《相似三角形的性质》.doc
- 格式:doc
- 大小:151.02 KB
- 文档页数:4
相似三角形的性质及判定方法相似三角形是指具有相同形状但可能不同大小的两个或多个三角形。
在几何学中,相似三角形具有一些特定的性质和判定方法。
本文将探讨相似三角形的性质以及如何判定两个三角形是否相似。
一、相似三角形的性质1. 对应角相等性质:如果两个三角形的对应角相等,那么它们是相似的。
具体而言,如果两个三角形的对应角分别相等,则它们是相似的。
记为AA相似性质。
2. 对应边的比例性质:如果两个三角形的两对对应边的比例相等,那么它们是相似的。
具体而言,如果两个三角形的对应边所对应的长度比例相等,则它们是相似的。
记为SSS相似性质。
3. 角和对边的比例性质:如果两个三角形的对应角相等且对应边的长度比例相等,那么它们是相似的。
具体而言,如果两个三角形的对应角相等且对应边的长度比例相等,则它们是相似的。
记为SAS相似性质。
二、相似三角形的判定方法1. AA判定法:如果两个三角形的两个角分别相等,则它们一定是相似的。
即,如果两个三角形的两个角分别相等,则它们的第三个角也必然相等,从而满足AA相似性质。
2. SSS判定法:如果两个三角形的三对对应边的长度比例相等,则它们一定是相似的。
即,如果两个三角形的三对对应边的长度比例相等,则它们满足SSS相似性质。
3. SAS判定法:如果两个三角形的一个对应角相等,且对应边的长度比例相等,则它们一定是相似的。
即,如果两个三角形的一个对应角相等,且对应边的长度比例相等,则它们满足SAS相似性质。
三、实例分析为了更好地理解相似三角形的判定方法,我们来看一个实例。
已知三角形ABC和三角形DEF,已知∠A=∠D,∠B=∠E,且AB/DE = BC/EF = CA/FD,我们需要判定这两个三角形是否相似。
根据给定条件可知,∠A=∠D,∠B=∠E,且BC/EF = CA/FD。
根据SAS判定法,如果对应角相等且对应边的长度比例相等,则两个三角形相似。
由此得出结论,三角形ABC和三角形DEF是相似的。
(详细版)相似三角形的性质和应用
1. 相似三角形的性质
相似三角形是指具有相同形状但尺寸不同的三角形。
相似三角形的性质如下:
- 对应角相等性质:如果两个三角形的对应角相等,则它们是相似三角形。
- 对应边成比例性质:相似三角形的对应边的长度成比例。
2. 相似三角形的应用
相似三角形的性质在实际生活和数学问题中有广泛的应用,以下是一些常见的应用场景:
- 测量高度:通过相似三角形的性质,我们可以利用测量出的一个三角形的高度来计算另一个相似三角形的高度。
这在实际中可以用于测量高楼、山峰等的高度。
- 图形设计:相似三角形的性质可以用于图形设计中的缩放问题。
通过改变三角形的大小来实现图形的缩放效果。
- 工程测量:在土木工程中,相似三角形的性质可以用于测量地形的坡度、直角三角形的边长等。
3. 实例分析
为了更好地理解相似三角形的性质和应用,以下是一个实际问题的分析:
假设有一根高大的电线杆,测得其高度为30米。
为了确定杆子的阴影长度,我们利用测量出的相似三角形来推算。
测量阴影的长度为10米,而测量器与杆子的距离为4米。
根据相似三角形的性质,可以建立如下比例关系:(30高度/4距离) = (阴影长度/10距离)。
通过解这个比例关系,我们可以计算出杆子的阴影长度为75米。
以上是相似三角形的性质和应用的一些简要介绍,通过理解和运用相似三角形的性质,我们可以解决许多实际问题,提高数学和几何的应用能力。
(Word count: 229 words)。
相似三角形的性质(经典全面)相似三角形的性质及判定一、相似的有关概念相似形是指具有相同形状的图形,但大小不一定相同。
相似图形之间的互相变换称为相似变换。
二、相似三角形的概念相似三角形是指对应角相等,对应边成比例的三角形。
用符号XXX表示,例如△ABC∽△A B C。
三、相似三角形的性质1.对应角相等:如果△ABC与△A B C相似,则有A A,B B,C C。
2.对应边成比例:如果△ABC与△A B C相似,则有AB/BC=AC/A C=BC/B C=k(k为相似比)。
3.对应边上的中线、高线和对应角的平分线成比例,都等于相似比。
例如,如果AM是△ABC中BC边上的中线,A M是△A B C中B C边上的中线,则有AM/A M=k。
如果AH是△ABC中BC边上的高线,A H是△A B C中B C边上的高线,则有AH/A H=k。
如果AD是△ABC中BAC的角平分线,A D是△A B C中B A C的角平分线,则有AD/A D=k。
4.相似三角形周长的比等于相似比。
如果△ABC与△A B C相似,则有AB+BC+AC/A B+B C+A C=k。
ABCD中间观察,比例式中的比AD和BC中的三个字母A,B,C恰为△ABC的顶点;比CD和EF中的三个EFDC字母D,E,F恰为△DEF的三个顶点.因此只需证欲证△ABC∽△DEF.证明比例中项式或倒数式或复合式的方法,可以运用“三点定形法”,也可以利用“分离比例中项法”或“分离倒数式法”或“分离复合式法”.由于在运用三点定形法时,可能会遇到三点共线或四点中没有相同点的情况,此时可以考虑使用等线、等比或等积进行变换,然后再使用三点定形法来寻找相似三角形。
这种方法被称为等量代换法。
在证明比例式时,常常会用到中间比。
证明比例中项式通常涉及与公共边有关的相似问题。
这类问题的典型模型是射影定理模型,需要熟练掌握和透彻理解其特征和结论。
证明倒数式往往需要先进行变形,将等式的一边化为1,另一边化为几个比值的形式,然后对比值进行等量代换,进而证明之。
相似三角形的性质相似三角形是指具有相同形状但大小可以不同的三角形。
在数学中,相似三角形是一个重要的概念,它具有一系列独特的性质和特点。
本文将介绍相似三角形的性质,以及与之相关的定理和应用。
一、比例关系相似三角形中,对应边的长度成比例。
设ABC和DEF是相似三角形,对应边的长度满足以下比例关系:AB/DE = BC/EF = AC/DF其中,AB、BC、AC为三角形ABC的边长,DE、EF、DF为三角形DEF的边长。
这个比例关系可以推广至所有对应边。
二、角度关系相似三角形中,对应角度相等。
设ABC和DEF是相似三角形,对应角度满足以下关系:∠A = ∠D, ∠B = ∠E, ∠C = ∠F其中,∠A、∠B、∠C为三角形ABC的内角,∠D、∠E、∠F为三角形DEF的内角。
三、边长比例定理设ABC和DEF是相似三角形,若两个相似三角形的边长比例相等,则它们是相似的。
即如果AB/DE = BC/EF = AC/DF成立,那么三角形ABC与三角形DEF相似。
四、高度定理相似三角形的高度成比例。
设ABC和DEF是相似三角形,h1和h2分别为三角形ABC和DEF的高度,则有h1/h2 = AB/DE = BC/EF = AC/DF成立。
五、面积定理相似三角形的面积成比例的平方。
设ABC和DEF是相似三角形,S1和S2分别为三角形ABC和DEF的面积,则有S1/S2 = (AB/DE)^2 = (BC/EF)^2 = (AC/DF)^2成立。
六、勾股定理相似直角三角形中,斜边成比例。
设ABC和DEF是两个相似的直角三角形,且∠C和∠F是直角,则有AC/DF = BC/EF成立。
七、应用举例1. 角平分线定理:在相似三角形中,角平分线分割对应边成比例。
2. 重心定理:在相似三角形中,连接重心和顶点的线段成比例。
相似三角形的性质在几何学和实际问题中有着广泛的应用。
例如,在测量不便的情况下,我们可以利用相似三角形来计算无法直接测量的长度和距离。
一、相似的有关概念1.相似形具有相同形状的图形叫做相似形.相似形仅是形状相同,大小不一定相同.相似图形之间的互相变换称为相似变换. 2.相似图形的特性两个相似图形的对应边成比例,对应角相等. 3.相似比两个相似图形的对应角相等,对应边成比例.二、相似三角形的概念1.相似三角形的定义对应角相等,对应边成比例的三角形叫做相似三角形.如图,ABC △与A B C '''△相似,记作ABC A B C '''△∽△,符号∽读作“相似于”.A 'B 'C 'CB A2.相似比相似三角形对应边的比叫做相似比.全等三角形的相似比是1.“全等三角形”一定是“相似形”,“相似形”不一定是“全等形”.三、相似三角形的性质1.相似三角形的对应角相等如图,ABC △与A B C '''△相似,则有A A B B C C '''∠=∠∠=∠∠=∠,,. A 'B 'C 'CB A知识点睛 相似三角形的性质2.相似三角形的对应边成比例 如图,ABC △与A B C '''△相似,则有AB BC ACk A B B C A C ===''''''(k 为相似比). A 'B 'C 'CB A3.相似三角形的对应边上的中线,高线和对应角的平分线成比例,都等于相似比.如图1,ABC △与A B C '''△相似,AM 是ABC △中BC 边上的中线,A M ''是A B C '''△中B C ''边上的中线,则有AB BC AC AMk A B B C A C A M ====''''''''(k 为相似比). M 'MA 'B 'C 'C BA图1如图2,ABC △与A B C '''△相似,AH 是ABC △中BC 边上的高线,A H ''是A B C '''△中B C ''边上的高线,则有AB BC AC AHk A B B C A C A H ====''''''''(k 为相似比). H 'H AB C C 'B 'A '图2如图3,ABC △与A B C '''△相似,AD 是ABC △中BAC ∠的角平分线,A D ''是A B C '''△中B A C '''∠的角平分线,则有AB BC AC ADk A B B C A C A D ====''''''''(k 为相似比).D 'D A 'B C 'C B A图34.相似三角形周长的比等于相似比.如图4,ABC △与A B C '''△相似,则有AB BC ACk A B B C A C ===''''''(k 为相似比).应用比例的等比性质有AB BC AC AB BC ACk A B B C A C A B B C A C ++====''''''''''''++.A 'B 'C 'CB A图45.相似三角形面积的比等于相似比的平方.如图5,ABC △与A B C '''△相似,AH 是ABC △中BC 边上的高线,A H ''是A B C '''△中B C ''边上的高线,则有AB BC AC AHk A B B C A C A H====''''''''(k 为相似比).进而可得21212ABC A B C BC AHS BC AH k S B C A H B C A H '''⋅⋅==⋅=''''''''⋅⋅△△.H 'H AB C C 'B 'A '图5四、相似三角形的判定1.平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似.2.如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.可简单说成:两角对应相等,两个三角形相似.3.如果一个三角形的两边和另一个三角形的两边对应成比例,并且夹角相等,那么这两个三角形相似.4.如果一个三角形的三条边与另一个三角形的你对应成比例,那么这两个三角形相似.可简单地说成:三边对应成比例,两个三角形相似.5.如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.6.直角三角形被斜边上的高分成的两个直角三角形相似(常用但要证明)7.如果一个等腰三角形和另一个等腰三角形的顶角相等或一对底角相等,那么这两个等腰三角形相似;如果它们的腰和底对应成比例,那么这两个等腰三角形也相似.五、相似证明中的比例式或等积式、比例中项式、倒数式、复合式证明比例式或等积式的主要方法有“三点定形法”. 1.横向定型法 欲证AB BCBE BF =,横向观察,比例式中的分子的两条线段是AB 和BC ,三个字母A B C ,,恰为ABC △的顶点;分母的两条线段是BE 和BF ,三个字母B E F ,,恰为BEF △的三个顶点.因此只需证ABC EBF △∽△.2.纵向定型法欲证AB DEBC EF=,纵向观察,比例式左边的比AB 和BC 中的三个字母A B C ,,恰为ABC △的顶点;右边的比两条线段是DE 和EF 中的三个字母D E F ,,恰为DEF △的三个顶点.因此只需证ABC DEF △∽△. 3.中间比法由于运用三点定形法时常会碰到三点共线或四点中没有相同点的情况,此时可考虑运用等线,等比或等积进行变换后,再考虑运用三点定形法寻找相似三角形.这种方法就是等量代换法.在证明比例式时,常用到中间比.比例中项式的证明,通常涉及到与公共边有关的相似问题。
27.2.2相似三角形的性质
一、教学目标
1.理解并初步掌握相似三角形周长的比等于相似比,面积的比等于相似比的平方.
2.能用三角形的性质解决简单的问题.
二、重点、难点
1.重点:相似三角形的性质与运用.
2.难点:相似三角形性质的灵活运用,及对“相似三角形面积的比等于相似比的
平方”性质的理解,特别是对它的反向应用的理解,即对“由面积比求相似比”的理解.
3.难点的突破方法
(1)相似三角形的性质:①对应角相等,对应边成比例;②相似三角形周长的比
等于相似比;③面积的比等于相似比的平方.(还可以补充④相似三角形对应高
的比等于相似比)
(2)应用相似三角形的性质,其前提条件是两个三角形相似,不满足前提条件,
不能应用相应的性质.如:两个三角形周长比是2
,它们的面积之比不一定是 4 ,3 9
因为没有明确指出这两个三角形是否相似,以此教育学生要认真审题.
(3)在应用性质2“相似三角形面积的比等于相似比的平方”时,要注意有相似比求面积必要平方,这一点学生容易掌握,但反过来,由面积比求相似必要开方,学生往往掌握不好,教学时可增加一些这方面的练习.如:如果两个相似三角形面积的比为 3∶5 ,那么它们的相似比为 ________,周长的比为 ________.(4)讲完性质后,可先安排一组简单的题目让学生巩固,然后再讲例
题.三、例题的意图
本节课安排了两个例题,例 1 是补充的一个例题,它紧扣性质,是性质的
简单运用,但要注意它是逆用性质“相似三角形周长的比等于相似比”来进行运
算的.例 2 是教材 P38 的例 3 ,它是通过求相似的过程中,求出相似比,再综合运用两条性质求出其高与面积.难度略高于例 1.其目的是想让学生能够综合、灵活
的运用相似三角形的性质解决问题.
如果学生程度好一些,可以补充“相似三角形对应中线的比等于相似比”的题目.
四、课堂引入
1.复习提问:
已知: ?ABC ∽?A ′B′C′,根据相似的定义,我们有哪些结论?
(从对应边上看;从对应角上看:)
问:两个三角形相似,除了对应边成比例、对应角相等之外,
我们还可以得到哪些结论?
2.思考:
(1)如果两个三角形相似,它们的高、中线、角平分线及周长之间有什么关系?(2)如果两个三角形相似,它们的面积之间有什么关系?
(3)两个相似多边形的周长和面积分别有什么关系?
推导见教材 P37.
结论——相似三角形的性质:
性质 1相似三角形对应高、中线、角平分线、周长的比等于相似比.即:如果△ABC∽△ A′ B′,C′且相似比为k,
那么
AB BC CA
A B B C k .
C A
性质 2相似三角形面积的比等于相似比的平方.即:如果△ABC∽△ A′ B′,C′相似比为且k,S
那么
S
ABC
( AB )2 k 2.A B C
A B
相似多边形的性质1.相似多边形周长的比等于相似比.
相似多边形的性质2.相似多边形面积的比等于相似比的平方.
五、例题讲解
例 1(补充)已知:△ABC ∽△ A′ B′,C它′们的周长分别是60 cm 和 72 cm,且 AB =15 cm, B′C=′24 cm,求 BC、AB 、 A′B、′A′C的′长.分析:根据相似三角形周长的比等于相似比可以求出BC 等边的长.
解:略(此题学生可以让自己完成).
例 2(教材 P38 例 3)
分析:根据已知可以得到DE DF 1
,又有夹角∠ D=∠A ,由相似三角形
AB AC 2
的判定方法 2 可以得到这两个三角形相似,且相似比为1
,故△ DEF的边EF上2
的高和面积可求出.
解:略(见教材 P38)
六、课堂练习
1.教材 P38. 1.
2.填空:
(1)如果两个相似三角形对应边的比为 3∶5 ,那么它们的相似比为 ________,周长的比为 _____,面积的比为 _____.
(2)如果两个相似三角形面积的比为 3∶ 5 ,那么它们的相似比为 ________,周长的比为 ________.
(3)连结三角形两边中点的线段把三角形截成的一个小三角形与原三角形的
周长比等于 ______,面积比等于 _______.
( 4)两个相似三角形对应的中线长分别是 6 cm 和 18 cm,若较大三角形的周长
是 42 cm ,面积是12 cm 2,则较小三角形的周长为________cm,面积为_______cm2.
3.如图 ,在正方形网格上有△ A 1B1C1和△ A2 B2C2,这两个三角形相似吗?如果相似,求出△ A1B1 C1和△ A2B2C2的面积比.
七、课后练习
1.如图,点 D、E 分别是△ ABC 边 AB 、AC 上的点,且 DE∥BC,BD=2AD ,
那么△ ADE 的周长:△ ABC 的周长=.
2.已知:如图,△ ABC 中, DE∥ BC,
(1)若AE2
,① 求
AE
的值;
②求
S EC 3AC S
的面积;ADE的值;③若 S ABC 5 ,求△ADE ABC
( 2)若S ABC S,AE 2
,过点E作EF∥AB交BC于F,求BFED的面积;
EC 3
( 3)若AE
k , S ABC 5 ,过点E作EF∥AB交BC于F,求BFED 的面积.EC。