《大学物理AI》作业NO.11电磁感应(可编辑修改word版)
- 格式:docx
- 大小:71.68 KB
- 文档页数:5
十、电磁感应法拉第电磁感应定律10-1如图10-1所示,一半径a =0.10m ,电阻R =1.0×10-3O 的圆形导体回路置于均匀磁场中,磁场方向与回路面积的法向之间的夹角为π/3,若磁场变化的规律为 T 10)583()(42−×++=t t t B求:(1)t =2s 时回路的感应电动势和感应电流;(2)最初2s 内通过回路截面的电量。
10-2如图10-2所示,两个具有相同轴线的导线回路,其平面相互平行。
大回路中有电流I ,小的回路在大的回路上面距离x 处,x >>R ,即I 在小线圈所围面积上产生的磁场可视为是均匀的。
若v dtdx=等速率变化,(1)试确定穿过小回路的磁通量Φ和x 之间的关系;(2)当x =NR (N 为一正数),求小回路内的感应电动势大小;(3)若v >0,确定小回路中感应电流方向。
图10-2动生电动势10-3 一半径为R 的半圆形导线置于磁感应强度为B v的均匀磁场中,该导线以速度v 沿水平方向向右平动,如图10-3所示,分别采用(1)法拉第电磁感应定律和(2)动生电动势公式求半圆导线中的电动势大小,哪一端电势高?10-4长为L 的铜棒NM ,以角速度 ω 绕支点O 在水平面上转动,支点距棒的一端点N 的距离为r ,设均匀磁场B v垂直向下,如图10-4所示。
求棒两端的电势差。
图10-410-5两平行长直导线载有等量反向电流I ,金属棒CD 与两导线共面且垂直,相对位置如图10-5所示。
CD 棒以速度v v平行于导线电流运动时,求CD 棒中的动生电动势,哪端的电势高?10-6如图10-6所示,质量为m ,长为l ,电阻为R 的金属棒AB 放置在一个倾斜的光滑U 形框架上,并由静止下滑,磁场B v垂直向上。
求:(1)U 形框架为绝缘时,AB 棒内的动生电动势与时间的函数关系;(2)U 形框架为导体时(不计电阻),AB 棒下滑速度随时间的变化关系,最大速度为多少?图10-6图10-5 D感生电动势10-7一长直导线中通有交变电流I =5.0sin100pt A ,在与其相距d =5.0cm 处放有一矩形线圈,共100匝,线圈长l =4.0cm ,宽a =2.0cm ,如图10-7所示。
第一章质子运动学1.参考系:为描述物体的运动而选的标准物2.坐标系3.质点:在一定条件下,可用物体上任一点的运动代表整个物体的运动,即可把整个物体当做一个有质量的点,这样的点称为质点(理想模型)4.位置矢量(位矢):从坐标原点指向质点所在的位置5.位移:在∆t 时间间隔内位矢的增量6.速度速率7.平均加速度8.角量和线量的关系9.运动方程10.运动的叠加原理第二章牛顿运动定律1.牛顿运动定律:牛顿第一定律:任何物体都保持静止或匀速直线运动的状态,直到其他物体作用的力迫使它改变这种状态牛顿第二定律:当质点受到外力的作用时,质点动量p 的时间变化率大小与合外力成正比,其方向与合外力的方向相同牛顿第三定律:物体间的作用时相互的,一个物体对另一个物体有作用力,则另一个物体对这个物体必有反作用力。
作用力和反作用力分别作用于不同的物体上,它们总是同时存在,大小相等,方向相反,作用在同一条直线上。
2.常见的力:万有引力:弹性力摩擦力第三章动量守恒定律和能量守恒定律1.动量:p =mv 描述物体运动状态的物理量2.冲量:力对时间的积累效应I =⎰Fdt3.动量定理:质点动量的增量等于合力对质点作用的冲量,质点系动量的增量等于合外力的冲量⎰Fdt =p -p04.动量守恒定律:若质点系所受的合外力为零,系统的动量是守恒量5.功:描述力对空间的累积效应的物理量W =⎰f dr 保守力的功:只于物体的始末位置有关,与路径无关非保守力的功:与物体的始末位置有关,与路径无关6.势能:与物体位置有关的能量。
当质点从A 点运动到B 点时保守力所做的功等于势能增量的负值引力势能重力势能弹性势能7.动能定理:质点的动能定理是合外力对质点做的功等于质点动能的增量;质点系的动能定理是外力及内力对质点系所做的总功等于系统动能的增量功能原理:系统外力的功与非保守内力的功之总和等于系统机械能的增量机械能守恒定律:如果系统外力的功与非保守内力的功之总和等于零,则系统的机械能不变8.质心第四章 刚体1. 刚体:受力时大小和形状保持不变的物体(理想模型)2. 刚体的运动:平动,转动(含定轴转动,定点转动)和平面平行转动3. 刚体的定轴转动:刚体绕一固定轴转动,此时刚体上所以的点都绕一固定不变的直线做圆周运动。
《大学物理学》电磁感应部分自主学习材料一、选择题:1.图示为导线AB 在均匀磁场中作下列四种运动,(1)垂直于磁场作平动;(2)绕固定端A 作垂直于磁场转动;(3)绕其中心点O 作垂直于磁场转动;(4)绕通过中心点O 的水平轴作平行于磁场的转动。
关于导线AB 的两端产生的感应电动势哪个结论是错误的?( ) (A )(1)有感应电动势,A 端为高电势; (B )(2)有感应电动势,B 端为高电势; (C )(3)无感应电动势; (D )(4)无感应电动势。
【提示:(3)虽切割磁感线,但A 、B 两端电势相等;(4)不切割磁感线,(1)和(2)切割磁感线,由右手定则,A 端为高电势】2.如图所示,一根无限长直导线载有电流I ,一个矩形线圈位于导体平面沿垂直于载流导线方向以恒定速率运动,则:( ) (A )线圈中无感应电流;(B )线圈中感应电流为顺时针方向; (C )线圈中感应电流为逆时针方向; (D )线圈中感应电流方向无法确定。
【提示:载流无限长直导线在其附近产生的磁场是非均匀的:02IB rμπ=,知矩形线圈内磁通量发生减小的变化,由右手定则,感应电流为顺时针方向】3.尺寸相同的铁环与铜环所包围的面积中,通以相同变化率的磁通量,则环中:( ) (A )感应电动势不同, 感应电流不同;(B ) 感应电动势相同,感应电流相同; (C )感应电动势不同, 感应电流相同;(D )感应电动势相同,感应电流不同。
【提示:铁环与铜环的电阻不同,所以感应电流不同】4.一“探测线圈”由50匝导线组成,截面积24S cm =,电阻R =25Ω,放在均匀磁场中且线圈平面与磁场方向垂直,若把探测线圈迅速翻转︒90,测得通过线圈的电荷量为C 1045-⨯=∆q ,则此均匀磁场磁感应强度B 的大小为: ( )(A )0.01T ; (B )0.05T ; (C )0.1T ; (D )0.5T 。
【提示:由d d t εΦ=-、N BS Φ=及d q I d t R ε==知N BSq R∆=,∴0.05B T =】5.如图所示,在圆柱形空间有一磁感强度为B 的均匀磁场,B 的大小以速率d Bd t变化,在磁场中有A 、B 两点,其间可放 置一直导线和一弯曲的导线,则有下列哪些情况:( )A(1) (2) (3) (4)(A )电动势只在直导线中产生; (B )电动势只在弯曲的导线中产生;(C )电动势在直导线和弯曲的导线中都产生,且两者大小相等; (D )直导线中的电动势小于弯曲导线中的电动势。
《大学物理》电磁感应练习题及答案一、简答题1、简述电磁感应定律答:当穿过闭合回路所围面积的磁通量发生变化时,不论这种变化是什么原因引起的,回路中都会建立起感应电动势,且此感应电动势等于磁通量对时间变化率的负值,即dtd i φε-=。
2、简述动生电动势和感生电动势答:由于回路所围面积的变化或面积取向变化而引起的感应电动势称为动生电动势。
由于磁感强度变化而引起的感应电动势称为感生电动势。
3、简述自感和互感答:某回路的自感在数值上等于回路中的电流为一个单位时,穿过此回路所围成面积的磁通量,即LI LI =Φ=Φ。
两个线圈的互感M M 值在数值上等于其中一个线圈中的电流为一单位时,穿过另一个线圈所围成面积的磁通量,即212121MI MI ==φφ或。
4、简述位移电流与传导电流有什么异同答:共同点:都能产生磁场。
不同点:位移电流是变化电场产生的(不表示有电荷定向运动,只表示电场变化),不产生焦耳热;传导电流是电荷的宏观定向运动产生的,产生焦耳热。
5 简述感应电场与静电场的区别?答:感生电场和静电场的区别6、写出麦克斯韦电磁场方程的积分形式。
答:⎰⎰==⋅s v q dv ds D ρ dS tB l E s L ⋅∂∂-=⋅⎰⎰d 0d =⋅⎰S S B dS t D j l H s l ⋅⎪⎭⎫ ⎝⎛∂∂+=⋅⎰⎰d 7、简述产生动生电动势物理本质答:在磁场中导体作切割磁力线运动时,其自由电子受洛仑滋力的作用,从而在导体两端产生电势差8、 简述磁能密度, 并写出其表达式答:单位体积中的磁场能量,221H μ。
9、 简述何谓楞次定律答:闭合的导线回路中所出现的感应电流,总是使它自己所激发的磁场反抗任何引发电磁感应的原因(反抗相对运动、磁场变化或线圈变形等).这个规律就叫做楞次定律。
10、全电流安培环路定理答:磁场强度沿任意闭合回路的积分等于穿过闭合回路围成的曲面的全电流 s d t D j l d H s e •⎪⎪⎭⎫ ⎝⎛∂∂+=•⎰⎰二、选择题1、有一圆形线圈在均匀磁场中做下列几种运动,那种情况在线圈中会产生感应电流( D )A 、线圈平面法线沿磁场方向平移B 、线圈平面法线沿垂直于磁场方向平移C 、线圈以自身的直径为轴转动,轴与磁场方向平行D 、线圈以自身的直径为轴转动,轴与磁场方向垂直2、有两个线圈,线圈1对线圈2的互感系数为21M ,而线圈2对线圈1的互感系数为12M .若它们分别流过1i 和2i 的变化电流且dt di dt di 21<,并设由2i 变化在线圈1中产生的互感电动势为12ε,由1i 变化在线圈1中产生的互感电动势为21ε,下述论断正确的是( D )A 、 12212112,εε==M MB 、 12212112,εε≠≠M MC 、 12212112,εε>=M MD 、 12212112,εε<=M M3、对于位移电流,下列四种说法中哪一种说法是正确的 ( A )A 、位移电流的实质是变化的电场B 、位移电流和传导电流一样是定向运动的电荷C 、位移电流服从传导电流遵循的所有规律D 、位移电流的磁效应不服从安培环路定理4、下列概念正确的是 ( B )。
大学物理6丫头5《大学物理AI 》作业 No.11 电磁感应班级 ________________ 学号 ______________ 姓名 ____________ 成绩 ___________一、选择题:(注意:题目中可能有一个或几个正确答案) 1.一块铜板放在磁感应强度正在增大的磁场中时,铜板中出现涡流(感应电流),则涡流将: (A)加速铜板中磁场的增加 (B)减缓铜板中磁场的增加(C)对磁场不起作用 (D)使铜板中磁场反向[ B ] 解:根据愣次定律,感应电流的磁场总是力图阻碍原磁场的变化。
故选B2.一无限长直导体薄板宽度为l ,板面与Z 轴垂直,板的长度方向沿Y 轴,板的两侧与一个伏特计相接,如图。
整个系统放在磁感应强度为B的均匀磁场中,B的方向沿Z 轴正方向,如果伏特计与导体平板均以速度v向Y 轴正方向移动,则伏特计指示的电压值为(A) 0 (B)vBl 21(C) vBl (D) vBl 2[ A ]解:在伏特计与导体平板运动过程中,dc ab εε=,整个回路0=∑ε,0=i ,所以伏特计指示0=V 。
故选A3.两根无限长平行直导线载有大小相等方向相反的电流I ,I 以tId d 的变化率增长,一矩形线圈位于导线平面内(如图),则: (A)线圈中无感应电流。
(B)线圈中感应电流为顺时针方向。
(C)线圈中感应电流为逆时针方向。
(D)线圈中感应电流方向不确定。
[ B ]解:0d d >t I ,在回路产生的垂直于纸面向外的磁场⊗增强,根据愣次定律,回路中产生的电流为顺时针,用以反抗原来磁通量的变化。
故选B4.在一通有电流I 的无限长直导线所在平面内,有一半经为r ,电阻为R 的导线环,环中心距直导线为a ,如图所示,且r a >>。
当aIroabcVdYBZlI直导线的电流被切断后,沿着导线环流过的电量约为:(A))11(220ra a R Ir +-πμ(B)a ra R Ir +ln20πμ (C)aRIr 220μ (D)rRIa 220μ[ C ]解:直导线切断电流的过程中,在导线环中有感应电动势大小:td d Φ=ε 感应电流为:tR Ri d d 1Φ==ε则沿导线环流过的电量为 ∆Φ=⋅Φ==⎰⎰Rt t R t i q 1d d d 1daRIr R r a I R S B 212120200μππμ=⋅⋅=⋅∆≈故选C5.如图所示,直角三角形金属框架abc 放在均匀磁场中,磁场B平行于ab 边,bc 的边长为l 。
第11章 电磁感应11.1 基本要求 12别感应电动势的方向。
3。
4 56 7811.2 基本概念 1ε:把单位正电荷从负极通过电源内部移到正极时,非静电力所作的功,即W qε=23k E :变化的磁场在其周围所激发的电场。
与静电场不同,感生电场的电场线是闭合的,所以感生电场也称有旋电场。
45:有使回路保持原有电流不变的性质,是回路本身的“电磁惯性”的量度。
自感系数L ://m L I N I =ψ=Φ 6L ε:当通过回路的电流发生变化时,在自身回路中所产生的感应电动势。
7M :211212M I I ψψ== 812ε:当线圈2的电流2I 发生变化时,在线圈1中所产生的感应电动势。
9m W :贮存在磁场中的能量。
自感贮存磁能:212m W LI =磁能密度m w :单位体积中贮存的磁场能量22111222m B w μH HB μ===10D d d I dt Φ=s d t∂=∂⎰DS ,位移电流并不表示有真实的电荷在空 间移动。
但是,位移电流的量纲和在激发磁场方面的作用与传导电流是一致的。
11d t∂=∂D j 11.3 基本规律 1定律:描述电磁感应现象的基本规律有两条。
(1)楞次定律:感生电流的磁场所产生的磁通量总是反抗回路中原磁通量的改变。
楞 次定律是判断感应电流方向的普适定则。
(2)法拉第电磁感应定律:不论什么原因使通过回路的磁通量(或磁链)发生变化,回路 中均有感应电动势产生,其大小与通过该回路的磁通量(或磁链)随时间的变化成正比,即mi d dtεΦ=-2()BBK AAi εd d ==⨯⎰⎰E l v B l ,若0i ε>,则表示电动势方向由A B →;若0i ε<,则表示电动势方向B A →3m K ls i d Φd εd d dtdt =⋅=-=-⎰⎰BE l S (对于导体回路)BK Ai εd =⎰E l (对于一段导体)4L dIεL dt=- 512212d ΨdIεM dt dt=-=- 6sd ⋅⎰D S =0VdV q ρ=⎰l d ⋅⎰E l = - s d t∂⋅∂⎰BS =0sd ⋅⎰B Sc l sd d t ∂⎛⎫⋅=+⋅ ⎪∂⎝⎭⎰⎰D H l j S11.4 学习指导学习法拉第电磁感应定律要注意,公式中的电动势是整个回路的电动势,式中负号是楞 次定律的要求,用以判断电动势的方向。
《大学物理I 》作业 No.10 变化的电场和磁场 (A 卷)班级 ________ 学号 ________ 姓名 _________ 成绩 _______一、选择题:1.在法拉第电磁感应定律公式tφε=-d d 中,符号φ的含义是:【 】 (A) SE S φ=⋅⎰d (B) SD S φ=⋅⎰d(C) S B S φ=⋅⎰d(D) SH S φ=⋅⎰d解:由法拉第电磁感应定律定义内容知:符号φ的含义是穿过回路为曲面边界的曲面的磁感应强度B矢量的通量。
故选填:C2.一段导线被弯成圆心都在O 点,半径均为R 的三段圆弧⋂ab ,⋂bc ,⋂ca ,它们构成一个闭合回路。
圆弧⋂ab ,⋂bc ,⋂ca 分别位于三个坐标平面内,如图所示。
均匀磁场B沿 x 轴正向穿过圆弧⋂bc与坐标轴oc ob 、所围成的平面。
设磁感应强度的变化率为常数 k (k >0 ),则【 】(A) 闭合回路中感应电动势的大小为22kπR ,圆弧中电流由c b →(B) 闭合回路中感应电动势的大小为22kπR ,圆弧中电流由b c → (C) 闭合回路中感应电动势的大小为42kπR ,圆弧中电流由c b → (D) 闭合回路中感应电动势的大小为42kπR ,圆弧中电流由b c →解:因穿过闭合回路abca 为边界的曲面和回路ObcO 为边界的曲面的磁通量相等,所以闭合回路的感应电动势大小为:4d d 4d d d d 22i k πR t B πR t Φt ΦObcO abca =⋅===ε又因常数k >0,回路磁通量随时间增加,则由愣次定律知圆弧⋂bc 的感应电流方向由b c →。
故选填:D选择题2图y3.如图所示,直角三角形金属框架abc 放在均匀磁场中,磁场B平行于ab 边,bc 的边长为l 。
当金属框架绕ab 边以匀角速度ω转动时,abc 回路中的感应电动势ε和a 、c 两点的电势差c a U U -分别为:【 】(A) 221,0l B U U c a ωε=-= (B) 2221,l B U U l B c a ωωε-=-= (C) 221,0l B U U c a ωε-=-= (D) 2221,l B U U l B c a ωωε=-= 解:直角三角形金属框架abc 绕直线ab 轴旋转时,回路中磁通量随时间的变化率0d d =tΦ,所以abca 回路中感应电动势 0=ε, 而感应电动势又为:0=++=ca bc ab εεεε总 因为ab 边始终没运动,其感应电动势0=abε则有:bc ac ca ca bc εεεεε--0==⇒=+ 再由动生电动势计算式有直线bc 动生电动势为:()c b l B l B l l B v lcb bc →==⋅⨯=⎰⎰,21d d 20ωωε即知c 端电势高,所以221l B U U U c b bc ω-=-=故有:221l B U U U U U U c b bc c a ac ω-=-==-= 故选填:C4.半径为a 的圆线圈置于磁感强度为B的均匀磁场中,线圈平面与磁场方向垂直,线圈电阻为R ;当把线圈转动使其法向与B的夹角α=60°时,线圈中通过的电荷与线圈面积及转动所用的时间的关系是【 】(A) 与线圈面积成正比,与时间无关 (B) 与线圈面积成正比,与时间成正比 (C) 与线圈面积成反比,与时间成正比(D) 与线圈面积成反比,与时间无关解: 根据电流强度的定义有线圈中通过的电荷为:BSRBS BS R ΦΦRR Φt t R Φt R t I q 21cos cos6011d d d d d d 12=︒-︒-=--=-=-===⎰⎰⎰⎰)()(0ε故选填:A︒60选择题3图5.若产生如图所示的自感电动势方向,则通过线圈的电流是:【 】(A) 恒定向右 (B) 恒定向左 (C) 增大向左 (D) 增大向右解:根据楞次定律:感应电流产生的磁场将阻碍原磁场(原磁通)的变化,而本题自感电动势方向向右,则感应电流产生的磁场向右,因此原磁向左,原电流也向左。
大学物理练习题十一一、选择题1. 如图,导体棒AB 在均匀磁场B 中绕过C 点的垂直于棒长且沿磁场方向的轴OO ’转动(角速度ωϖ与B ϖ同方向),BC 的长度为棒长的31。
则 [ A ](A )A 点比B 点电势高. (B )A 点与B 点电势相等.(C )A 点比B 点电势低. (D )有稳恒电流从A 点流向B 点.解: 从上往下看,AC 、CB 段导体在磁场中旋转切割磁力线,由B v q ϖϖ⨯=ε知外端电势高。
由221λB ωε=及BC AC λλ>知BC AC ε>ε,即B A U U >2. 有两个线圈,线圈1对线圈2的互感系数为M 21,而线圈2对线圈1的互感系数为M 12。
若它们分别流过i 1和i 2的变化电流且dtdi dt di 21>,并设由i 2变化在线圈1中产生的互感电动势为12ε,由i 1变化在线圈2中产生的互感电动势为21ε,判断下述哪个论断正确?[ C ](A) 2112M M =,1221εε=。
(B) 2112M M ≠,1221εε≠。
(C) 2112M M =,1221εε>。
(D) 2112M M =,1221εε<。
解:由dt di M 21212-=ε,dtdi M 12121-=ε,2112M M =, 有 dt di dt di //211221=εε,当dt di dt di 21>时必有1221εε> 注:这里ε指大小(绝对值)。
*3. 已知圆环式螺线管的自感系数为L 。
若将该螺线管锯成两个半环式的螺线管,则两个半环螺线管的自感系数 [ D ](A) 都等于21L 。
(B) 有一个大于21L ,另一个小于21L 。
(C) 都大于21L 。
(D) 都小于21L 。
解: 将圆环看作是两个半环串联,M L L L 221++=, 显然L L L 2121<=4. 真空中一根无限长直细导线上通有电流强度为I 的电流,则距导线垂直距离为a 的空间某点处的磁能密度为: [ B ] (A) 200221⎪⎭⎫ ⎝⎛a I πμμ (B) 200221⎪⎭⎫ ⎝⎛a I πμμ (C) 20221⎪⎪⎭⎫ ⎝⎛I a μπ (D) 200221⎪⎭⎫ ⎝⎛a I μμ 解: a I B πμ20=代入022μB w m =5. 两个线圈P 和Q 并联地接到一电动势恒定的电源上。
法拉第电磁感应定律10-1如图10-1所示,一半径a=0.10m,电阻7?=1.OX1O 3Q 的圆形导体回路置于均匀磁场中,磁场方向与回路面积的法向之间的夹角为TT /3,若磁场变化的规律为3(f ) = (3" +8/ + 5)X 10-4T求:(1) f=2s 时回路的感应电动势和感应电流;(2)最初2s 内通过回路截面的电量。
解:(1) <t>^B S^BScosO图 10-1a —3 ? x 10 -5t = 2s, & =—3.2x107, I =_=------ =—2x10—2 AR -负号表示与方向与确定五的回路方向相反(2) / = ;(0 -Q )=;留(0)-8(2)]• S• cos 。
= 28x1" 1*0.1 - =4.4xl0-2 CR R 1x10 x210-2如图10-2所示,两个具有相同轴线的导线回路,其平面相互平行。
大回路中有电流/,小的回路在大 dx的回路上面距离X 处,X»R,即/在小线圈所围面积上产生的磁场可视为是均匀的。
若—=v 等速 dt 率变化,(1)试确定穿过小回路的磁通量e 和X 之间的关系;(2)当x=NR (N 为一正数),求小回 路内的感应电动势大小;(3)若v>0,确定小回路中感应电流方向。
解:(1)大回路电流/在轴线上x 处的磁感应强度大小B = cl" 2、3 2 '方向竖直向上。
2(舟+》2产x»R 时,® = B ・S = BS = B •兀尸=“祁:"2疽 2x3(2)=1. ju JR-TIP 2x 4 — , x = NR 时, dt 2dt (3)由楞次定律可知,小线圈中感应电流方向与/相同。
动生电动势10-3 一半径为R 的半圆形导线置于磁感应强度为W 的均匀磁场中,该导线以 速度v沿水平方向向右平动,如图10-3所不,分别采用(1)法拉第电磁 感应定律和(2)动生电动势公式求半圆导线中的电动势大小,哪一端电 势高?解:(1)假想半圆导线在宽为2R 的U 型导轨上滑动,设顺时针方向为回路方向,在x 处O…, = (2Rx+-兀R2 )B , s = 一^^ = -2RB — = -2RBv2 dt dt由于静止U 型导轨上电动势为零,所以半圈导线上电动势为 8 = -2RBv 负号表示电动势方向为逆时针,即上端电势高。
《电磁感应》练习题高二级_______班姓名______________ _______________号1.B 2. A 3. A4.B 5. BCD6.CD7. D8. C一.选择题1.下面说法正确的是()A.自感电动势总是阻碍电路中原来电流增加B.自感电动势总是阻碍电路中原来电流变化. C.电路中的电流越大,自感电动势越大D.电路中的电流变化量越大,自感电动势越大2. 如图所示,一个矩形线圈与通有相同大小电流的平行直导线在同一平面,而且处在两导线的中央,则( A )A.两电流方向相同时,穿过线圈的磁通量为零B.两电流方向相反时,穿过线圈的磁通量为零C.两电流同向和反向时,穿过线圈的磁通量大小相等D.因两电流产生的磁场不均匀,因此不能判断穿过线圈的磁通量是否为零3. 一矩形线圈在匀强磁场中向右做加速运动如图所示, 设磁场足够大, 下面说法正确的是( A )A. 线圈中无感应电流, 有感应电动势B .线圈中有感应电流, 也有感应电动势C. 线圈中无感应电流, 无感应电动势D. 无法判断4.如图所示,AB为固定的通电直导线,闭合导线框P与AB在同一平面内。
当P远离AB做匀速运动时,它受到AB的作用力为( B )A.零B.引力,且逐步变小C.引力,且大小不变D.斥力,且逐步变小5. 长0.1m的直导线在B=1T的匀强磁场中,以10m/s的速度运动,导线中产生的感应电动势:( )A.一定是1V B.可能是0.5V C.可能为零D.最大值为1V6.如图所示,在一根软铁棒上绕有一个线圈,a、b是线圈的两端,a、b分别与平行导轨M、N相连,有匀强磁场与导轨面垂直,一根导体棒横放在两导轨上,要使a点的电势均比b点的电势高,则导体棒在两根平行的导轨上应该(BCD )A.向左加速滑动B.向左减速滑动C.向右加速滑动D.向右减速滑动7.关于感应电动势,下列说法正确的是()A.穿过闭合电路的磁感强度越大,感应电动势就越大B.穿过闭合电路的磁通量越大,感应电动势就越大C.穿过闭合电路的磁通量的变化量越大,其感应电动势就越大D.穿过闭合电路的磁通量变化的越快,其感应电动势就越大4题5题8.恒定的匀强磁场中有一圆形的闭合导体线圈,线圈平面垂直于磁场方向,要使线圈中能产生感应电流,线圈在磁场中应做 ( ) A .线圈沿自身所在的平面做匀速运动 B .线圈沿自身所在的平面做匀加速运动 C .线圈绕任意一条直径转动 D .线圈沿磁场方向平动9.将一磁铁缓慢或迅速地插到闭和线圈中的同一位置,两次发生变化的物理量不同的是( )A 、磁通量的变化量B 、磁通量的变化率C 、感应电流的电流强度D 、消耗的机械功率10.如图所示,一长直导线在纸面内,导线一侧有一矩形线圈,且线圈一边M 与通电导线平行,要使线圈中产生感应电流,下列方法可行的是( ) A 、保持M 边与导线平行线圈向左移动 B 、保持M 边与导线平行线圈向右移动C 、线圈不动,导线中电流减弱D 、线圈不动,导线中电流增强E 、线圈绕M 边转动 F11. 如图所示,将一线圈放在一匀强磁场中,线圈平面平行于磁感线,则线圈中有感应电流产生的是( )A 、当线圈做平行于磁感线的运动B 、当线圈做垂直于磁感线的平行运动C 、当线圈绕M 边转动D 、当线圈绕N 边转动12.如图所示,虚线所围的区域内有一匀强磁场,闭和线圈从静止开始运动,此时如果使磁场对线圈下边的磁场力方向向下,那么线圈应( ) A 、向右平动 B 、向左平动 C 、以M 边为轴转动D 、以上都不对13.竖直放置的金属框架处于水平的匀强磁场中,如图所示,一长直金属棒AB 可沿框自由运动,当AB 由静止开始下滑一段时间后合上S ,则AB 将做( )A 、 匀速运动B 、加速运动C 、减速运动D 、无法判定14.如图所示,边长为h 的矩形线框从初始位置由静止开始下落,进入一水平的匀强磁场,且磁场方向与线框平面垂直。
《大学物理 AI 》作业No.11 电磁感应班级学号姓名成绩一、选择题:(注意:题目中可能有一个或几个正确答案)1. 一块铜板放在磁感应强度正在增大的磁场中时,铜板中出现涡流(感应电流),则涡流将:(A)加速铜板中磁场的增加 (B)减缓铜板中磁场的增加(C)对磁场不起作用(D)使铜板中磁场反向[ B ]解:根据愣次定律,感应电流的磁场总是力图阻碍原磁场的变化。
故选 B2.一无限长直导体薄板宽度为l ,板面与 Z 轴垂直,板的长度方向沿 Y 轴,板的两侧与一个伏特计相接,如图。
整个系统放在磁感应强度为 B的均匀磁场中, B的方向沿 Z 轴正方向,如果伏特计与导体平板均以速度v向 Y 轴正方向移动,则伏特计指示的电压值为(A) 0 (B) 1vBl2 (C)(C )vBl (D) 2vBl[A]解:在伏特计与导体平板运动过程中,ab = dc ,整个回路∑= 0 , i = 0 ,所以伏特计指示V = 0 。
故选 A3. 两根无限长平行直导线载有大小相等方向相反的电流 I ,I以d I的变化率增长,一矩形线圈位于导线平面内(如d t图),则:(A) 线圈中无感应电流。
(B)线圈中感应电流为顺时针方向。
(C)线圈中感应电流为逆时针方向。
(D)线圈中感应电流方向不确定。
[B]解: d I d t> 0 ,在回路产生的垂直于纸面向外的磁场⊗ 增强,根据愣次定律,回路中产生的电流为顺时针,用以反抗原来磁通量的变化。
故选 B4.在一通有电流 I 的无限长直导线所在平面内,有一半经为 r ,电阻为R 的导线环,环中心距直导线为a ,如图所示,且a >> r 。
当直导线的电流被切断后,沿着导线环流过的电量约为:I aor bZaVBclY d⎰ 1 Ir 2 1 (A) 0(2R a - 1)a + r(B)Ir2Rlna + r aIr 2(C)2aR(D)Ia 22rR[C]d Φ 解:直导线切断电流的过程中,在导线环中有感应电动势大小:=d t感应电流为: i == 1 d ΦR R d t1 d Φ 1则沿导线环流过的电量为 q = ⎰i d t = R ⎰ d t ⋅ d t = ∆ΦR≈ B 0 ∆S ⋅ R = 0 I ⋅r 2 ⋅ 12 a RIr 2= 02aR故选 C5.如图所示,直角三角形金属框架 abc 放在均匀磁场中,磁场 B 平行c于 ab 边,bc 的边长为l 。
但金属框架绕 ab 边以匀角速度转动时,abc 回路中的感应电动势和 a 、c 两点的电势差U a - U c 为:(A) ε = 0,(B) ε = 0,U a - U c U a - U c = 1 B ωl 2 2= - 1B ωl 2 2 (C) ε = B ωl 2 ,(D) ε = B ωl 2 , U a - U cU a -U c = 1B ωl 2 2= - 1 B ωl 2 2d Φ[ B ]解:金属框架绕 ab 转动时,回路中d t= 0 ,所以= 0 。
又U ab = 0 ,U ab + U bc + U ca = 0 ,即有U a - U c = U b - U c = - c(v ⨯ B ) ⋅ b d l = - L lB d l = - 1Bl 20 2故选 B二、填空题:1. 将条形磁铁插入与冲击电流计串联的金属环中时, 有q =2.0 ⨯10-5 C 的电荷通过电流bBla⎰Y⨯⨯ ⨯ v ⨯ ⨯ ⨯ ⨯ ⨯ B⨯ ⨯⨯ v ⨯ a ⨯ ⨯ ⨯c)c ⨯ 计 , 若 连 接 电 流 计 的 电 路 总 电 阻 R = 25Ω , 则 穿 过 环 的 磁 通 的 变 化 ∆Φ =5 ⨯10-4 (Wb) 。
1 1解:由 q = ⎰i d t = ⎰ R d t = R ⎰d Φ = R ⋅ ∆Φ 得:∆Φ = qR = 2.0 ⨯10-5 ⨯ 25 = 5 ⨯10-4(Wb)2. 磁换能器常用来检测微小的振动。
如图,在振动杆的一端固接一个 N 匝的矩形线圈,线圈 ⨯ ⨯⨯ B ⨯ 的一部分在匀强磁场 B 中,设杆的微小振动规 ⨯ ⨯律为: x = A cos t 。
则线圈随杆振动时,线圈 ⨯ ⨯ NBbA cos(t + 中的感应电动势为2 。
振动杆解:由法拉第电磁感应定律,得线圈中感应电动势大小:= N d Φ = NBb d x= -NBbA sin td t d t= NBbAcos(t + 23. 如图,aOc 为一折成∠ 形的金属导线(aO=Oc=L ),位于 XY ⨯⨯ ⨯平面中;磁感应强度为 B 的匀强磁场垂直于 XY 平面。
当 aOc ⨯以速度v沿X 轴正方向运动时,导线上 a 、c 两点间电势差 U ac = vBl sin 。
当 aOc 以速度v 沿 Y 轴正方向运动时,导线 ⨯⨯ ⨯ ⨯上 a 、c 两点中是 a 点电势高。
⨯O X解:当沿 x 轴运动时,导线 oc 不切割磁力线,U o = U c , U a c = U a o = vBl sin当沿 y 轴运动时,U o c = vBl ,U o a = vBl cos < U o c ,(v ⨯ B )a所以U a >U c ,a 点电势高。
4. 半径为 L 的均匀导体圆盘绕通过中心 O 的垂直轴转动,⨯ 角速度为,盘面与均匀磁场 B 垂直,如图。
⨯ (1)在图上标出Oa 线段中动生电动势的方向。
(2)填写下列电势差的值(设ca 段长度为 d ):→⨯B⨯ ⨯ ⨯⨯ O ⨯ ⨯ ao⨯ d ⨯ ⨯⨯ ⨯ b⨯ ⨯ ⨯ ⨯ ⨯XN 匝线圈b⨯ ⨯ ⨯ ⨯ L)a⨯ R ⨯ ⨯ b ⨯ ⨯ ⨯ ⨯ ⨯O ⨯ ⨯B⨯ ⨯→a ⎰ L 1 2 ⎰o a ⨯B cU a -U o = - 1BL 22。
v v ⨯ B ⨯U a - U b =。
- 1Bd (2L - d )B Od laU a -U c =2。
解:(1) Oa 线段中动生电动势的方向是由 a 指向 o ,如上图中ao 箭头所示。
(2)各电势差值为:U a -U o = - a(v ⨯ B ) ⋅ o d l = -⎰0 lB d l = - 2BL a U -U = -⎰ (v ⨯ B ) ⋅ = -⎰ba = 0 a b b d l LB cos d l 0 2U a - U c = - a (v ⨯ B ) ⋅ c d l = -⎰c(v ⨯ B ) ⋅ d l - ⎰o(v ⨯ B ) ⋅ d l == ⎰0lB d l - ⎰LlB d l = - 1Bd (2L - d )d -L2三、计算题:1. 一导线弯成如图形状,放在均匀磁场 中, 的方向BB垂直图面向里。
∠bcd = 60 ,bc = cd = a 。
现使导线绕如图轴OO '旋转,转速为每分钟n转,计算oo ' 。
⨯ ⨯ c ⨯ → ⨯⨯ ⨯ ⨯ B ⨯ ⨯⨯⨯ ⨯ 解:由图可知:oo ' = ∆bcd -bd= -d Φ d tO⨯ b ⨯O 'd而 Φ = BS cos(t ) = B ⨯ 1 ⨯ a 2 ⨯ 3 cos( 2nt )2 2 60所以= B ⨯ 1 ⨯ a 2⨯ 3 ⨯ 2n ⨯ sin( 2n t ) oo '= 21202sin( 60 602nt ) 602. 均匀磁场被限制在半径 R =10cm 的无限长圆柱空间内,方向垂直纸面向里,取一固定的等腰梯形回路 abcd ,梯形所在平面的法向与圆柱空间c的轴平行,位置如图所示。
设磁场以d B / d t = 1T / s 的 匀速率增加,已知= 1 ,Oa = Ob = 6cm ,求等腰梯形回3路中感生电动势的大小和方向。
d3na 2 B ⨯)解:由法拉第电磁感应定律有感生电动势大小= - d Φ = -S d B = -( 1 R 2- 1ab ⋅ oa cos d Bd t= -( 1 ⨯ 0.12 2 d t ⨯ - 1 3 2 2 ⨯ 0.06 ⨯ 2 0.06 c os 2 d t) ⨯1 ,6≈ -3.68⨯10-3 (V)负号表示感生电动势逆时针绕向。
3. 无限长直导线,通以电流 I 。
有一与之共面的直角三角形线圈 ABC ,已知 AC 边长为 b ,且与长直导线平行,BC 边长为 a 。
若线圈以垂直导线方向的速度 v向右平移,当 B 点与长直导线的距离为 d 时,求线圈 ABC 内的感应电动势的大小和感应电动势的方向。
解:建立如图示直角坐标系,AB 导线的方程为y = b x - b r yIo r B dAcbyvad x C xa a式中 r 为任意时刻 B 点与长直导线之间的距离。
而任意时刻∆ABC 中的磁通量为Φ = ⎰r +a 0I ⋅ y d x = 0 I (b - b r ln r + a )r2x 2 a r所以,三角形线圈 ABC 内的感应电动势的大小为:= - d Φ = - d Φ⋅ = 0 Ib (ln a + d - a ) d t d rr =d 2a d a + d感应电动势的方向为:顺时针绕向(感应电流产生的磁场阻止线圈磁通减少)。
d r d t。