慢爬行的乌龟,骄傲起来,在路边的小树下睡了一觉,当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟已先到达终点.【数学探究】我们假设乌龟、兔子的速度及赛场均保持不变,小莉用图1刻画了“龟兔赛跑”的故事,其中x (分)表示乌龟从起点出发所行的时间,1y (米)表示兔子所行的路程,1y (米)表示乌龟所行的路程.(1)分别求线段BC 、OD 所表示的1y 、2y 与x 之间的函数关系式; (2)试解释图中线段AB 的实际意义;(3)兔子输了比赛,心里很不服气,它们约定再次赛跑,①如果兔子让乌龟先跑30分钟,它才开始追赶,请在图2中画出兔子所行的路程1y 与x 之间的函数关系的图象,并直接判断谁先到达终点;②如果兔子让乌龟从路边小树处(兔子第一次睡觉的地方)起跑,它们同时出发,这一次谁先到达终点呢?为什么?图1乌龟兔子O1200400706010y (米)x (分)DCBA图2兔子乌龟O120060x (分)y (米)7:有这样一道试题:“甲车从A 地出发以60 km/h 的速度沿公路匀速行驶,0.5小时后,乙车也从A 地出发,以80 km/h 的速度沿该公路与甲车同向匀速行驶,求乙车出发后几小时追上甲车.请建立一次函数....关系解决上述问题.” 小明是这样解答的:解:设乙车出发后x 小时追上甲车,甲乙两车间距离为y km .根据题意可得 y =60×0.5-(80-60)x .当乙车追上甲车时,即y =0,求得x =1.5. 答:乙车出发1.5小时后追上甲车.(1)老师看了小明的解答,微笑着说:“万事开头难,你一开始就有错误哦.”请帮小明思考一下,他哪里错了?为什么?(2)请给出正确的解答过程并画出相应的函数图像.8小明从家骑自行车出发,沿一条直路到相距1600m 的邮局办事,同时,小明的爸爸以80m/min 速度从邮局沿同一条道路步行回家,小明在邮局停留2分钟后沿原路以 原速返回.设他们出发后经过t (min)时,小明与爸爸离家的距离分别为S 1 (m)、S 2(m), S 1、S 2与t 的函数关系如图所示. (1)a = ▲ m .(2)①S 2与t 之间的函数关系式为 ▲ ;②当t ≥10时,求S 1与t 之间的函数关系式.(3)小明从邮局返回开始到追上爸爸需要多长时间?这时他与爸爸离家还有多远?(第23题)10OS (m) t (min)1600aCAB8 EFD9:实际情境王老师骑摩托车想尽快将甲、乙两位学生从学校送到同一个车站.由于摩托车后座只能坐1人,为了节约时间,王老师骑摩托车先带着乙出发,同时,甲步行出发. 已知甲、乙的步行速度都是5 km/h ,摩托车的速度是45 km/h . 方案预设(1)预设方案1:王老师将乙送到车站后,回去接甲,再将甲送到车站.图①中折线A -B -C -D 、线段AC 分别表示王老师、甲在上述过程中,离车站的路程......y (km )与王老师所用时间x (h )之间的函数关系. ①学校与车站的距离为 ▲ km ; ②求出点C 的坐标,并说明它的实际意义;(2)预设方案2:王老师骑摩托车行驶a h 后,将乙放下,让乙步行去车站,与此同时,王老师回去接甲并将甲送到车站,王老师骑摩托车一共行驶56h .图②中折线A -B -C -D 、线段AC 、线段BE 分别表示王老师、甲、乙在上述过程中,离车站的....路程..y(km )与王老师所用时间x (h )之间的函数关系.求a 的值.优化方案(3)请设计一种..方案,使甲、乙两位学生在出发50min 内(不含50min )全部到达车站.(要求:1.不需用文字写出方案,在图③中画出图象即可;2.写出你所画的图象中y 与x 的含义;3.不需算出甲、乙两位学生到达车站的具体时间!)(第27题)ABCD15 105Oy /km x /h13231 ①E ABCD15 105O13231 ②5656y /kmx /h15 105Oy /km13 23 1 (第27题③)56x /h。
完整版)一次函数专项练习题一次函数专项练题题型一、点的坐标在x轴上的点,其纵坐标为0,在y轴上的点,其横坐标为0.若两个点关于x轴对称,则它们的横坐标相同,纵坐标互为相反数;若两个点关于y轴对称,则它们的纵坐标相同,横坐标互为相反数;若两个点关于原点对称,则它们的横坐标互为相反数,纵坐标也互为相反数。
1、若点A(m,n)在第二象限,则点(|m|,-n)在第三象限;2、若点P(2a-1,2-3b)是第二象限的点,则a的范围为(0,1/2],b的范围为(0,2/3];3、已知A(4,b),B(a,-2),若A,B关于x轴对称,则a=4,b=-(-2)=2;若A,B关于y轴对称,则a=-4,b=b;若A,B关于原点对称,则a=-4,b=-b;4、若点M(1-x,1-y)在第二象限,那么点N(1-x,y-1)关于原点的对称点在第一象限。
题型二、关于点的距离的问题点到x轴的距离用纵坐标的绝对值表示,点到y轴的距离用横坐标的绝对值表示。
任意两点A(xA,yA),B(xB,yB)的距离为√[(xA-xB)²+(yA-yB)²];A(xA,0),B(xB,0)的距离为|xA-xB|;若AB∥y轴,则A(0,yA),B(0,yB)的距离为|yA-yB|;点A(xA,yA)到原点之间的距离为√(xA²+yA²)。
1、点B(2,-2)到x轴的距离是2;到y轴的距离是2;2、点C(0,-5)到x轴的距离是5;到y轴的距离是0;到原点的距离是5;3、点D(a,b)到x轴的距离是|b|;到y轴的距离是|a|;到原点的距离是√(a²+b²);4、已知点P(3,0),Q(-2,0),则PQ=5;已知点M(0,1),N(0,-1),则MN=2;已知点E(2,-1),F(2,-8),则EF的距离是7;已知点G(2,-3)、H(3,4),则GH两点之间的距离是7.5、求出点(3,-4)和(5,a)间的距离为2,可以利用两点间距离公式:$\sqrt{(5-3)^2+(a+4)^2}=2$,化简后得到$(a+4)^2=4$,解得$a=-2,2$。
一次函数练习题(大题30道)1.已知一次函数y=ax+b的图象经过点A(2,k)与B(m,4)。
1) 求一次函数的解析式,并在直角坐标系画出这个函数的图象;2) 如果(1)中所求的函数y的值在-4≤y≤4围,求相应的x的取值范围。
2.已知y=p+kx,这里p是一个常数,k与x成正比例,且x=2时,y=1;x=3时,y=-1.1) 写出y与x之间的函数关系式;2) 如果x的取值范围是1≤x≤4,求y的取值范围。
3.一次函数的图象经过点(2,1)和(-1,-3)。
1) 求此一次函数表达式;2) 求此一次函数与x轴、y轴的交点坐标;3) 求此一次函数的图象与两坐标轴所围成的三角形的面积。
4.已知一次函数y=kx+b的图象经过点(-1.-5),且与正比例函数y=x的图象相交于点(2,a)。
1) 求a的值;2) 求k和b的值;3) 求这两个函数图象与x轴所围成的三角形面积。
5.已知一次函数的图象,交x轴于A(-6,0),交正比例函数的图象于点B,且点B在第三象限,它的横坐标为-2,△AOB 的面积为6平方单位。
求正比例函数和一次函数的解析式。
6.如图,一束光线从y轴上的点A(0,1)出发,经过x轴上点C反射后经过点B(3,3),求光线从A点到B点经过的路线的长度。
7.由方程│x-1│+│y-1│=1确定的曲线围成的图形是什么图形,其面积是多少?8.直角坐标系xOy中,一次函数y=2x+2的图象与x轴、y 轴,分别交于A、B两点,点C坐标为(1,0),点D在x轴上,且∠BCD=∠ABD,求图象经过B、D两点的一次函数的解析式。
9.已知:如图一次函数y=(1/2)x-3的图象与x轴、y轴分别交于A、B两点,过点C(4,0)作AB的垂线交AB于点E,交y轴于点D,求点D、E的坐标。
10.已知直线y=(4/3)x+4与x轴、y轴的交点分别为A、B。
又P、Q两点的坐标分别为P(0,-1),Q(k,m),其中0<k<4,再以Q点为圆心,PQ长为半径作圆,则当k取何值时,圆与直线AB相切?11.某租赁公司共有50台联合收割机,其中甲型20台,乙型30台。
一次函数练习题(附答案)篇一:一次函数测试题及其答案一次函数测试题1. 函数y=中,自变量x的取值范围是() x?1A.x≥0 B.x>1 C.x>0且x≠1 D.x≥0且x≠1 2. 已知正比例函数y=-2x,当x=-1时,函数y的值是()A.2 B.-2 C.-0.5 D.0.5 3. 一次函数y=-2x-3的图像不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限4. 某校八年级同学到距学校6千米的郊外秋游,一部分同学步行,另一部分同学骑自行车,沿相同路线前往,如图,L1L2分别表示步行和骑车的同学前往目的地所走的路程y(千米)与所用时间x (分钟)之间的函数关系,则以下判断错误的是() A.骑车的同学比步行的同学晚出发30分钟 B.骑车的同学和步行的同学同时到达目的地C.骑车的同学从出发到追上步行的同学用了20分钟 D.步行的速度是6千米/小时。
5. 已知一次函数y=(m+2)x+(1-m),若y随x的增大而减小,且此函数图像与y轴的交点在x轴上方,则m的取值范围是()A.m>-2 B.m<1 C.<-2 D.-2<m<16. (2021福建福州)已知一次函数y?(a?1)x?b的图象如图所示,那么a的取值范围是()A.a?1 B.a?1C.a?0D.a?07. (2021上海市)如果一次函数y?kx?b的图象经过第一象限,且与y轴负半轴相交,那么() A.k?0,b?0B.k?0,b?0C.k?0,b?0D.k?0,b?08. (2021陕西)如图,一次函数图象经过点A,且与正比例函数图象交于点B,则该一次函数的表达式为() A.y??x?2C.y?x?2B.y?x?2 D.y??x?2)9. (2021浙江湖州)将直线y=2x向右平移2个单位所得的直线的解析式是(。
CA、y=2x+2B、y=2x-2C、y=2(x-2)D、y=2(x+2) 10. 已知两点M(3,5),N(1,-1),点P是x轴上一动点,若使PM+PN最短,则点P的坐标点是()A.(0,-4)B.(2,0) 3C.(4,0) 3D.(3,0) 2二、填空题 11. 若点A(2,,-4)在正比例函数y=kx的图像上,则k=_____。
一次函数的图像专项练习30题(有答案)1.函数y=ax+b与y=bx+a的图象在同一坐标系内的大致位置正确的是()A.B.C.D.2.一次函数y1=kx+b与y2=x+a的图象如图,则下列结论:①k<0;②a>0;③当x>2时,y2>y 1,其中正确的个数是()A.0B.1C.2D.33.一次函数y=kx+b,y随x的增大而减小,且kb>0,则在直角坐标系内它的大致图象是()A.B.C.D.4.下列函数图象不可能是一次函数y=ax﹣(a﹣2)图象的是()A.B.C.D.5.如图所示,如果k•b<0,且k<0,那么函数y=kx+b的图象大致是()A.B.C.D.6.如图,直线l1:y=x+1与直线l2:y=﹣x﹣把平面直角坐标系分成四个部分,则点(,)在()A . 第一部分B . 第二部分C . 第三部分D . 第四部分7.已知正比例函数y=﹣kx 和一次函数y=kx ﹣2(x 为自变量),它们在同一坐标系内的图象大致是( ) A . B . C . D .8.函数y=2x+3的图象是( ) A .过点(0,3),(0,﹣)的直线 B .过点(1,5),(0,﹣)的直线C .过点(﹣1,﹣1),(﹣,0)的直线D . 过点(0,3),(﹣,0)的直线9.下列图象中,与关系式y=﹣x ﹣1表示的是同一个一次函数的图象是( ) A . B . C . D .10.函数kx ﹣y=2中,y 随x 的增大而减小,则它的图象是下图中的( ) A .B .C .D .11.已知直线y 1=k 1x+b 1,y 2=k 2x+b 2,满足b 1<b 2,且k 1k 2<0,两直线的图象是( ) A .B .C .D .A.B.C.D.13.连降6天大雨,某水库的蓄水量随时间的增加而直线上升.若该水库的蓄水量V(万米3)与降雨的时间t(天)的关系如图所示,则下列说法正确的是()A.降雨后,蓄水量每天减少5万米3B.降雨后,蓄水量每天增加5万米3C.降雨开始时,蓄水量为20万米3D.降雨第6天,蓄水量增加40万米314.拖拉机开始行驶时,油箱中有油4升,如果每小时耗油0.5升,那么油箱中余油y(升)与它工作的时间t(时)之间的函数关系的图象是()A.B.C.D.15.已知正比例函数y=kx的图象经过第一、三象限,则y=kx﹣k的大致图象可能是下图的()A.B .C.D.16.一次函数y=kx+b的图象如图所示,当x_________时,y>2.17.一次函数的图象如图所示,根据图象可知,当x_________时,有y<0.18.如图,直线l是一次函数y=kx+b的图象,当x_________时,y>0.19.一次函数y1=kx+b与y2=x+a的图象如图所示,则下列结论:①k<0;②a>0;③当x=3时,y1=y2;④当x>3时,y1<y2中,正确的判断是_________.20.如图,已知函数y1=ax+b和y2=kx的图象交于点P,则根据图象可得,当x_________时,y1>y2.21.已知一次函数y=kx+b的图象如图所示,当y<0时,x的取值范围是_________.22.在平面直角坐标系中画出函数的图象.(1)在图象上标出横坐标为﹣4的点A,并写出它的坐标;(2)在图象上标出和y轴的距离是2个单位长度的点,并写出它的坐标.23.作函数y=2x﹣4的图象,并根据图象回答下列问题.(1)当﹣2≤x≤4,求函数y的取值范围.(2)当x取何值时,y<0?y=0?y>0?24.如图是一次函数y=﹣x+5图象的一部分,利用图象回答下列问题:(1)求自变量的取值范围.(2)在(1)在条件下,y是否有最小值?如果有就求出最小值;如果没有,请说明理由.25.已知函数y1=﹣x+和y2=2x﹣1.(1)在同一个平面直角坐标系中画出这两个函数的图象;(2)根据图象,写出它们的交点坐标;(3)根据图象,试说明当x取什么值时,y1>y2?26.作出函数y=3﹣3x的图象,并根据图象回答下列问题:(1)y的值随x的增大而_________;(2)图象与x轴的交点坐标是_________;与y轴的交点坐标是_________;(3)当x_________时,y≥0;(4)函数y=3﹣3x的图象与坐标轴所围成的三角形的面积是多少?27.已知函数y=2x﹣1.(1)在直角坐标系中画出这函数的图象;(2)判断点A(﹣2.5,﹣4),B(2.5,4)是否在函数y=2x﹣1的图象上;(3)当x取什么值时,y≤0.28.已知函数y=﹣2x﹣6.(1)求当x=﹣4时,y的值,当y=﹣2时,x的值.(2)画出函数图象.(3)如果y的取值范围﹣4≤y≤2,求x的取值范围.29.已知一次函数的图象经过点A(﹣3,0),B(﹣1,1)两点.(1)画出图象;(2)x为何值时,y>0,y=0,y<0?30.已知一次函数y=﹣2x+2,(1)在所给的平面直角坐标系中画出它的图象;(2)根据图象回答问题:①图象与x轴的交点坐标是_________,与y轴的交点坐标是_________;②当x_________时,y>0.参考答案:1.分四种情况:①当a>0,b>0时,y=ax+b的图象经过第一、二、三象限,y=bx+a的图象经过第一、二、三象限,无选项符合;②当a>0,b<0时,y=ax+b的图象经过第一、三、四象限;y=bx+a的图象经过第一、二、四象限,C选项符合;③当a<0,b>0时,y=ax+b的图象经过第一、二、四象限;y=bx+a的图象经过第一、三、四象限,无选项符合;④当a<0,b<0时,y=ax+b的图象经过第二、三、四象限;y=bx+a的图象经过第二、三、四象限,无选项符合.故选C2.由一次函数y1=kx+b与y2=x+a的图象可知k<0,a<0,当x>2时,y2>y1,①③正确.故选C3.∵一次函数y=kx+b,y随x的增大而减小,∴k<0,又∵kb>0,∴b<0,∴函数的图象经过第二、三、四象限.故选C4.根据图象知:A、a>0,﹣(a﹣2)>0.解得0<a<2,所以有可能;B、a<0,﹣(a﹣2)<0.解得两不等式没有公共部分,所以不可能;C、a<0,﹣(a﹣2)>0.解得a<0,所以有可能;D、a>0,﹣(a﹣2)<0.解得a>2,所以有可能.故选B5.∵k•b<0,且k<0,∴b>0,k<0,∴函数y=kx+b的图象经过第一、二、四象限,故选D6.由题意可得,解得,故点(,)应在交点的上方,即第二部分.故选B.7.分两种情况:(1)当k>0时,正比例函数y=﹣kx的图象过原点、第一、三象限,一次函数y=kx﹣2的图象经过第一、三、四象限,选项A符合;(2)当k<0时,正比例函数y=﹣kx的图象过原点、第二、四象限,一次函数y=kx﹣2的图象经过第二、三、四象限,无选项符合.故选A.8.A、把x=0代入函数关系式得2×0+3=3,故函数图象过点(0,3),不过(0,﹣),故错误;B、由A知函数图象不过点(0,﹣),故错误;C、把x=﹣1代入函数关系式得,2×(﹣1)+3=1,故(﹣1,﹣1)不在函数图象上,故错误;D、分别令x=0,y=0,此函数成立,故正确.故选D9.函数y=﹣x﹣1是一次函数,其图象是一条直线.当x=0时,y=﹣1,所以直线与y轴的交点坐标是(0,﹣1);当y=0时,x=﹣1,所以直线与x轴的交点坐标是(﹣1,0).由两点确定一条直线,连接这两点就可得到y=﹣x﹣1的图象.故选D10.整理为y=kx﹣2∵y随x的增大而减小∴k<0又因为图象过2,4,3象限故选D.11.k1k2<0,则k1与k2异号,因而两个函数一个y随x的增大而增大,另一个y随x的增大而减小,因而A是错误的;b1<b2,则y1与y轴的交点在y2与y轴的交点的下边,因而B、C都是错误的.12.①当ab>0,正比例函数y=abx过第一、三象限;a与b同号,同正时y=ax+b过第一、二、三象限,故D错误;同负时过第二、三、四象限,故B错误;②当ab<0时,正比例函数y=abx过第二、四象限;a与b异号,a>0,b<0时y=ax+b过第一、三、四象限,故C错误;a<0,b>0时过第一、二、四象限.故选A13.A、根据图象知,水库的蓄水量因该随着降雨的时间的增加而增多;故本选项错误;B、本图象的直线,所以每天的降雨量是相等的,所以,蓄水库每天的增加的水的量是(40﹣10)÷6=5;故本选项正确;C、根据图示知,降雨开始时,蓄水量为10万米3,故本选项错误;D、根据图示知,降雨第6天,蓄水量增加了40万米3﹣30万米3=10万米3,故本选项错误;故选B14.根据题意列出关系式为:y=40﹣5t,考虑实际情况:拖拉机开始工作时,油箱中有油4升,即开始时,函数图象与y轴交于点(0,40),如果每小时耗油0.5升,且8小时,耗完油,故函数图象为一条线段.故选D15.∵正比例函数y=kx的图象经过第一、三象限,∴k>0,∴﹣k<0,∴y=kx﹣k的大致图象经过一、三、四象限,故选:B.16.由图形可知,该函数过点(0,2),(3,0),故斜率k==,所以解析式为y=,令y>2,即>2,解之得:x<017.根据题意,要求y<0时,x的范围,即:x+3<0,解可得:x<﹣2,故答案为x<﹣218.根据题意,观察图象,可得直线l过点(2,0),且y随x的增大而增大,分析可得,当x>2时,有y>0 19.根据图示及数据可知:①一次函数y1=kx+b的图象经过第二、四象限,则k<0正确;②y2=x+a的图象经与y轴交与负半轴,则a>0错误;③一次函数y1=kx+b与y2=x+a的图象交点的横坐标是3,所以当x=3时,y1=y2正确;④当x>3时,y1<y2正确;故正确的判断是①,③,④20.根据图示可知点P的坐标是(﹣4,2),所以y1>y2即直线1在直线2的上方,则x<﹣4.21.根据图象和数据可知,当y<0即图象在x轴下侧,x<1.故答案为x<122.函数与坐标轴的交点的坐标为(0,3),(6,0).(1)点A的坐标(﹣4,5);(2)和y轴的距离是2个单位长度的点的坐标M(2,2),N(﹣2,4)23.当x=0时,y=﹣4;当y=0时,2x﹣4=0,解得x=2,∴函数图象与两坐标轴的交点为(0,﹣4)(2,0).图象如下:(1)x=﹣2时,y=2×(﹣2)﹣4=﹣8,x=4时,y=2×4﹣4=4,∵k=2>0,∴y随x的增大而增大,∴﹣8≤y≤4;24.(1)由图象可看出当y=2.5时,x=5,因此x的取值范围应该是0<x≤5(y轴上的点是空心圆,因此x≠0);(2)由图象可看出,当x=5时,函数的值最小,是y=2.525.(1)如图所示:(2)由(1)中两函数图象可知,其交点坐标为(1,1);(3)由(1)中两函数图象可知,当x>1时,y1>y2.26.如图.(1)因为一次项系数是﹣3<0,所以y的值随x的增大而减小;(2)当y=0时,x=1,所以图象与x轴的交点坐标是(1,0);当x=0时,y=3,所以图象与y轴的交点坐标是(0,3);(3)由图象知,在A点左边,图象在x轴上方,函数值大于0.所以x≤1时,y≥0.(4)∵OA=1,OB=3,∴函数y=3﹣3x的图象与坐标轴所围成的三角形的面积是S△AOB=×1×3=.27.(1)函数y=2x﹣1与坐标轴的坐标为(0,﹣1)(,0),描点即可,如图所示;(2)将A、B的坐标代入函数式中,可得出A点不在直线y=2x﹣1的图象上,B点在直线y=2x﹣1的图象上,A代入函数后发现﹣2.5×2﹣1=﹣6≠﹣4,因此A点不在函数y=2x﹣1的图象上,然后用同样的方法判定B是否在函数的图象上;(3)当y≤0时,2x﹣1≤0,因此x≤.28.(1)当x=﹣4时,y=2;当y=﹣2时,x=﹣2;(2)由(1)可知函数图象过(﹣4,2)、(﹣2,﹣2),由此可画出函数的图象,如下图所示:(3)∵y=﹣2x﹣6,﹣4≤y≤2∴﹣4≤﹣2x﹣6≤22≤﹣2x≤8﹣4≤x≤﹣129.(1)图象如图:(2)观察图象可得,当x>﹣3时,y>0;当x=﹣3时,y=0;当x<﹣3时,y<0.30.(1)列表:x 0 1y 2 0描点,连线(如图)…(也可以写成过点(0,2)和(1,0)画直线)(2)①(1,0);(0,2)②<1。
一次函数练习题及答案一、选择题(每题2分,共10分)1. 一次函数y=kx+b的斜率k表示什么?A. 函数的截距B. 函数的增长速度C. 函数的对称轴D. 函数的顶点2. 下列哪个选项不是一次函数?A. y = 3x + 5B. y = x^2 + 1C. y = -2x - 3D. y = 53. 一次函数y=kx+b中,当k>0时,函数的图像在坐标平面内如何变化?A. 从左下角向右上角延伸B. 从左上角向右下角延伸C. 从右上角向左下角延伸D. 从左上角向右上角延伸4. 已知一次函数y=2x-4,当x=3时,y的值是多少?A. 2B. -2C. 0D. 55. 如果一次函数y=kx+b的图像经过点(1,1)和(2,4),那么k和b的值分别是多少?A. k=3, b=-2B. k=2, b=-1C. k=1, b=2D. k=4, b=-3二、填空题(每题2分,共10分)6. 一次函数y=kx+b的图像是一条______。
7. 当k<0时,一次函数y=kx+b的图像会经过第______象限。
8. 一次函数y=kx+b中,如果b>0,则函数的图像与y轴的交点在y轴的______半轴。
9. 已知一次函数y=kx+b的图像经过点(-1,5),且与x轴相交于点(3,0),则k=______。
10. 一次函数y=kx+b的图像与x轴相交于点(x,0),则x=______。
三、解答题(每题5分,共20分)11. 已知一次函数y=kx+b的图像经过点(2,-3)和(-1,6),请求出k和b的值。
12. 一次函数y=kx+b的图像与x轴相交于点(a,0),与y轴相交于点(0,b),若a=4,b=-1,请写出该一次函数的解析式。
13. 已知一次函数y=kx+b的图像经过点(0,5)和(1,10),求出该一次函数的解析式,并判断其增减性。
14. 一次函数y=kx+b的图像与反比例函数y=1/x的图像在第一象限相交于点(2,m),求m的值。
2 ⎪ 数学八年级上册一次函数练习题一、试试你的身手(每小题 3 分,共 24 分)11.正比例函数 y = - 2x 中,y 值随 x 的增大而. 2. 已知 y=(k-1)x+k 2-1 是正比例函数,则 k =.3. 若 y+3 与 x 成正比例,且 x=2 时,y=5,则 x=5 时,y=.4.直线 y=7x+5,过点( ,0),(0,).5.已知直线 y=ax-2 经过点(-3,-8)和⎛ 1 ,b ⎫两点,那么 a= ,b=.⎝ ⎭6. 写出经过点(1,2)的一次函数的解析式为(写出一个即可).1 x +1 , y = 1 x -1, y = 1 x 的图象有什么特点7. 在同一坐标系内函数 y =2 2 2.8. 下表中,y 是 x 的一次函数,则该函数解析式为,并补全下表.x -2 -10 12y26二、相信你的选择(每小题 3 分,共 24 分)1. 下列函数中是正比例函数的是()A. y = 8 xB. y = 82C . y = 2(x -1)D . y = -( 2 +1)x32. 下列说法中的两个变量成正比例的是( )A .少年儿童的身高与年龄B .圆柱体的体积与它的高C .长方形的面积一定时,它的长与宽D .圆的周长 C 与它的半径 r 3.下列说法中错误的是( ) A .一次函数是正比例函数 B .正比例函数是一次函数C .函数 y=|x |+3 不是一次函数D .在 y=kx+b(k 、b 都是不为零的常数)中, y-b 与 x 成正比例4. 一次函数 y=-x-1 的图象不经过()A .第一象限B .第二象限C .第三象限D .第四象限5.函数 y=kx-2 中,y 随 x 的增大而减小,则它的图象可以是()6. 如图 1,一次函数的图象经过 A 、B 两点,则这个一次函数的解析式为()A. y = 3x - 22B. y = 1x - 22C. y = 1x + 22 D. y = 3x + 227.若函数y=kx+b(k、b 都是不为零的常数)的图象如图2 所示,那么当y>0 时,x 的取值范围为()A.x>1 B.x>2 C.x<1 D.x<28.已知一次函数y=kx-k,若y 随x 的增大而减小,则该函数的图象经过()A.第一、二、三象限 B.第一、二、四象限C.第二、三、四象限 D.第一、三、四象限三、挑战你的技能(共30 分)1.(10 分)某函数具有下列两条性质:(1)它的图象是经过原点(0,0)的一条直线;(2)y 的值随 x 的值增大而减小.请你写出一个满足上述两个条件的函数解析式.2.(10 分)已知一次函数 y=kx+b 的图象经过 A(2,4)、B(0,2)两点,且与 x 轴相交于C 点.(1)求直线的解析式.(2)求△AOC的面积.3.(10 分)已知一个正比例函数和一个一次函数的图象交于点 P(-2,2),且一次函数的图象与 y 轴相交于点 Q(0,4).(1)求这两个函数的解析式.(2)在同一坐标系内,分别画出这两个函数的图象.(3)求出△POQ的面积.四、拓广探索(共 22 分)1.(11 分)如图 3,在边长为 2 的正方形 ABCD 的一边 BC 上的点 P 从B 点运动到 C 点,设PB=x,梯形 APCD 的面积为 S.(1)写出 S 与x 的函数关系式;(2)求自变量 x 的取值范围;(3)画出函数图象.2.(11 分)小明在暑期社会实践活动中,以每千克 0.8 元的价格从批发市场购进若干千克西瓜到市场上去销售,在销售了 40 千克西瓜之后,余下的每千克降价 0.4 元,全部售完.销售金额与售出西瓜的千克数之间的关系如图 4 所示.请你根据图象提供的信息完成以下问题:(1)求降价前销售金额 y(元)与售出西瓜 x(千克)之间的函数关系式. (2)小明从批发市场共购进多少千克西瓜?(3)小明这次卖瓜赚了多少钱?一、1.减小2.-1参考答案3.17 4.-5,5 5.2 ,-176.略(答案不惟一)7.三条直线互相平行8.y = 2x + 2 ,表格从左到右依次填-2 ,0 ,4二、1.D 2.D 3.A 4.A 5.D 6.A 7.D 8.B三、1.y =-x (答案不惟一)2.(1)y =x + 2(2)43.(1)正比例函数的解析式为y=-x.一次函数的解析式为y =x + 4(2)图略;(3)4四、1.(1)S = 4 -x ;(2)0 <x < 2 ;(3)图略2.(1)y =8x(0 ≤≤x540) ;(2)50 千克;(3)36 元. . . . .一次函数测试题一、填空1、已知一个正比例函数的图象经过点(-2,4),则这个正比例函数的表达式是。
一次函数练习题及答案本文将为大家提供一系列有关一次函数的练习题,同时附带相应的答案。
一次函数,也叫线性函数,是初中数学中的重要知识点之一。
希望通过这些练习题的训练,大家能够更好地掌握一次函数的概念、性质和解题方法。
一、选择题1.已知函数y=3x+2,则它的斜率是多少?– A. 2– B. 3– C. -2– D. -3答案:B2.若一次函数图像上两点的坐标分别为(1,4)和(3,y),则y的值是多少?– A. 10– B. 12– C. 14– D. 16答案:D3.已知函数经过点(−2,1)和(4,y),则y的值是多少?– A. -5– B. 0– C. 3– D. 6答案:C二、填空题1.若一次函数y=kx+3经过点(2,5),则k的值为 \\\_。
答案:12.一次函数y=−2x+b经过点(3,−1),则b的值为 \\\_。
答案:53.若一次函数图像上两点的坐标分别为(1,y1)和(2,y2),则$\\frac{{y_1}}{{y_2}}$ 的值为 \\\_。
答案:$\\frac{1}{2}$三、计算题1.求函数y=2x−1和y=x+3的交点坐标。
解:将两个方程联立起来,得到方程组:$$ \\begin{cases} y = 2x - 1\\\\ y = x + 3\\\\ \\end{cases} $$解方程组可得:$$ x + 3 = 2x - 1 \\\\ \\Rightarrow x = 4 $$将x=4代入其中一个方程,得到y=8−1=7。
因此,交点坐标为(4,7)。
2.已知函数y=3x+b经过点(2,−1),求b的值。
解:代入点(2,−1),得到方程 $-1 = 3 \\cdot 2 + b$,解方程可得b=−7。
3.一辆汽车以匀速行驶,开车起点距离目的地 600 公里。
如果行驶 4小时后,已行驶距离为 320 公里,求每小时行驶的公里数。
解:设每小时行驶的公里数为x,根据题意可得方程 $\\frac{320}{4} = x$,解方程可得x=80。
函数练习题
重点、难点:
1. 一次函数的概念:
(1)理解一次函数概念的关键是对其定义的理解。
由定义可知:
要证明y是x的一次函数,就需要证明:它的解析式可写成y=kx+b的形式,而且k、b一定是常数,且k≠0,这两个内容缺一不可。
(2)对正比例函数定义的理解还须加上b=0的条件。
(3)一次函数与正比例函数的关系如下:
一次函数y=kx+b(k≠0),当b=0时,y=kx是正比例函数。
当b≠0时,y=kx+b不是正比例函数。
因此,如果y是x的正比例函数,则y一定是x的一次函数,反之则不一定成立。
2. 一次函数的图象:
一次函数y=kx+b(k≠0)的图象都是一条与坐标轴斜交的直线。
因此,只需求出直线y=kx+b上的两点,就可得到它。
一般,作正比例函数y=kx的图象常取点(0,0)和(1,k);
点是直线与坐标轴的交点。
3. 参数k、b的意义和对一次函数y=kx+b的图象和性质的影响。
因此,k的符号与直线的方向、函数的增减性是相互决定的。
(2)b是一次函数y=kx+b中当x=0时所对应的函数值,因此直线y =kx+b与y轴交于点(0,b),说明b是直线y=kx+b在y轴上的截距。
因此,b的符号和直线与y轴交点位置是相互对应的。
(3)k、b的符号对直线位置的影响:
讨论k、b符号与直线y=kx+b在坐标系中的位置要注意用k、b的意义去解决,不必死记对应的结论。
4. 一次函数y=kx+b有两个参数,因此只要有两个独立条件就可以求出它的解析式,这就是待定系数法。
5. 一次函数y=kx+b(k≠0)和二元一次方程Ax+By=C之间在A≠0且B≠0的条件下是可以互相转化的。
即:Ax+By+C=0(A≠0,B≠0)
1.
2. 证明:点(4,-7),点(-1,8),点(2,-1)在同一条直线上。
3. 取值范围。
(1)使得y随x的减小而增大;
(2)使得函数图像与y轴交点在x轴下方;
(3)使函数经过第二、三、四象限。
4. 已知直线l经过两直线y=-x+2和y=2x+5的交点,且在y轴上的截距为-1,求此直线l的解析式。
5. 一次函数y=kx+b在y轴上交于(0,4)点,图象与坐标轴围成的三角形面积为4,求函数解析式,并画出示意图。
6. 图象分析:
(1)一根蜡烛长20cm,点燃后每小时燃烧5cm,燃烧时剩下的高度h(cm)与燃烧时间t(小时)的函数关系表示为()
7. 李老师骑自行车上班,最初以某一速度匀速行进,中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,结果准时到校。
在课堂上,李老师请学生画出自行车行进路程s(千米)与行进时间t(小时)的函数图象的示意图。
同学们画出的示意图如下,你认为正确的是()
8. 一游泳池长90米,甲、乙二人分别在游泳池相对两边同时朝另一边游泳,甲的速度是3米/秒,乙的速度是2米/秒,图中的实线和虚线分别为甲、乙与游泳池一边的距离随游泳时间变化的图象,若不计转向时间,则从开始起到3分钟止他们相遇的次数为()
A. 2次
B. 3次
C. 4次
D. 5次
9. 幸福村村办工厂今年前五个月每个月生产某种产品的总量c(件)关于时间t(月)的函数图像如图所示,该厂对这种产品来说是()
A. 1月至3月每月生产总量逐月增加;4,5两月每月生产总量逐月减少
B. 1月至3月每月生产总量逐月增加;4,5两月每月生产总量与3月持平
C. 1月至3月每月生产总量逐月增加;4,5两月均停止生产
D. 1月至3月每月生产总量不变;4,5两月均停止生产
10. 商店出售茶壶和茶杯,茶壶每只定价20元,茶杯每只定价5元,该店制定了两种优惠办法。
(1)买一只茶壶赠送一只茶杯;(2)按总价的90%付款。
某顾客需购茶壶4只,茶杯若干只(不少于4只)。
若以购买茶杯数为x(只),付款数为y(元),试分别建立两种优惠办法中y与x 间的函数关系式,并讨论该顾客买同样多的茶杯时,两种办法中哪一种更省钱?
11. 在全国抗击“非典”的斗争中,黄城研究所的医学专家们经过日夜奋战,终于研制出一种治疗非典的抗生素。
据临床观察,如果成人按规定的剂量注射这种抗生素,注射药液后每毫升血液中的含药量y(微克)与时间性t(小时)之间的关系近似的满足如图所示的折线。
(1)写出注射药液后每毫升血液中含药量y与时间t之间的函数关系式及自变量的取值范围;
(2)据临床观察:每毫升血液中含药量不少于4微克时,控制病情最有效。
如果病人按规定的剂量注射药液后,那么这一次注射的药液经多长时间后控制病情开始有效?这个有效时间多长?
(3)假如某病人第一次注射药液时间是早晨6:00,问如何安排从6:00—20:00注射时间,才能使治疗效果最好?
1.
2. 设过点(-1,8)和点(2,-1)的直线的解析式为y=kx+b
3. (1)∵y随x的减小而增大
(2)∵函数图象与y轴的交点在x轴下方
(3)∵函数图象经过二、三、四象限
4. 求两直线的交点,即求两个函数解析式组成的二元一次方程组的解即可。
解:设直线l的解析式为y=kx+b
∴(-1,3)为两直线交点
∴y=kx+b过(-1,3)点,且在y轴上的截距为-1
5. ∵函数y=kx+b在y轴上交于(0,4)点,∴b=4
即y=kx+4
∵图象与坐标轴围成的三角形面积为4
注意:已知图象与坐标轴围成的三角形的面积,求函数解析式时,一般要在底边或高所表示的线段上加绝对值,求出的解有可能是2个解。
6.解法一:函数的定义域为0≤t≤4,应排除D。
蜡烛的高度随燃烧时间的增加而降低,曲线应向右下伸展,只有B符合要求。
解法二:根据题意可得函数解析式为:h=20-5t(0≤t≤5)
只有B满足此解析式。
7. 答案选择C
因为最初匀速行驶,图象是正比例函数图象的一部分,中间耽误了几分钟,在图象上表现为中间一段平行于t轴的线段,说明时间在流逝,而路程没有增加,后来加速,仍保持匀速行进,说明单位时间内路程比
修车前已有所增加,所以选择C。
8. 答案选择D,相遇了5次。
因为图象中实线与虚线有5个交点,而每一个交点的坐标都说明在同一时刻甲、乙两人离开游泳池某一端的距离相同,也就是说两人相遇了一次,所以从图象中看,是相遇了5次。
9.解:选B
分析:如上图,由图象分析知:c3>c2>c1
∴1月至3月生产总量逐月增加,而4、5两月与3月持平
若把原题中的“每个月”三字去掉,c就表示前5个月的生产总量。
这时答案应该选择c,即1月至3月每月生产总量不变,4、5两月均停止生产。
∴1月至3月每月生产总量不变
又∵c4=c3,c5=c3,c又表示前5个月的生产总量
∴4、5两月均停止生产
正确进行图象分析的关键是要清楚自变量的取值范围和函数所代表的实际意义。
10.解:
此题还可以画出函数图象,利用图象比较省钱的方案。
11.解:(1)
(2)当0≤t≤1时,令y=4,则6t=4
(3)第一次注射药液的时间是6:00
设第二次注射药液的时间是在第一次注射药液t1小时后
∴第二次注射药液的时间是10:00
设第三次注射时间是在第一次注射药液t2小时后,此时体内的含药量是第一次注射药液的含量与第二次注射药液的含药量之和
∴第三次注射药液的时间是15:00
设第四次的注射药液时间是在注射药液t3小时后,此时体内不再含第一次注射药液的药量,体内的含药量是第二次注射药液的含药量与第三次注射药液的含药量之和。
∴第四注射药液的时间是19:30
∴科学的注射时间应安排为6:00,10:00,15:00,19:30,才能使治疗效果最好。