Re z
-1
z平面
例:求以下序列的z变换及收敛域。
(1) x[k ] a u[k ]
k
(2)
1 0 k N - 1 x[k ] 0 其它
Im z
解:
(1)
X ( z) a z
k k 0
-k
1 -1 1 - az
|a|
Re z
ROC : z a
(2)
X ( z ) z -k
四、单边z变换的主要性质
3. 指数加权特性
z a x[ k ] X ( ) a
k Z
ROC a Rx
例:求aksin(0k) u[k] 的z变换及收敛域
解:
sin( 0 k )u[k ]
z
sin 0 z -1 1 - 2 z cos 0 z
-1 -2
z 1
对上式应用初值定理,即得
a x[1] limz{X ( z) - x[0]} lim a -1 z z 1 - az 当|a|<1时,(z-1)X(z)的收敛域包含单位圆,由终 值定理,有 z -1 0 x[] lim z -1) X (z) lim ( -1 z 1 1 - az z1
例:求以下单边周期序列的单边z变换。
k
n 0, 1, 2, 1, k 2n, (1) x[ k ] 0, k 2n 1, n 0, 1, 2,
(2) y[k ] (-1)i x[k - i]
i 0
一般情况:周期为N的单边周期序列xN[k]u[k]可以表示为第一 个周期序列x1[k]及其位移x1[k-lN]的线性组合,即
证:Z{x1[k ] x2 [k ]} Z{ x1[n]x2 [k - n]}