基于单片机的温度检测与控制系统的设计开题报告
- 格式:doc
- 大小:38.50 KB
- 文档页数:8
学生毕业设计(论文)报告毕业设计(论文)任务书专业班级姓名实践单位名称:实践岗位名称:岗位职责:岗位能力要求:一、课题名称:智能温度控制系统二、主要技术指标(或基本要求):本设计使用单片机作为核心进行控制。
单片机具有集成度高,通用性好,功能强,特别是体积小,重量轻,耗能低,可靠性高,抗干扰能力强和使用方便等独特优点,在数字化、智能化方面有广泛的用途。
温度显示基本范围0.00℃—99.99℃。
精度误差小于0.01℃。
所测温度值由四位数码管显示。
可以设定温度的上下限报警功能。
三、主要工作内容:本设计的研究重点是设计一种基于单片机的数字温度计控制系统。
设计采用数字温度传感器DS18B20,此传感器读取被测量温度值,并进行转换。
将转换后的数据送到单片机处理,再通过数码管显示出来。
同时,手动设置温度的上下限值,当实时温度超出时,对应的工作指示灯亮。
四、主要参考文献:______________________________________________________________杨素行.模拟电子技术基础[M].北京:高等教育出版社,2006:77-78.阎石著.数字电子技术基础[M].北京:高等教育出版社,2006:23-26.李全利,仲伟峰,徐军著.单片机原理及应用[M]. 北京:清华大学出版社2006:46-48.何立民著.单片机高级教程[M].北京:航空航天大学出版社,2000:55-57.杨路明著.C语言程序设计教程[M].北京:邮电大学出版社,2005:124-132.马忠梅,籍顺心,张凯等.单片机的C语言应用程序设计[M].北京:航天航空大学出版社,2007:28-45.学生(签名)年月日指导教师(签名)年月日教研室主任(签名)年月日系主任(签名)年月日毕业设计(论文)开题报告随着现代经济和社会的发展,信息化程度越来越高,智能化的测控仪器仪表应用越来越广范。
其中基于单片机的温度测控系统广范应用于工业、军事、消防等领域,因此这个题目具有很强的现实意义。
本科毕业设计(论文)开题报告题目:基于单片机的电子温度计的设计课题类型:设计□实验研究□论文□√学生姓名:学号:专业班级:学院:指导教师:开题时间:一、毕业设计(论文)内容及研究意义(价值)设计内容:本课题的要求:以单片机为处理核心设计电子体温计。
显示精度为0.1°C。
当温度处在35°C——40°C之间时,还可在显示的温度值后面加低体温、正常、低热、超高热等友情提示。
该体温计的温度测量范围为-55°C——125°C,所以,还可用于其他温度的测量。
根据系统的要求,我采用的是AT89S52单片机与数字温度传感器DS18B20相连,对其采集到的温度电信号进行处理, 再经过滤波和放大, 把温度的标准电信号提取出来进行A/D 转换, 最终在液晶显示器( LCD)上显示出来。
研究意义:温度测量在物理实验、医疗卫生、食品生产等领域,尤其在热学实验中,有特别重要的意义。
传统所使用的温度计通常都是精度为1°C和0.1°C 的水银、煤油或酒精温度计。
这些温度计的刻度间隔通常都紧密,不容易准确分辨,读数困难,而且他们的热容量还比较大,达到热平衡所需的时间较长,因此很难读准,并且使用非常不方便。
电子体温计与传统的温度计相比,具有读数方便,测温范围广,测温速度快、测温准确、携带方便等优点,其输出温度采用数字显示,主要用于对温度比较准确的场所,或科研实验室使用。
电子体温计和传统的水银体温计相比更安全可靠,我们都知道水银有剧毒,如果破损可能带来玻璃扎伤或水银污染的隐患。
二、毕业设计(论文)研究现状和发展趋势(文献综述)温度计的发展很快,从原始的玻璃管温度计发展到了现在的热电阻温度计、热电偶温度计、半导体集成数字温度计等。
在电子式温度计中,传感器是它的重要组成部分,温度计的精度、灵敏度基本决定了温度计的精度、测量范围、控制范围和用途等。
温度传感器应用极其广泛,目前已经研制出多种新型温度传感器,从而构成性能优良的温度监控系统。
毕业设计(论文)开题报告题目基于单片机温度控制设计专业名称机械设计制造及其自动化班级学号学生姓名占恩平指导教师万文填表日期2012 年 3 月03 日一、选题的依据及意义:温度控制系统在国内各行各业的应用虽然已经十分广泛,但从国内生产的温度控制器来讲,总体发展水平仍然不高,同日本、美国、德国等先进国家相比,仍然有着较大的差距。
成熟的温控产品主要以“点位”控制及常规的PID控制器为主,它们只能适应一般温度系统控制,而用于较高控制场合的智能化、自适应控制仪表,国内技术还不十分成熟,形成商品化并广泛应用的控制仪表较少。
随着我国经济的发展及加入WTO,我国政府及企业对此都非常重视,对相关企业资源进行了重组,相继建立了一些国家、企业的研发中心,开展创新性研究,使我国仪表工业得到了迅速的发展。
随着新技术的不断开发与应用,近年来单片机发展十分迅速,一个以微机应用为主的新技术革命浪潮正在蓬勃兴起,单片机的应用已经渗透到电力、冶金、化工、建材、机械、食品、石油等各个行业。
传统的温度采集方法不仅费时费力,而且精度差,单片机的出现使得温度的采集和数据处理问题能够得到很好的解决。
温度是工业对象中的一个重要的被控参数。
然而所采用的测温元件和测量方法也不相同;产品的工艺不同,控制温度的精度也不相同。
因此对数据采集的精度和采用的控制方法也不相同。
传统的控制方式以不能满足高精度,高速度的控制要求,如温度控制表温度接触器,其主要缺点是温度波动范围大,由于他主要通过控制接触器的通断时间比例来达到改变加热功率的目的,受仪表本身误差和交流接触器的寿命限制,通断频率很低。
近几年来快速发展了多种先进的温度控制方式,如:PID控制,模糊控制,神经网络及遗传算法控制等。
这些控制技术大大的提高了控制精度,不但使控制变得简便,而且使产品的质量更好,降低了产品的成本,提高了生产效率。
本系统所使用的加热器件是电炉丝,功率为三千瓦,要求温度在400~1000℃。
基于单片机的温度控制系统设计开题报告基于单片机的温度控制系统设计开题报告一、引言在现代科技飞速发展的时代,单片机技术已经成为各种智能控制系统的核心。
本文旨在探讨基于单片机的温度控制系统设计,从简单的温度监测到复杂的温度控制,通过对单片机技术的灵活运用,实现对温度的精确控制,以及实现一定的智能化操作。
二、温度控制系统的基本原理温度控制系统是利用各种传感器检测环境温度,通过单片机进行数据处理,并利用执行器对环境温度进行调节的系统。
温度控制系统的基本原理是通过对环境温度的实时监测和分析,准确调节加热或降温装置,使环境温度保持在设定的范围内。
三、基于单片机的温度监测系统设计在温度控制系统中,温度监测是至关重要的一环。
我们可以使用单片机搭建一个简单的温度监测系统,通过传感器获取环境温度,并将数据传输给单片机进行实时监测和显示。
这里可以采用LM35温度传感器,并通过单片机的模拟输入引脚来获取温度数据。
通过LED数码管或LCD屏幕,实现对环境温度的实时显示。
还可以设置温度报警功能,一旦温度超出设定范围,系统会自动报警,提醒用户及时处理。
四、基于单片机的温度控制系统设计在温度监测系统的基础上,我们可以进一步设计出一个温度控制系统。
通过对温度控制器的灵活配置,实现对加热或降温设备的精确控制。
在这个系统中,单片机不仅需要实现对环境温度的实时监测,还需要根据监测到的数据进行相应的控制操作。
当环境温度过高时,单片机可以控制风扇或空调进行降温操作;当环境温度过低时,单片机可以控制加热设备进行加热操作。
这种基于单片机的温度控制系统,不仅可以实现对环境温度的精确控制,还可以节省能源,提高系统的智能化水平。
五、个人观点和理解通过对基于单片机的温度控制系统设计的探讨,我对单片机在智能控制领域的应用有了更深入的理解。
单片机不仅可以实现简单的温度监测,还可以实现复杂的温度控制,通过对传感器的数据采集和单片机的运算处理,实现对环境温度的精确控制。
单片机温度控制系统开题报告1. 引言随着科技的发展,单片机技术在各个领域得到了广泛的应用。
在现代生活中,温度控制系统是一个非常重要的组成部分,它可以帮助我们调节环境温度,提供舒适的生活和工作条件。
本文将介绍一个基于单片机的温度控制系统的开发过程。
2. 目标与意义本项目旨在开发一个简单而实用的温度控制系统,以便在家庭和办公环境中使用。
通过该系统,用户可以设置所需的温度范围,并且系统将自动根据环境的实际温度进行调节。
这将提供更加舒适和节能的环境,并且可以帮助用户避免温度过高或过低的不适情况。
3. 系统设计3.1 硬件设计本系统的硬件设计将基于一个单片机、温度传感器和执行器。
温度传感器将用于实时检测环境温度,并将数据传输给单片机。
根据用户设置的温度范围,单片机将控制执行器(如电风扇或加热器)来调节环境温度。
3.2 软件设计系统的软件设计包括两个主要部分:温度检测和温度控制。
在温度检测部分,单片机将读取温度传感器的数据,并将其转换为数字信号。
根据用户设置的温度范围,单片机将在合适的温度范围内进行判断,并决定是否需要进行温度调节。
在温度控制部分,单片机将控制执行器的运行,以达到所需的温度范围。
4. 系统实施步骤4.1 硬件连接首先,需要将温度传感器和执行器连接到单片机上。
具体的连接方式将根据硬件设备的要求来确定,并在系统设计中进行相应的说明。
4.2 传感器数据采集在软件实施的第一步,我们需要编写代码来读取温度传感器的数据。
根据传感器的类型和规格,我们可以使用相应的库或函数来获取传感器的数据。
将读取到的数据进行处理和转换,以便后续的温度判断和控制操作。
4.3 温度判断与控制根据用户设置的温度范围,我们可以使用条件语句来进行温度判断。
如果当前环境温度超过了设置的上限温度,则需要启动执行器进行降温操作;如果当前环境温度低于设置的下限温度,则需要启动执行器进行升温操作。
通过控制执行器的运行时间和功率,系统可以实现精确的温度调节。
MOCVD温度控制系统设计的开题报告一、选题背景在现代化工、材料学、微电子学、信息技术等领域,化合物半导体材料已经成为了一种非常有前景的材料,如GaAs、InP、GaN等。
其中,将这些材料制成具有微细结构的器件,通常需要使用金属有机化学气相沉积技术(MOCVD),由此产生的各种材料。
然而,MOCVD技术的一个重要问题是温度控制,因为副产物和不理想的热解反应可能会产生有害的气体或化学化合物,同时过高或过低的温度都会导致沉积材料的质量下降。
因此,建立一种有效的温度控制系统对于削减副产物、提高材料质量、改善器件性能等方面都非常重要。
二、选题重要性和研究意义MOCVD温度控制系统设计是半导体器件制作中的重要环节,其直接关系到制造出的器件的性能和质量。
对于已经应用的成熟技术,MOCVD技术具有高转换效率、高质量、低能耗等优点。
因此,设计一种高效、智能化、稳定的温度控制系统对此技术的发展非常重要。
三、研究内容和研究思路本文将主要研究MOCVD温度控制系统的设计和实现。
具体来讲,将采用传感器测量MOCVD系统的多个点的温度,并利用单片机设计智能PID算法进行温度反馈控制,从而实现对MOCVD反应器内部气氛的温度控制以及反应器内生长晶体材料的质量控制。
四、研究进度安排第一阶段:了解MOCVD技术原理和温度控制系统的设计目标,进行材料获取和系统分析,并设计控制系统算法;第二阶段:分析温度控制系统结构,进行硬件系统的设计和构建,根据MOCVD反应器的先前测试数据准备调节相应反应器参数;第三阶段:根据实验结果进行算法/硬件的修改和优化,并对温度控制系统进行长期实验和验证。
五、预期成果完成一种基于单片机的MOCVD反应器温度控制系统设计,具有以下优点:1. 高效稳定的温度控制功能;2. 可操作、可靠的控制系统设计;3. 以智能化的方式进行PID算法控制;4. 系统具有良好的实现性。
六、研究难点1. MOCVD反应器复杂的结构和高温高压工作环境;2. 系统设计中反应器不同位置温度测量的难度;3. 智能PID控制算法的编写和精度控制;七、参考文献[1] Jianhui Zhang. Design and implementation of intelligent temperature control system for MOCVD [D]. Zhejiang University, 2015.[2] Xiangjin Luo, Pengjian Jiang, Houbo Chen. Study on temperature uniformity of MOCVD reactor [J]. Optical Communication, 2018, 35(7): 70-74.[3] Wuyuan Li, Zhifang Wang, Tianqi Jin. A temperature control system for CVD reactor based on fuzzy control [J]. Journal of Applied Sciences, 2015, 25(4): 366-369.。