新人教版八年级一次函数练习题经典
- 格式:doc
- 大小:74.00 KB
- 文档页数:2
八年级数学《一次函数》经典练习题一、选择题(1)当自变量x增大时,下列函数值反而减小的是()A.B.C.D.(2)对于正比例函数,下列结论正确的是()A.B.y随x的增大而增大C.D.y随x的增大而减小(3)如果函数的图像经过(-1,8)、(2,-1)两点,那么它也必经过点()A.(1,-2)B.(3,4)C.(1,2)D.(-3,4)(4)对于一次函数,若,则函数图像不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限(5)直线与y轴交点在x轴下方,则b的取值为()A.B. C. D.(6)如图所示,函数的图像可能是()(7)已知一次函数的图像经过点,且与两坐标轴围成的三角形面积是8,则这个函数的解析式是()A.B.C.或D.或(8)已知直线如图所示,要使y的值为正,自变量x必须满足()A. B. C. D.(9)下列图像中(如图所示),不可能是关于x的一次函数的图像的是()(10)对于直线,若b减少一个单位,则它的位置将()A.向左平移一个单位B.向右平移一个单位C.向下平移一个单位D.向上平移一个单位二、填空题(1)一次函数中,k、b都是_______,且,自变量x的取值范围是_________,当,b__________时,它是正比例函数.(2)若,当时,,则.(3)直线与x轴的交点是_________,与y轴的交点是__________.(4)若函数的图像过第一、二、三象限,则,这时,y随x 的增大而________.(5)直线与x轴、y轴交于A、B两点,则的面积为_________.(6)直线若经过原点,则,若直线与x轴交于点(-1,0),则.(7)直线与直线的交点为__________.(8)已知一次函数的图像如图所示,则这个一次函数的解析式为_________.(9)已知函数,当时,有.(10)已知直线上两点和,且,当时,与的大小关系式为___________.三、解答题1.已知与成正比例(其中a、b都是常数).(1)试说明y是x的一次函数;(2)如果时,;时,,求这个一次函数的解析式.2.已知三点.试判断这三点是否在同一条直线上,并说明理由.四、应用题(1)1.将长为30cm,宽为10cm的长方形的白纸,按图所示方法粘合起来,粘合部分的宽为3cm.求5张白纸粘合后的长度;(2)设x张白纸粘合后的总长度为y cm,写出y与x之间的函数关系式,并求时,y的值.2.对于气温,有的地方用摄氏温度表示,有的地方用华氏温度表示,摄氏温度与华氏温度之间存在着某种函数关系.从温度计的刻度上可以看出,摄氏(℃)温度x与华氏(℉)温度y 有如下的对应关系:x(℃)…-10 0 10 20 30 …y(℉)…14 32 50 68 86 …(1)通过①描点连线;②猜测y与x之间的函数关系;③求解;④验证等几个步骤,试确定y与x之间的函数关系式;(2)某天,A市的最高气温是8℃,澳大利亚悉尼的最高气温是91℉,问这一天悉尼的最高气温比A市的最高气温高多少摄氏度(结果保留整数)?3.某同学将父母给的零用钱按每月相等的数额存放在储蓄盒内,准备捐给希望工程,盒内原有60元,2个月后盒内有钱80元.(1)求盒内钱数y(元)与存钱月数x之间的函数关系式;(2)按上述方法,该同学几个月能存够300元?参考答案一、(1)C (2)D (3)C (4)C (5)C(6)D (7)C (8)C (9)C (10)C二、(1)常数,,全体实数,,;(2)-4;(3),(0,-2);(4),增大;(5);(6);(7);(8);(9);(10).三、1.(1)因为与成正比例,所以(k是不等于0的常数),即.因为k是不等于0的常数,a、b都是常数,所以也是常数,所以y是x的一次函数;(2)因为时,;时,,所以有解得所以这个一次函数的解析式为.2.在同一条直线上,理由如下:设经过A、B两点的直线为,由,得解得所以经过A、B两点的直线为.当时,.所以在这条直线上.所以三点在同一条直线上.1.(1)5张白纸粘合后的长度为(cm);(2)(x为大于1的整数).当时,(cm).2.(1)①描点连线(略)②通过观察可猜测y是x的一次函数,③设,现将两对数值分别代入,得解得所以.④验证:将其余三对数值分别代入,得;;.结果等式均成立.所以y与x的函数关系式为:.(2)当时,,所以.而(℃),所以这一天悉尼的最高气温比A市的最高气温约高25℃.3.(1)设.因为当时,;当时,,所以解得所以;(2)当时,,所以.所以该同学24个月能存够300元.。
一次函数1、下列问题中,变量y 与x 成一次函数关系的是( )A. 路程一定时,时间y 和速度x 的关系B. 长 10 米的铁丝折成长为C. 圆的面积y 与它的半径xy 米,宽为x 米的长方形D. 斜边长为 5 的直角三角形的直角边y 和x2、函数A.x ≠1B.x >- 1 的自变量C.x≥-x 的取值范围为(1 D.x≥- 1 且)x≠13、图象中所反映的过程是:小敏从家跑步去体育场,在那里锻炼了一阵后,又去早餐店吃早餐,然后散步走回家,其中 x 表示时间, y 表示小敏离家的距离,根据图象提供的信息,以下说法错误的是()A. 体育场离小敏家 2.5 千米B. 体育场离早餐店 4 千米C. 小敏在体育场锻炼了15 分钟D.小敏从早餐店回到家用时30 分钟4、已知如图,正比例函数y=kx (k≠0)的函数值y 随 x 的增大而增大,则一次函数y=x+k 的图象大致是()A. B. C. D.5、一次函数y=-x+6 的图像不经过()A. 第一象限B.第二象限C.第三象限D.第四象限6、已知A(﹣ 4, y1), B( 2,y2)在直线y=﹣1/2x+20 上,则y1、 y2大小关系是()A.y 1> y2B.y 1=y2C.y 1<y2D. 不能比较7、已知某一次函数的图象与直线y=﹣x+1 平行,且过点(8, 2),那么此一次函数为()A.y= ﹣x﹣2B.y= ﹣x+10C.y=﹣x﹣6D.y=﹣x﹣108、在同一平面直角坐标系中,直线与直线的交点不可能在()A. B. C. D.9、如图,已知函数y=3x+b 和 y=ax﹣3的图象交于点P(﹣ 2,﹣ 5),则根据图象可得不等式3x+b>ax﹣3的解集是()A.x >﹣5B.x >﹣2C.x >﹣3D.x <﹣210、某学校组织团员举行申奥成功宣传活动,从学校骑车出发,先上坡到达 A 地后,宣传 8 分钟;然后下坡到 B 地宣传 8 分钟返回,行程情况如图 . 若返回时,上、下坡速度仍保持不变,在 A 地仍要宣传 8 分钟,那么他们从 B 地返回学校用的时间是()A.45.2分钟B.48分钟C.46分钟D.33分钟11、已知直线y=﹣x+8 与 x 轴、 y 轴分别交于点 A 和点 B, M是 OB上的一点,若将△ ABM 沿 AM折叠,点B 恰好落在x 轴上的点B′处,则直线AM的函数解析式是()A.y= ﹣x+8B.y= ﹣x+8C.y=﹣x+3D.y=﹣x+312、如图,直线y= x+4 与x 轴、 y 轴分别交于点 A 和点B,点C、D 分别为线段AB、OB的中点,点P 为直线OA上一动点,PC+PD值最小时点P 的坐标为()A.(﹣ 3, 0)B. (﹣ 6, 0)C. (﹣,0)D. (﹣, 0)13、“五四”青年节期间,校团委对团员参加活动情况进行表彰,计划分为优秀奖和贡献奖,为此联系印刷公司设计了两种奖状,A,B 两家公司都为学校提出了相同规格和单价的两种奖状,其中优秀奖的奖状 6 元/ 张,贡献奖的奖状 5 元 / 张,经过协商, A 公司的优惠条件是:两种奖状都打八折,但要收制版费50 元;B 公司的优惠条件是:两种奖状都打九折;根据学校要求,优秀奖的个数是贡献奖的2 倍还多10 个,如果设贡献奖的个数是x 个 .(1)分别写出校团委购买A, B 两家印刷厂所需要的总费用y1(元)和y2(元)与贡献奖个数x 之间的函数关系式;(2)校团委选择哪家印刷公司比较合算?请说明理由.14、某超市鸡蛋供应紧张,需每天从外地调运鸡蛋1200 斤 . 超市决定从甲、乙两大型养殖场调运鸡蛋,已知甲养殖场每天最多可调出800 斤,乙养殖场每天最多可调出900 斤,从甲、乙两养殖场调运鸡蛋到该超市的路程和运费如下表:到超市的路程(千米) 运费 ( 元/ 斤·千米 )甲养殖场200 0.012乙养殖场140 0.015设从甲养殖场调运鸡蛋x 斤,总运费为W元(1)试写出 W与 x 的函数关系式 .(2)怎样安排调运方案才能使每天的总运费最省?参考答案1、 B2、 D3、 B4、 A5、 C6、 A7、 B.8、 D9、 B10、 A11、 C12、 C13、解:( 1)由题意y1=4.8 (2x+10 ) +4x+50=13.6x+98 ,y2 =5.4 ( 2x+10) +4.5x=15.3x+54.(2)当 y1>y2时, 13.6x+98 ∴当贡献奖个数小于等于>15.3x+54 ,解得 x<25,∵x为整数,25 个时,选 B 公司比较合算;当贡献奖个数大于25 个时,选 A 公司比较合算.14、解:从甲养殖场调运了x 斤鸡蛋,从乙养殖场调运了(1200﹣x)斤鸡蛋,根据题意得:解得: 300≤x≤800,总运费 W=200×0.012x+140×0.015 ×(1200﹣x)=0.3x+2520∵W随 x 的增大而增大,∴当x=300 时, W最小 =2610 元,,( 300≤x≤800),∴每天从甲养殖场调运了300 斤鸡蛋,从乙养殖场调运了900 斤鸡蛋,每天的总运费最省.。
一、选择题1.甲、乙两车分别从A 地出发匀速行驶到B 地,在整个行驶过程中,甲、乙两车离开A 城的距离(km)y 与甲车行驶的时间(h)t 之间的关系如图所示,则下列结论中正确的个数为( )①,A B 两地相距480km ;②乙车比甲车晚出发1小时,却比甲车早到1小时; ③乙车出发后4小时时追上甲车;④甲,乙两车相距50km 时, 3.5t 或4.5.A .1B .2C .3D .42.小明和小华同时从小华家出发到球场去.小华先到并停留了8分钟,发现东西忘在了家里,于是沿原路以同样的速度回家去取.已知小明的速度为180米/分,他们各自距离小华家的路程y (米)与出发时间x (分)之间的函数关系如图所示,则下列说法正确的是( )A .小明到达球场时小华离球场3150米B .小华家距离球场3500米C .小华到家时小明已经在球场待了8分钟D .整个过程一共耗时30分钟3.下列图象中,不表示y 是x 的函数的是( )A .B .C.D.4.如图,一次函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式0<ax+4<2x 的解集是()A.0<x<32B.32<x<6 C.32<x<4 D.0<x<35.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是()A.20210x yy x+-=⎧⎨-+=⎩B.20210x yy x-+=⎧⎨+-=⎩C.20210x yy x-+=⎧⎨--=⎩D.2010x yy x++=⎧⎨+-=⎩6.如图,A、M、N三点坐标分别为A(0,1),M(3,4),N(5,6),动点P从点A 出发,沿y轴以每秒一个单位长度的速度向上移动,且过点P的直线l:y=-x+b也随之移动,设移动时间为t秒,若点M、N分别位于l的异侧,则t的取值范围是()A .611t <<B .510t <<C .610t <<D .511t <<7.已知点()1,4P 在直线2y kx k =-上,则k 的值为( ) A .43B .43-C .4D .4-8.关于x 的正比例函数y kx =与一次函数y kx x k =+-的大致图像不可能是( )A .B .C .D .9.某游泳馆新推出了甲、乙两种消费卡,设游泳次数为x 时两种消费卡所需费用分别为y 甲,y 乙元,y 甲,y 乙与x 的函数图象如图所示,当游泳次数为30次时选择哪种消费卡更合算( )A .甲种更合算B .乙种更合算C .两种一样合算D .无法确定10.如图,直线y kx b =+与x 轴交于点()1,0-,与y 轴交于点()0,2-,则关于x 的不等式0kx b +<的解集为( )A .1x >-B .2x >-C .1x <-D .2x <-11.直线y kx b =+经过一、三、四象限,则直线y bx k =-的图象只能是图中的( )A .B .C .D .12.一艘轮船在航行中遇到暗礁,船身有一处出现进水现象,等到发现时,船内已有一定积水,船员立即开始自救,一边排水一边修船,假设轮船触礁后的时间为x 分钟,船舱内积水量为y 吨,修船过程中进水和排水速度不变,修船完工后排水速度加快,图中的折线表示y 与x 的函数关系,下列说法中:①修船共用了38分钟时间;②修船过程中进水速度是排水速度的3倍;③修船完工后的排水速度是抢修过程中排水速度的4倍;④最初的仅进水速度和最后的仅排水速度相同,其中正确的信息判断是( )A .①②B .②③C .②④D .③④13.圆的周长公式是2C r π=,那么在这个公式中,关于变量和常量的说法正确的是( )A .2是常量,C 、π、r 是变量B .2、π是常量,C 、r 是变量 C .2是常量,r 是变量D .2是常量,C 、r 是变量14.对函数22y x =-+的描述错误是( ) A .y 随x 的增大而减小B .图象经过第一、三、四象限C .图象与x 轴的交点坐标为(1,0)D .图象与坐标轴交点的连线段长度等于5 15.若一次函数()231y m x =-+-的图象经过点()11,A x y ,()22,B x y ,当12x x <时,12y y >时,则m 的取值范围是( )A .32m >B .32m >-C .32m <D .32m <-二、填空题16.已知一次函数y kx b =+与y mx n =+的图象如图所示.(1)写出关于x ,y 的方程组y kx by mx n=+⎧⎨=+⎩的解为________.(2)若0kx b mx n <+<+,写出x 的取值范围________.17.已知一次函数y kx b =+的图象与直线1y x =-+平行,且经过点(8,2),那么b 的值是________.18.如图,已知A(8,0),点P 为y 轴上的一动点,线段PA 绕着点P 按逆时针方向旋转90°至线段PB 位置,连接AB 、OB ,则OB +BA 的最小值是__________.19.如图,直线22y x =-+与两坐标轴分别交于A 、B 两点,将线段OA 分成n 等份,分点分别为1231,,,,n P P P P -,过每个分点作x 轴的垂线分别交直线AB 于点1231,,,,n T T T T -,用1231,,,,n S S S S -分别表示11212121Rt ,Rt ,,Rt n n n T OP T PP T P P ---△△△的面积,则当n=4时,121n S S S -+++=_______;当n=2020时,1231n S S S S -++++=______.20.已知:一次函数()21y a x =-+的图象不经过第三象限,化简224496a a a a -+-+=_________.21.已知y 是关于x 的正比例函数,当1x =-时,2y =,则y 关于x 的函数表达式为____.22.如表,y 是x 的一次函数,则m 的值为_____________.x 1-0 1 y 3m23.正方形A 1B 1C 1A 2,A 2B 2C 2A 3,A 3B 3C 3A 4,…,按如图所示的方式放置,点A 1A 2A 3,…和点B 1B 2B 3,…分别在直线y =x +1和x 轴上.则点C 2020的纵坐标是____.24.如图,平面直角坐标系xOy 中,()0,2A ,()2,0B ,C 为AB 的中点,P 是OB 上的一个动点,ACP ∆周长最小时,点P 的横坐标是______.25.如图,函数20y x =和40y ax =-的图象相交于点P ,点P 的纵坐标为40,则关于x ,y 的方程组20040x y ax y -=⎧⎨-=⎩的解是______.26.新冠疫情爆发以来,某工厂响应号召,积极向疫情比较严重的甲地区捐赠口罩、消毒液等医疗物资,在工厂装运完物资准备前往甲地的A 车与在甲地卸完货准备返回工厂的B 车同时出发,分别以各自的速度匀速驶向目的地,出发6小时时A 车接到工厂的电话,需要掉头到乙处带上部分检验文件(工厂、甲地、乙在同一直线上且乙在工厂与甲地之间),于是,A 车掉头以原速前往乙处,拿到文件后,A 车加快速度迅速往甲地驶去,此时,A 车速度比B 车快32千米/小时,A 车掉头和拿文件的时间忽略不计,如图是两车之间的距离y (千米)与B 车出发的时间x (小时)之间的函数图象,则当A 车到达甲地时,B 车离工厂还有_____千米.三、解答题27.如图,在平面直角坐标系中,直线y kx b =+交x 轴于点()30A -,,交y 轴于点()0,1B .过点()1,0C -作垂直于x 轴的直线交AB 于点D ,点()1,E m -在直线CD 上且在直线AB 的上方.(1)求k 、b 的值(2)当3m =时,求四边形AOBE 的面积S .(3)当2m =时,以AE 为边在第二象限作等腰直角三角形PAE ,直接写出点P 的坐标.28.已知一次函数3y kx =+与x 轴交于点()2,0A ,与y 轴交于点B .(1)求一次函数的表达式及点B 的坐标; (2)画出函数3y kx =+的图象;(3)过点B 作直线BP 与x 轴交于点P ,且2OP OA =,求ABP △的面积.29.青甘杨作为杨树的一种是我国东北和西北防护林以及用材林的主要树种之一,具有生长快、适应性强、分布广等特点.青甘杨树苗的高度与其生长年数之间的关系如下表所示:(树苗原高是90cm )生长年数n/年12345青甘杨树苗高度/cmh125160195230(1)第5年树苗可能达到的高度为_______cm.(2)请用含n的代数式表示高度h.(3)根据(2)中的结论,请计算生长了11年后的青甘杨可能达到的高度.30.综合与探究如图1,一次函数162y x=-+的图象交x轴、y轴于点A,B,正比例函数12y x=的图象与直线AB交于点(),3C m.(1)求m的值并直接写出线段OC的长;(2)如图2,点D在线段OC上,且与O,C不重合,过点D作DE x⊥轴于点E,交线段CB于点F.请从A,B两题中任选一题作答.我选择题____题.A.若点D的横坐标为4,解答下列问题:①求线段DF的长;②点P是x轴上的一点,若PDF的面积为CDF面积的2倍,直接写出点P的坐标;B.设点D的横坐标为a,解答下列问题:①求线段DF的长,用含a的代数式表示;②连接CE,当线段CD把CEF△的面积分成1:2的两部分时,直接写出a的值.。
第 1 页 共 4 页八年级数学下册《一次函数》练习题及答案(人教版)一、单选题 1.下列函数:①y =-2x ;②21y x =+;③y =-0.5x -1.其中是一次函数的个数有( )A .0个B .1个C .2个D .3个2.若正比例函数的图象经过点(2,4),则这个图象也必经过点( )A .(2,1)B .(﹣1,﹣2)C .(1,﹣2)D .(4,2)3.一次函数y=x+3的图像与y 轴的交点坐标是( )A .(0,3)B .(0,-3)C .(3,0)D .(-3,0)4.一次函数(0)y kx b k =+≠的图象过点(2,1)-和点(0,4),那么k 、b 的值为( )A .23k =-,4b =B .4k =,32b =- C .32k =-,4b = D .32k ,4b = 5.已知A (﹣1,a ),B (2,b )两点都在关于x 的一次函数y =﹣x +m 的图像上,则a ,b 的大小关系为( )A .a ≥bB .a >bC .a <bD .无法确定6.已知不等式ax+b >0的解集是x <-2,则函数y=ax+b 的图象可能是( )A .B .C .D .7.一次函数()13y k x =++的图象经过点P ,且y 的值随x 值的增大而增大,则点P 的坐标不可能为( )A .()5,4B .1,2C .()2,2--D .()5,1-8.若点P 在一次函数42y x =-+的图像上,则点P 一定不在( )A .第一象限B .第二象限C .第三象限D .第四象限9.如图,过点A 的一次函数的图象与正比例函数y=2x 的图象相交于点B ,能表示这个一次函数图象的方程二、填空题11.若点(),m n在一次函数31y x的图象上,则31n m-+的值为______.12.将直线y=x向右平移1个单位长度,再向上平移3个单位长度得到的直线解析式为________.13.一次函数1y kx k=+-的图象经过第一、三、四象限,则k的取值范围是___________.14.一个函数的图象经过点()1,2,且y随x的增大而增大,则这个函数的解析式可能是______.(答案不唯一,只需写一个)15.直线y=(2﹣a)x+3﹣a在直角坐标系中的图象如图所示,化简|3﹣a|+|2﹣a|=______.三、解答题16.已知直线:l y kx b=+与直线2y x=平行,且直线l过点(2,8),求直线l与x轴的交点坐标17.已知函数y=(2-m)x+2n-3.求当m为何值时.第2页共4页第 3 页 共 4 页 (1)此函数为一次函数?(2)此函数为正比例函数?18.已知2y +与4x -成正比例,且3x =时,1y =.(1)求y 与x 之间的函数表达式;(2)当21y -<<时,求x 的取值范围.19.已知一次函数的图像平行于直线y 12=x ,且经过点A (2,3). (1)求这个一次函数的解析式;(2)当x =4时,求这个一次函数的函数值.第4页共4页。
人教版一次函数练习题初二1. 根据函数y = 2x + 1的图像回答以下问题:a) 函数的导数是多少?b) 函数在x = 3处的函数值是多少?c) 函数在y = 6处的x值是多少?d) 函数的图像上任意两点的斜率是否相等?为什么?2. 根据函数y = -3x - 2的图像回答以下问题:a) 函数的斜率是多少?b) 函数在x = -1处的函数值是多少?c) 函数在y = -5处的x值是多少?d) 函数的图像上任意两点的斜率是否相等?为什么?3. 画出下列函数的图像,并回答以下问题:a) y = 4x - 3b) y = -2x + 5c) y = 1/2x + 24. 解下列方程:a) 2x + 3 = 9b) -3x + 7 = 4c) 5x - 2 = 3x + 2d) 4x + 5 = -3x - 15. 根据两点间的斜率公式,求出以下两点的斜率:a) (2, 5) 和 (1, 3)b) (3, -2) 和 (0, 1)c) (5, -1) 和 (-2, 4)6. 求以下函数的零点(即函数值为0时的x值):a) 3x - 2 = 0b) 5x + 1 = 0c) -2x + 7 = 07. 求以下函数的导数:a) y = 4x^2 + 3x - 2b) y = (x^2 - 2x + 1)(3x + 2)c) y = (2x - 1)(x + 3)^28. 解下列方程组:a) y = 3x + 1y = 2x - 3b) 2x - 3y = 74x + 2y = -4c) 3x + y = 2x - 2y = 5以上是人教版一次函数的练习题,通过回答以上问题和解题,可以更好地理解一次函数的概念和应用。
持续的练习和实践将帮助学生在解决实际问题时更加熟练地运用一次函数的知识。
希望同学们认真完成每一道题目,并通过练习提高自己的数学能力。
八年级数学一次函数测试题考试时间 120 分钟满分 100 分班级姓名总分一、选择题:(每题 3 分,满分 30 分)1. 以下各点中在函数 y= 1x +3 的图象上的是( )2(A) (3,-2)(B) (2,3)(C) (-4,1)(D) (5, 5)322. 已知直线 y=2x 与直线 y=kx+5 相互平行,则 k 的值为( )A 、 k=-2B 、k=2C 、k=± 2D 、没法确立 3. 如图,直线与 y 轴的交点是( 0,- 3),则当x<0 时,()A. y<0B. y<- 3C. y>0D. y> -34. 已知一次函数 y = (m+2) x+ (1-m ),若 y 随 x 的增大而减小,且此函数图象与 y 轴的交点在 x 轴的上方,则 m 的取值范围是( )A. m> -2B. m <1C. m < -2D. - 2<m <15. 已知两点 M ( 3,5),N ( 1,-1),点 P 是 x 轴上一动点,若使 PM+ PN 最短,则点 P 的坐标应为A. (1,-4)B. (2,0)C. ( 4 ,0)D.( 3,0)23326. 以下函数中,y 随 x 的增大而减小的有()y2 x1y 6 x y1 xy(12 ) x3A. 1个B. 2个C. 3个个7. 一根蜡烛长 20cm ,点燃后每小时焚烧 5cm ,焚烧时剩下的高度 (cm)y y y y与焚烧时间(小时)的函数关系用图象表示为()8.以下各图表示的函数中y 是 x 的函数的()y y y yO x O x O x O xA B C D9. 已知直线 y=kx+b 不经过第三象限则以下结论正确的选项是()A.k>0, b > 0; B.k<0, b > 0; C.k<0, b <0; D.k<0, b ≥0;10.已知一次函数 y=kx+b,y 跟着 x 的增大而减小 ,且 kb<0,则在直角坐标系内它的大概图象是 ()(A)(B)(C)A .B .C .D .二 . 填空题:(每空 3 分,共 30 分)21. 已知正比率函数 y =( m - 1) x5 m的图象在第二、四象限,则 m 的值为 _________,函数的分析式为 __________2. 已知自变量为 x 的函数 y=mx+2-m 是正比率函数,则 m=________,?该函数的分析式为 _________.3. 已知 y 是 x 的一次函数,下表中列出了部分对应值,则m=_。
新人教版八年级下《一次函数》测试题及答案人教版初中数学八年级下册第十九章一次函数单元测试班级____姓名_____得分_____一、 选择题(本大题共12个小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是满足题目要求的,请把其代号填在答题栏中相应题号的下面)。
A .(0,2-) B .(32,0) C .(8,20) D .(12,12) 2.变量x,y 有如下关系:①x+y=10②y=x5-③y=|x-3④y 2=8x.其中y 是x 的函数的是 A. ①②②③④ B. ①②③ C. ①②D. ①3. 下列各曲线中不能表示y 是x 的函数是( ).A .B .C .D .4. 已知一次函数2y x a =+与y x b =-+的图象都经过A (2-,0),且与y 轴分别交于B 、C 两点,则△ABC 的面积为 ( ).A . 4B . 5C . 6D . 7 5.已知正比例函数y=(k+5)x,且y 随x 的增大而减小,则k 的取值范围是 A.k >5 B.k <5C.k >-5D.k <-56.在平面直角坐标系xoy 中,点M(a,1)在一次函数y=-x+3的图象上,则点N(2a-1,a)所在的象限是 A.一象限B. 二象限C. 四象限D.不能确定7.如果通过平移直线3x y =得到53x y +=的图象,那么直线3xy =必须( ). A .向上平移5个单位 B .向下平移5个单位C .向上平移53个单位D .向下平移53个单位8.经过一、二、四象限的函数是题号 1 2 3 4 5 6 7 8 9 10 11 12 答案A.y=7B.y=-2xC.y=7-2xD.y=-2x-79.已知正比例函数y=kx(k ≠0)的函数值y 随x 的增大而减小,则函数y=kx-k 的图象大致是10.若方程x-2=0的解也是直线y=(2k-1)x+10与x 轴的交点的横坐标,则k 的值为 A.2B.0C.-2D. ±211. 根据如图的程序,计算当输入3x =时,输出的结果y = .12.已知直线y 1=2x 与直线y 2= -2x+4相交于点A.有以下结论:①点A 的坐标为A(1,2);②当x=1时,两个函数值相等;③当x <1时,y 1<y 2④直线y 1=2x 与直线y 2=2x-4在平面直角坐标系中的位置关系是平行.其中正确的是A. ①③④B. ②③C. ①②③④D. ①②③二、填空题(本大题共5个小题,每小题4分,共20分。
【精选】人教版八年级下册数学第十九章《一次函数》测试卷(含答案)一、选择题(每题3分,共30分)1.寒冷的冬天里我们在利用空调制热调控室内温度的过程中,空调的每小时用电量随开机设置温度的高低而变化,这个问题中自变量是( ) A .每小时用电量 B .室内温度 C .开机设置温度 D .用电时间2.【2022·恩施州】函数y =x +1x -3的自变量x 的取值范围是( )A .x ≠3B .x ≥3C .x ≥-1且x ≠3 D.x ≥-13.【教材P 82习题T 7变式】下列图象中,表示y 是x 的函数的是( )4.一个正比例函数的图象经过点(2,-1),则它的解析式为( )A .y =-2xB .y =2xC .y =-12xD .y =12x5.把直线y =x 向上平移3个单位长度,下列点在该平移后的直线上的是( )A .(2,2)B .(2,3)C .(2,4)D .(2,5)6.【2022·邵阳】在直角坐标系中,已知点A ⎝ ⎛⎭⎪⎫32,m ,点B ⎝⎛⎭⎪⎪⎫72,n 是直线y =kx+b (k <0)上的两点,则m ,n 的大小关系是( ) A .m <n B .m >n C .m ≥n D .m ≤n7.【2021·海南】李叔叔开车上班,最初以某一速度匀速行驶,中途停车加油耽误了几分钟,为了按时到单位,李叔叔在不违反交通规则的前提下加快了速度,仍保持匀速行驶,则汽车行驶的路程y(千米)与行驶的时间t(小时)的函数关系的大致图象是( )8.表示一次函数y=ax+b与正比例函数y=abx(a,b是常数,且ab≠0)的图象可能是( )9.【2021·安徽】某品牌鞋子的长度y cm与鞋子的“码”数x之间满足一次函数关系.若22码鞋子的长度为16 cm,44码鞋子的长度为27 cm,则38码鞋子的长度为( )A.23 cm B.24 cm C.25 cm D.26 cm10.【传统文化】北京冬奥会开幕式上,以“二十四节气”为主题的倒计时短片,用“中国式浪漫”美学惊艳了世界,下图是一年中部分节气所对应的白昼时长示意图,给出下列结论:①从立春到大寒,白昼时长先增大再减小;②夏至时白昼时长最长;③春分和秋分,昼夜时长大致相等.其中正确的是( )A.①②B.②③C.②D.③二、填空题(每题3分,共24分)11.函数y=(m-2)x|m|-1+m+2是关于x的一次函数,则m=________. 12.【开放题】【2022·上海】已知直线y=kx+b过第一象限且函数值随着x的增大而减小,请列举出来这样的一条直线:______________.13.若一个正比例函数的图象经过A(3,6),B(m,-4)两点,则m=________.14.如图,直线y=x+2与直线y=ax+4相交于点A(1,3),则关于x的不等式ax+4≥x+2的解集为__________.(第14题) (第17题) (第18题)15.关于x的一次函数y=(2-m)x-3m的图象经过第一、三、四象限,则m的取值范围为__________.16.声音在空气中传播的速度简称音速,科学研究发现声音在空气中传播的速度(m/s)与气温(℃)有关,下表列出了一组不同气温时的音速:用y(m/s)表示音速,用x(℃)表示气温,则y与x之间的关系式为____________.17.【教材P97图19.2-8变式】如图,AB,CB表示某工厂甲、乙两车间产品的总量y(t)与生产时间x(天)之间的函数图象,第30天结束时,甲、乙两车间产品总量为________t.18.【2022·天津四十三中模拟】日常生活中常用的二维码是由许多大小相同的黑白两色小正方形按某种规律组成的一个大正方形,图①是一个20×20格式(即黑白两色小正方形个数的和是400)的二维码,左上角、左下角、右上角是三个相同的7×7格式的正方形,将其中一个放大后如图②,除这三个正方形外,图①中其他的黑色小正方形个数y与白色小正方形个数x正好满足图③所示的函数图象,则图①所示的二维码中共有个白色小正方形.三、解答题(19,20题每题12分,其余每题14分,共66分)19.【教材P107复习题T4(2)改编】一次函数的图象经过(-2,1)和(1,4)两点.(1)求这个一次函数的解析式;(2)当x=3时,求y的值.20.如图,已知直线l1:y1=2x+1与坐标轴交于A、C两点,直线l2:y2=-x -2与坐标轴交于B、D两点,两线的交点为P点.(1)求P点的坐标;(2)求△APB的面积;(3)利用图象求当x取何值时,y1>y2.21.【立德树人】【2022·成都】随着“公园城市”建设的不断推进,成都绕城绿道化身成为这座城市的一个超大型“体育场”,绿道骑行成为市民的一种低碳生活新风尚.甲、乙两人相约同时从绿道某地出发同向骑行,甲骑行的速度是18 km/h,乙骑行的路程s(km)与骑行的时间t(h)之间的关系如图所示.(1)直接写出当0≤t≤0.2和t>0.2时,s与t之间的函数解析式;(2)何时乙骑行在甲的前面?22.【数学建模】【2022·云南】某学校要购买甲、乙两种消毒液,用于预防新型冠状病毒.若购买9桶甲消毒液和6桶乙消毒液,则一共需要615元;若购买8桶甲消毒液和12桶乙消毒液,则一共需要780元.(1)每桶甲消毒液、每桶乙消毒液的价格分别是多少元?(2)若该校计划购买甲、乙两种消毒液共30桶,其中购买甲消毒液a桶,且甲消毒液的数量至少比乙消毒液的数量多5桶,又不超过乙消毒液的数量的2倍.怎样购买,才能使总费用W最少?并求出最少费用.。
新人教版八年级一次函数练习题
一、填空题
1.已知一个正比例函数的图象经过点(-1,3),则这个正比例函数的表达式是 .
2.函数y =x 的取值范围是_______________.
3.已知一次函数y =2x +4的图像经过点(m ,8),则m =________.
4.若函数y = -2x m +2 +n -2正比例函数,则m 的值是 ,n 的值为________.
5.一次函数113y x =-
+的图象与x 轴的交点坐标是_________,与y 轴的交点坐标是__________.
6.若直线y =kx +b 平行于直线y =5x +3,且过点(2,-1),则k =______,b =______.
7.某一次函数的图象经过点(1-,3),且函数y 随x 的增大而减小,请你写出一个符合条件的函数解析式______________________.
8.一次函数12-=x y 一定不经过第 象限.
9.已知直线6+=x y 与x 轴,y 轴围成一个三角形,则这个三角形面积为 .
10.已知一次函数y=-x -(a -2),当a_____时,函数的图象与y 轴的交点在x 轴的下方.
11.已知一次函数y=-x+a 与y=x+b 的图象相交于点(m ,8),则a+b=_________.
12.如果直线y=-2x+k 与两坐标轴所围成的三角形面积是9,则k 的值为_____
13、若点(-4,y 1),(2,y 2)都在直线y=1x t 3
-+上,则y 1与y 2的大小关系是 _________.
二、解答题
14.根据下列条件,确定函数关系式:
(1)y 与x 成正比,且当x=9时,y=16;
(2)y=kx+b 的图象经过点(3,2)和点(-2,1).
15.已知,直线y kx b =+经过点A (3,8)和B (6-,4-).求:(1)k 和b 的值;(2)求当3x =-时,y 的值
16.已知正比例函数28(1)m y m x
-=+.(1)若函数图象从左到右呈上升趋势,则m 的范围
是什么?
(2)求此函数的表达式.
17.已知2y -与x 成正比,且当1x =时,6y =-.
(1)求y 与x 之间的函数关系式;(2)若点(a ,2)在这个函数图象上,求a .
18.如右图:一次函数的图象经过A 、B 两点。
(1)求直线AB 的解析式(2)求△AOC 的面积
21.已知函数(21)3y m x m =++-。
(1)若函数图象经过原点,求m 的值;
(2)若这个函数是一次函数,且y 随着x 的增大而减小,求m 的取值范围.。