2018年高考物理二轮复习专题整合高频突破专题二功和能动量和能量3应用力学三大观点解决综合问题课件
- 格式:ppt
- 大小:1.95 MB
- 文档页数:58
机械能知识网络:单元切块:按照考纲的要求,本章内容可以分成四个单元,即:功和功率;动能、势能、动能定理;机械能守恒定律及其应用;功能关系动量能量综合。
其中重点是对动能定理、机械能守恒定律的理解,能够熟练运用动能定理、机械能守恒定律分析解决力学问题。
难点是动量能量综合应用问题。
§1 功和功率教学目标:理解功和功率的概念,会计算有关功和功率的问题培养学生分析问题的基本方法和基本技能教学重点:功和功率的概念教学难点:功和功率的计算教学方法:讲练结合,计算机辅助教学教学过程:一、功1.功功是力的空间积累效应。
它和位移相对应(也和时间相对应)。
计算功的方法有两种:(1)按照定义求功。
即:W =Fs cos θ。
在高中阶段,这种方法只适用于恒力做功。
当20πθ<≤时F 做正功,当2πθ=时F 不做功,当πθπ≤<2时F 做负功。
这种方法也可以说成是:功等于恒力和沿该恒力方向上的位移的乘积。
(2)用动能定理W =ΔE k 或功能关系求功。
当F 为变力时,高中阶段往往考虑用这种方法求功。
这里求得的功是该过程中外力对物体做的总功(或者说是合外力做的功)。
这种方法的依据是:做功的过程就是能量转化的过程,功是能的转化的量度。
如果知道某一过程中能量转化的数值,那么也就知道了该过程中对应的功的数值。
【例1】 如图所示,质量为m 的小球用长L 的细线悬挂而静止在竖直位置。
在下列三种情况下,分别用水平拉力F 将小球拉到细线与竖直方向成θ角的位置。
在此过程中,拉力F 做的功各是多少?⑴用F 缓慢地拉;⑵F 为恒力;⑶若F 为恒力,而且拉到该位置时小球的速度刚好为零。
可供选择的答案有A.θcos FL B .θsin FL C.()θcos 1-FL D .()θcos 1-mgL【例2】如图所示,线拴小球在光滑水平面上做匀速圆周运动,圆的半径是1m ,球的质量是0.1kg ,线速度v =1m/s ,小球由A 点运动到B点恰好是半个圆周。
专题能力训练6能量转化与守恒定律(时间:45分钟满分:100分)一、选择题(本题共8小题,每小题7分,共56分。
在每小题给出的四个选项中,1~5题只有一个选项符合题目要求,6~8题有多个选项符合题目要求。
全部选对的得7分,选对但不全的得4分,有选错的得0分)1.如图甲所示,倾角为θ的斜面足够长,质量为m的小物块受沿斜面向上的拉力F作用,静止在斜面中点O处,现改变拉力F的大小(方向始终沿斜面向上),物块由静止开始沿斜面向下运动,运动过程中物块的机械能E随离开O点的位移x变化关系如图乙所示,其中O~x1过程的图线为曲线,x1~x2过程的图线为直线,物块与斜面间动摩擦因数为μ。
物块从开始运动到位移为x2的过程中()A.物块的加速度始终在减小B.物块减少的机械能等于物块克服合力做的功C.物块减少的机械能小于减少的重力势能D.物块减少的机械能等于物块克服摩擦力做的功2.如图所示,固定的倾斜光滑杆上套有一个质量为m的小球,小球与一轻质弹簧一端相连,弹簧的另一端固定在地面上的A点,已知杆与水平面之间的夹角θ<45°,当小球位于B点时,弹簧与杆垂直,此时弹簧处于原长。
现让小球自C点由静止释放,小球在BD间某点静止。
在小球由C点滑到最低点的整个过程中,关于小球的动能、重力势能和弹簧的弹性势能,下列说法正确的是()A.小球的动能与重力势能之和保持不变B.小球的动能与重力势能之和先增大后减小C.小球的动能与弹簧的弹性势能之和保持不变D.小球的重力势能与弹簧的弹性势能之和保持不变3.如图所示,轻质弹簧的一端与固定的竖直板P拴接,另一端与物体A相连,物体A静止于光滑水平桌面上,A右端连接一细线,细线绕过光滑的定滑轮与物体B相连。
开始时用手托住B,让细线恰好伸直,然后由静止释放B,直至B获得最大速度。
下列有关该过程的分析正确的是()A.B物体受到细线的拉力保持不变B.B物体机械能的减少量小于弹簧弹性势能的增加量C.A物体动能的增加量等于B物体重力做功与弹簧对A的弹力做功之和D.A物体与弹簧所组成的系统机械能的增加量等于细线拉力对A做的功4.如图所示,质量为m的小球沿光滑的斜面AB下滑,然后可以无能量损失地进入光滑的圆形轨道BCD。
第一讲功功率动能定理[ 知识建构 ][ 高考调研 ]1. 考察方向展望:①重力、摩擦力、静电力和洛伦兹力的做功特色和求解.②与功、功率相关的剖析与计算.③动能定理和动力学方法的综合应用.④动能定理在电磁学中的应用.2. 常用的思想方法:①化曲为直的思想方法.②微元法.③协力功的求法.④变力功的求法.[ 答案 ] (1) 恒力做功的计算①单个力做的功:直接用W=Fx cosα计算.有两种不一样的计算公式,即分解力或分解位移;常有的恒力功有:电场力功: W Q= qEd= qU安培力功: W安= BILd重力功: W G= mgh②协力做的功方法一:先求协力 F 合,再用 W合= F 合 l cosα求功.方法二:先求各个力做的功W1、 W2、W3、,再应用W合=W1+ W2+ W3+求协力做的功.(2)功率的两个公式W① P=t.求出的功率是时间t 内的均匀功率.②P= Fv cosα.此中α是 F 与 v 方向的夹角;若 v 取刹时速度,则对应的 P 为刹时功率;若 v 取均匀速度,则对应的 P 为均匀功率.(3)对动能定理的理解①动能定理中所说的“外力”,是指物体遇到的全部力,包含重力.②对“总功”的两种理解各外力做功的代数和: W= W1+ W2+;合外力的功: W= F 合 l cosθ(力均为恒力).③对“位移和速度”的理解:一定是相关于同一个惯性参照系,一般以地面为参照系.④动能定理表达式是一个标量式,不可以在某个方向上应用动能定理.考向一功和功率的计算[ 概括提炼 ]功和功率的理解与计算问题,一般应注意以下几点1.正确理解功的定义式W= Fl 及变形式 W= Fl cosα中各物理量的意义,该式仅合用于恒力做功的状况.2.变力做功的求解注意对问题的正确转变,如将变力转变为恒力,也可应用动能定理等方式求解.W3.关于功率的计算,应注意划分公式P=t和公式 P= Fv,前式重视于均匀功率的计算,尔后式重视于刹时功率的计算.(2017 ·江苏卷) 以下图,两个半圆柱A、 B紧靠着静置于水平川m面上,其上有一圆滑圆柱C,三者半径均为R. C的质量为m, A、 B 的质量都为2,与地面间的动摩擦因数均为μ.现用水平向右的力拉A,使 A 迟缓挪动,直至C恰巧降到地面.整个过程中 B 保持静止.设最大静摩擦力等于滑动摩擦力,重力加快度为g.求:(1)未拉A 时,C遇到B作使劲的大小;F(2)动摩擦因数的最小值μmin;(3)A挪动的整个过程中,拉力做的功W.[ 思路点拨 ]由圆柱 C一开始受力均衡可得卖力 F 的大小.动摩擦因数最小时, B 受 C 压力的水均分力最大.拉力为变力,可依据动能定理求解拉力做的功.[ 分析 ] (1) C受力均衡,有2F cos30°=mg3解得 F=3 mg(2)C恰巧降到地面时, B受 C压力的水均分力最大3F x max=2 mgB受地面的摩擦力 f =μmg依据题意 f min= F xmax3解得μmin=.(3)C降落的高度 h=( 3-1) RA的位移 x=2( 3-1) R摩擦力做功的大小 f =fx =2( 3-1)μmgRW依据动能定理W- W+ mgh=0-0f解得=(2μ-1)(3-1).W mgR33[答案](1)3 mg(2)2(3)(2 μ- 1)(3- 1) mgR动摩擦因数的最小值也可用以下方法剖析求解:以下图,用水平向右的力拉A,使 A 迟缓挪动,直至C恰巧降到地面时m对整体,有N B+ N A=mg+2×2g,地面支持力N B= N A=mg对 C,竖直方向上有2F B cos60°=mg3对 B,水平方向上有 f = F B sin60°=2 mg而 f ≤f m=μN B=μmg,故动摩擦因数33μ≥2,最小值μmin=2.当 F 为变力或物体做曲线运动时,或要求解的问题中没有明确固定的受力或在力的方向上的位移时,考虑用动能定理求变力做的功 . 剖析各力做功状况时不要出现“丢功”及“错功” . 严格依据重力、弹力、摩擦力的次序找出运动物体所受的各个力,而后正确判断出各个力做的功 . 存在电场时,还要考虑能否有电场力做功.[ 娴熟加强 ]1.(2017 ·长沙雅礼中学三模) 如右图所示是一种冲洗车辆用的手持式喷水枪.设枪口截面积为0.6 cm 2,喷出水的速度为33度为 1×10 kg/m )()20 m/s.当它工作时,预计水枪的均匀功率约为( 水的密A.12 W B. 120 WC. 240 W D. 1200 W[分析]考虑Δt时间内从枪口射出去的水,其质量为Δm=ρsvΔt,该部分水增添的动能=12=13,则水枪的均匀功率P=/=1 2,联合上式,有2k k k ρsv3,代入数据,得P=240 W.[答案]C2.( 多项选择 )(2017 ·河南五校联考) 将三个圆滑的平板倾斜固定,三个平板顶端究竟端的高度相等,三个平板与水平面间的夹角分别为θ1、θ2、θ3,以下图.现将三个完整同样的小球由最高点 A 沿三个平板同时无初速度地开释,经一段时间抵达平板的底端.则以下说法正确的是()A.重力对三个小球所做的功同样B.沿倾角为θ3的平板下滑的小球的重力的均匀功率最大C.三个小球抵达底端时的刹时速度同样D.沿倾角为θ3的平板下滑的小球抵达平板底端时重力的刹时功率最小[分析]假定平板的长度为x ,由功的定义式可知=sinθ=,则 A 正确;小球W mgx mgh在斜面上运动的加快度a= g sinθ,小球抵达平板底端时的速度为v=2ax= 2gx sin θ=12 2gh,明显抵达平板底端时的速度大小相等,但方向不一样,则C错误;由位移公式x=2at 2x2h W mg sinθ2gh可知 t = a =g sin2θ,整个过程中重力的均匀功率为P=t=2,则沿倾角为θ1 的平板下滑的小球的重力均匀功率最大, B 错误;依据=cos(90 °-θ) =P mgvmgv sinθ,速度大小相等,沿倾角为θ3的平板下滑的小球抵达平板底端时重力的刹时功率最小, D 正确.[答案]AD3.(2017 ·全国卷Ⅲ ) 如图,一质量为m、长度为l的均匀柔嫩细绳PQ竖直悬挂.用外力将绳的下端Q迟缓地竖直向上拉起至M点, M点与绳的上端P 相距31l .重力加快度大小为g.在此过程中,外力做的功为()1A. mgl91 B. 6mgl1C.3mgl1 D. 2mgl[分析]将绳的下端Q 迟缓向上拉至点,相当于使下部分1的绳的重心高升1,故重M33l1l 1力势能增添3mg·3=9mgl,由功能关系可知A项正确.[答案]A考向二动能定理的应用[ 概括提炼 ]应用动能定理解题应注意的四点1.方法的选择:动能定理常常用于单个物体的运动过程,因为不波及加快度实时间,比动力学方法要简捷.2.规律的应用:动能定理表达式是一个标量式,在某个方向上应用动能定理是没有依据的.3.过程的选择:物体在某个运动过程中包含有几个运动性质不一样的小过程( 如加快、减速的过程 ) ,此时能够分段应用动能定理,也能够对全过程应用动能定理,但假如对整个过程应用动能定理,则使问题简化.4.电磁场中的应用:在电磁场中运动时多了一个电场力或磁场力,特别注意电场力做功与路径没关,洛伦兹力在任何状况下都不做功.(2016 ·全国卷Ⅰ) 如图,一轻弹簧原长为2R,其一端固定在倾角为37°的固定直轨道AC的底端 A 处,另一端位于直轨道上 B 处,弹簧处于自然状态.直轨道5与一半径为6R的圆滑圆弧轨道相切于C点, AC=7R, A、B、 C、 D均在同一竖直平面内.质量为 m的小物块 P 自 C点由静止开始下滑,最低抵达 E 点(未画出).随后 P 沿轨道被弹回,最高抵达 F 点, AF=4R.已知 P 与直轨道间的动摩擦因数1g.(取μ=4,重力加快度大小为34sin37 °=,cos37°= )55(1)求 P 第一次运动到 B点时速度的大小.(2)求 P 运动到 E 点时弹簧的弹性势能.(3) 改变物块P 的质量,将P 推至E点,从静止开始开释.已知P 自圆弧轨道的最高点7D处水平飞出后,恰巧经过G点. G点在C点左下方,与C点水平相距2R、竖直相距R.求P运动到 D点时速度的大小和改变后P 的质量.[ 思路路线 ][分析](1) 依据题意知,、C 之间的距离为l=7-2①B R R 设 P 抵达 B 点时的速度为v B,由动能定理得12mgl sinθ-μmgl cosθ=2mv B②式中θ=37°.联立①②式并由题给条件得Bv= 2 gR③(2) 设= .P 抵达E点时速度为零,设此时弹簧的弹性势能为p.P由B点运动到E点BE x E的过程中,由动能定理有12mgx sinθ-μmgx cosθ-E p=0-2mv B④E、 F 之间的距离为l 1=4R-2R+ x⑤P抵达 E 点后反弹,从E点运动到 F 点的过程中,由动能定理有E p- mgl1sinθ-μmgl1cosθ=0⑥联立③④⑤⑥式并由题给条件得x=R⑦12E p=5 mgR⑧75(3)设改变后 P 的质量为 m1. D 点与 G 点的水平距离 x1和竖直距离 y1分别为 x1=2R-6R sinθ⑨55y1= R+6R+6R cosθ⑩式中,已应用了过C点的圆轨道半径与竖直方向夹角仍为θ 的事实.设 P 在 D 点的速度为 v D ,由 D 点运动到 G 点的时间为 t . 由平抛运动公式有y 1=1gt 2?2x1= D ?v t联立⑨⑩ ? ? 式得vD=35 ?5 gR设 P 在 C 点速度的大小为 v C . 在 P 由 C 点运动到 D 点的过程中机械能守恒,22 5511 C11D1+ cosθ ? 有 mv = mv+ mg RR2 26 6P 由 E 点运动到 C 点的过程中,由动能定理有12E p - m 1g ( x +5R )sin θ- μm 1g ( x + 5R )cos θ = 2m 1v C ?联立⑦⑧ ? ?? 式得 m 1= 31m123 1[ 答案 ] (1)2gR (2) 5 mgR (3) 5 5gR 3m应用动能定理解题的基本步骤[ 娴熟加强 ]迁徙一 动力学与动能定理的综合应用方法1.(2017 ·宁德市模拟 ) 以下图,一半径为R 的水平圆环绕过圆心的竖直轴转动,圆盘边沿有一质量为m 的滑块 ( 可视为质点 ) ,当圆盘转动的角速度达到某一数值时,滑块从圆盘边沿滑落, 进入一段圆弧轨道AB . 随后滑上以v 0 顺时针匀速转动的传递带,当滑块滑到与传递带左端B 的距离为L / n 时,滑块速度恰巧与传递带速度同样.已知AB 段为一段圆滑的圆弧轨道,轨道半径为r ,圆弧轨道与传递带在B 点水平相切,滑块与圆盘、传递带间的动摩擦因数均为μ,重力加快度为g ,最大静摩擦力等于滑动摩擦力,不计滑块进入轨道 AB和经过B 点时的机械能损失.(1)当圆盘的角速度为多大时,滑块从圆盘上滑落?(2)求轨道 AB的高度.(3)求滑块抵达圆弧轨道的 B 点时对轨道的压力大小.[ 分析 ] (1) 滑块在圆盘上做圆周运动时,静摩擦力充任向心力,依据牛顿第二定律,可得μmg=mω 2Rμg代入数据解得ω=R .(2)滑块在 A 点时的速度 v A=ωR=μgR,设轨道 AB 的高度为 h,滑块抵达 B 点时的速度为 v,下滑过程机械能守恒,12122gh+μgRmgh=2mv-2mv,解得 v=A若滑块滑上传递带时的速度小于传递带速度,则滑块在传递带上遇到向右的滑动摩擦12 1 22v -μgR μL力,做匀加快运动,依据动能定理有μmgL/n=2mv-2mv,则 h=0-n2g若滑块滑上传递带时的速度大于传递带的速度,则滑块遇到向左的滑动摩擦力,做匀减1 1 22-μgRμL速运动,依据动能定理有-2v0μmgL n=2mv-2mv,则 h=2g+n .(3) 在B点,由牛顿第二定律,可得Nv2 F - mg= m r2mv02μmgL解得 F N=mg+r+nr.μg22v -μgR μL v -μgR μL00[答案] (1)R(2)2g-n或2g+n2(3)mg++2μmgLr nr mv0迁徙二动能定理在电场中的应用2.(2017 ·上海市静安区摸底) 以以下图所示,两个带正电的点电荷M和 N,带电量均为Q,固定在圆滑绝缘的水平面上,相距 2L , A 、 O 、 B 是 MN 连线上的三点,且 O 为中点, OA = OBL= 2,一质量为m 、电量为q 的点电荷以初速度v 0 从A 点出发沿MN 连线向N 运动,在运动过程中电荷遇到大小恒定的阻力作用,但速度为零时,阻力也为零, 当它运动到 O 点时,动能为初动能的 n 倍,到 B 点速度恰巧为零, 而后返回来去运动, 直至最后静止.已知静电力恒量为k ,取 O 处电势为零,求:(1) A 点的场强盛小;(2) 阻力的大小; (3) A 点的电势;(4) 电荷在电场中运动的总行程.[分析](1) 由点电荷电场强度公式和电场叠加原理可得:AQQ32kQE = k L 2- k 3L2=9L 2;22(2) 由对称性知, φA = φB ,电荷从 A 到 B 的过程中, 电场力做功为零, 战胜阻力做功为:W =F L ,由动能定理:ff122mv 0- F L = 0- 2mv ,得: F =2ffL(3) 设电荷从 A 到 O 点电场力做功为W ,战胜阻力做功为 1 2W ,F f1 1 21 2由动能定理: W F -W f = nmv 0- mv 02222mv 0得: W F = 4 (2 n - 1)由: W F =q ( φA - φO )W F2mv 0得: φA = = 4 (2 n - 1)qq2mv 0(4) 电荷最后停在 O 点,在全过程中电场力做功为 W F = 4 (2 n - 1) ,电荷在电场中运动的总行程为 s ,则阻力做功为- F f s .12由动能定理: W F -F f s = 0- 2mv 021 21 2mv 0n -1) -=-即: (20 042L mvs2mv解得: s=( n+0.5) L.232kQ mv0 [ 答案 ] (1)9L2(2) 2L2mv0(3) 4q (2 n- 1)(4)( n+ 0.5) L高考题型展望——动能定理与图象联合的问题[ 考点概括 ]动能定理与图象联合的问题1.图象问题剖析的“四步走”2.常有图象所围面积的含义v- t图由公式 x=vt可知, v- t 图线与坐标轴围成的面积表示物体的位移a- t图由公式Δv=at可知,a-t图线与坐标轴围成的面积表示物体速度的变化量-图由公式=可知,-x 图线与坐标轴围成的面积表示力所做的功F x W Fx FP- t 图由公式 W=Pt 可知, P- t 图线与坐标轴围成的面积表示力所做的功[ 典题示例 ](201 7·河北名校结盟 ) 晓宇在研究一辆额定功率为P=20 kW的轿车的性能,他驾驶一轿车在如图甲所示的平直路面上运动,此中轿车与ON段路面间的动摩擦因数比轿车与MO 段路面间的动摩擦因数大.晓宇驾驶轿车保持额定功率以10 m/s 的速度由M向右运动,该轿车从 M向右运动到 N的过程中,经过速度传感器丈量出轿车的速度随时间的变化规律图象如图乙所示,在 t =15 s时图线的切线与横轴平行.已知轿车的质量为m=2 t,轿车在 MO 段、 ON段运动时与路面之间的阻力大小分别保持不变.求.(1)该轿车在 MO段行驶时的阻力大小;(2)该轿车在运动过程中恰巧经过 O点时加快度的大小;(3)该轿车由 O运动到 N的过程中位移的大小.[ 审题指导 ]第一步读题干—提信息题干信息1)驾驶轿车保持额定功率以10 m/s 的速度由向右运动属于恒定功率启动模型.M说明 t =15秒时轿车加快度为零,做匀速运2)在 t =15 s时图线的切线与横轴平行动.5~ 15 秒做加快度减小的变减速运动.3) 图乙4) 由O运动到N的过程中位移的大小注意O到N过程牵引力大小改变.第二步审程序—顺思路[ 分析 ] (1) 轿车在 MO 段运动时,以 10 m/s的速度匀速运动,有F = f , P =F v1111 20×103联立解得 f 1=N = 2000 N.10(2) 轿车在 ON 段保持额定功率不变,由图象可知t = 15 s 时轿车开始做匀速直线运动,此时由力的均衡条件有F 2= f 2, P =F 2v 220×103联立解得 f 2=N = 4000 N5t = 5 s 时轿车经过 O 点,开始做减速运动,有F 1- f 2=ma2解得 a =- 1 m/s轿车经过 O 点时加快度大小为 1 m/s 2.(3) 由动能定理可知Pt -f x = 12 1222mv -2mv21解得 x = 68.75 m.[ 答案 ] (1)2000 N (2)1 m/s 2(3)68.75 m1 机车启动的方式不一样,机车运动的规律就不一样,所以机车启动时, 其功率、速度、加快度、 牵引力等物理量的变化规律也不同样,剖析图象时应注意坐标轴的意义及图象变化所描绘的规律.2 恒定功率下的加快必定不是匀加快,这类加快过程发动机做的功可用W = Pt计算,不可以用W=Fl计算因为 F 为变力.3以恒定牵引力加快时的功率必定不恒定,这类加快过程发动机做的功常用W= Fl计算,不可以用W= Pt计算因为功率P 是变化的.[ 展望题组]1.( 多项选择 )(2017 ·华中师大附中二模) 一质量为 2 kg的物体,在水平恒定拉力的作用下以必定的初速度在粗拙的水平面上做匀速运动,当运动一段时间后,拉力渐渐减小,且当拉力减小到零时,物体恰巧停止运动,右图中给出了拉力随位移变化的关系图象.已知重力加速度g=10 m/s2,由此可知()A.物体与水平面间的动摩擦因数约为0.35B.减速过程中拉力对物体所做的功约为13 JC.匀速运动时的速度约为 6 m/sD.减速运动的时间约为 1.7 s[分析]F- s 图象围成的面积代表拉力 F 做的功,由图知减速阶段F-s 围成面积约13个小格,每个小格 1 J 则约为 13 J ,故 B 选项正确.刚开始匀速,则F=μmg,由图知 F=7 N,则F=0-1 2F=μ== 0.35 ,故 A 选项正确.全程应用动能定理F-0,此中mg Wμmgs2mv W(7 ×4+ 13)J = 41 J,得v≈6 m/s,故 C 正确.因为不是匀减速,没方法求减速运动的时间,故 D错误.[答案]ABC2.(2017 ·湖南五十校联考) 质量为 10 kg 的物体,在变力 F 作用下沿 x 轴做直线运动,力随坐标x 的变化状况如右图所示.物体在= 0 处,速度为 1 m/s ,全部摩擦不计,则物x体运动到 x=16 m处时,速度大小为()A. 2 2 m/s B. 3 m/sC. 4 m/s D.17 m/s[ 分析 ]F- x 图象与坐标轴围成的图形面积表示力 F 做的功,图形位于x 轴上方表示力做正功,位于x 轴下方表示力做负功,面积大小表示功的大小,所以物体运动到x=16 m1 212处时,力 F 对物体做的总功W=40 J,由动能定理,得W=2mv2-2mv1,代入数据,可得v2=3 m/s ,B 正确.[答案]B3.(2017 ·宁夏银川一中第二次考试) 质量为 1 kg 的物体,放在动摩擦因数为0.2 的水平面上,在水平拉力的作用下由静止开始运动,水平拉力做的功W和物体发生的位移s 之间的关系以以下图所示,重力加快度为10 m/s 2,则以下说法正确的选项是()A.AB段加快度大小为 3 m/s B.OA段加快度大小为 5 m/s 2 2C.s=9 m 时速度大小为32 m/sD.s=3 m 时速度大小为22 m/s[ 分析 ] 剖析可知W-s图线的斜率表示拉力的大小,由W- s 图象,可知 F OA=5 N, F AB=2 N ,而物体遇到的摩擦力为F f=2 N,故物体在 OA 段加快,由牛顿第二定律,可知F OA- f =,故a = 3 m/s2,而在段物体做匀速运动,选项A、 B 错误.在段,依据动能F ma AB OA定理,有-12v A=3 2 m/s,故可知选项 C 正确, D 错误.=A,解得Wμmgs2mv[答案]C4.泥石流是在雨季因为暴雨、洪水将含有沙石且柔软的土质山体经饱和稀释后形成的大水.泥石流流动的全过程固然只有很短时间,但因为其高速行进,拥有强盛的能量,因此损坏性极大.某课题小组对泥石流的威力进行了模拟研究,他们设计了如图甲的模型:在水平川面上搁置一个质量为m=4 kg的物体,让其在随位移均匀减小的水平推力作用下从静止开始运动,推力 F 随位移变化如图乙所示,已知物体与地面之间的动摩擦因数为μ=0.5,g=10 m/s2.则:(1)物体在运动过程中的最大加快度为多少?(2)在距出发点多远处,物体的速度达到最大?(3)物体在水平面上运动的最大位移是多少?[ 分析 ] (1) 当推力F最大时,加快度最大,由牛顿第二定律,得:F m-μmg= ma可解得: a m=15 m/s2.(2) 由图象可知:F随x变化的函数方程为F=80-20x速度最大时,协力为0,即F=μmg所以 x=3 m.(3) 位移最大时,末速度必定为0由动能定理可得:W F-μmgx=0由图象可知,力 F 做的功为11W F=2F m x m=2×80×4 J=160 J所以x=8 m.[答案](1)15 m/s2(2)3 m(3)8 m。
功和能开心自测题一 :如图所示,演员正在进行杂技表演。
由图可估算出他将一只鸡蛋抛出的过程中对鸡蛋所做的功最接近于( )A .0.3JB .3JC .30JD .300J题二:一蹦极运动员身系弹性蹦极绳从水面上方的高台下落,到最低点时距水面还有数米距离。
假定空气阻力可忽略,运动员可视为质点,下列说法正确的是( )A. 运动员到达最低点前重力势能始终减小B. 蹦极绳张紧后的下落过程中,弹性力做负功,弹性势能增加C. 蹦极过程中,运动员、地球和蹦极绳所组成的系统机械能守恒D. 蹦极过程中,重力势能的改变与重力势能零点的选取有关题三:如图,一长为的轻杆一端固定在光滑铰链上,另一端固定一质量为的小球。
一水平向右的拉力作用于杆的中点,使杆以角速度匀速转动,当杆与水平方向成60°时,拉力的功率为( )A .B . 2mgL ωC .12mgL ωD . 6mgL ω 考点梳理与金题精讲功W=Flcoα平均功率瞬时功率P=Fv cosα功是能量转化的量度W G=-ΔE pW弹=-ΔE p弹W总=ΔE kW非=ΔE机一、功(1)一个物体受到力的作用,如果在力的方向上发生一段位移,这个力就对物体做了功。
做功的两个不可缺少的因素是:作用在物体上的力和物体在力的方向上发生的位移。
(2)力对物体所做的功,等于力的大小、位移的大小、力与位移夹角的余弦这三者的乘积。
功的计算公式,功的单位是焦耳,符号J,功是标量。
(3)功有正负,其正负由cosα决定。
当0°≤α<90°时,力对物体做正功;当90°<α≤180°时,力对物体做负功(通常说成物体克服这个力做功);当α= 90°时,力对物体不做功。
题四:放在光滑水平面上的静止物体,在水平恒力F1的作用下,移动了距离l,如果拉力改为和水平面成30º的恒力F2,移动的距离为2l,已知拉力F1和F2对物体所做的功相等,则F1和F2的大小的比为()A.2:1 B.2:1 C.3:1 D.3:1二、功率(1)功率是表示力做功快慢程度的物理量,功跟完成这些功所用时间的比叫做功率。
专题 32 动量与能量的综合应用一、两物体的碰撞问题两物体发生正碰(m 1,v 1;m 2,v 2→m 1,v 3;m 2,v 4),总能量损失 ΔE 动量守恒:m 1v 1+m 2v 2=m 1v 3+m 2v 4,能量守恒: m v 2 1 1 2 + m v 2 2 2 2=m v 2 1 3 2 + m v 2 2 4 2 +ΔE 规定总动量 p =m 1v 1+m 2v 2,几何平均质量 m = m 1m 2 ,总质量 M =m1+m 2可得 v 3=m pm m (v v )2M E22112m M1,v 4=m p m m (v v )2ME22212m M21.若 ΔE =0,损失能量最小。
当 m 1=m 2=m 时,可得 v 3=v 2,v 4=v 1(另解 v 3=v 1,v 4=v 2舍去),即发生速度交换。
故 ΔE =0的碰撞称为弹性碰撞,ΔE >0的碰撞称为非弹性碰撞。
m (v v )m m (v v ) 2 22E121 2 1 22.若 ΔE 尽量大,取最大值时,有 2M 2(mm )12。
此时可得 v 3=v 4= p M,碰后两物体共同运动。
故 ΔE 最大的碰撞称为完全非弹性碰撞。
二、弹簧连接体的“碰撞”光滑水平面上,若将轻弹簧连接体系统的动能损失(等于弹簧的弹性势能)视为一般碰撞问题中的 ΔE ,则弹簧连接体的运动可视为碰撞模型。
1.弹簧处于原长状态时,可视为弹性碰撞。
2.弹簧压缩最短或拉伸最长时,弹簧弹性势能最大,即动能损失最大,对应完全非弹性 碰撞。
在规定了正方向的情况下,求出的两组速度解分别对应弹簧最短和最长的情况。
3.弹簧连接体问题一般会得到两组速度解,且均有实际物理意义,故需要联系具体情况 保留或舍去。
三、水平方向的动量守恒动量为矢量,故动量守恒定律也具备矢量性;系统在某一方向上受力平衡,则在该方向上的分动量之和不变;一般系统在竖直方向始终受到重力作用,故只在水平方向动量守恒。
专题二 能量与动量 第一讲功和功率__动能定理1.[考查功的大小计算] 如图所示,质量m =1 kg 、长L =0.8 m 的均匀矩形薄板静止在水平桌面上,其右端与桌子边缘相平,板与桌面间的动摩擦因数为μ=0.4。
现用F =5 N 的水平力向右推薄板,使它翻下桌子,力F 做的功至少为(g 取10 m/s 2)( )A .1 JB .1.6 JC .2 JD .4 J解析:选B 在薄板没有翻转之前,薄板与水平面之间的摩擦力f =μmg =4 N 。
力F做的功用来克服摩擦力消耗的能量,而在这个过程中薄板只需移动的距离为L 2,则做的功至少为W =f ×L 2=1.6 J ,所以B 正确。
2.[考查平均功率与瞬时功率的分析与计算]如图所示,某质点运动的v -t 图像为正弦曲线。
从图像可以判断( )A .质点做曲线运动B .在t 1时刻,合外力的功率最大C .在t 2~t 3时间内,合外力做负功D .在0~t 1和t 2~t 3时间内,合外力的平均功率相等解析:选D 质点运动的v -t 图像描述的是质点的直线运动,选项A 错误;在t 1时刻,加速度为零,合外力为零,合外力功率的大小为零,选项B 错误;由题图可知,在t 2~t 3时间内,物体的速度增大,动能增大,由动能定理可知,合外力做正功,故C 错误;在0~t 1和t 2~t 3时间内,动能的变化量相同,故合外力的功相等,则合外力的平均功率相等,选项D 正确。
3.[考查机车的启动与牵引问题][多选]我国高铁技术处于世界领先水平。
和谐号动车组是由动车和拖车编组而成,提供动力的车厢叫动车,不提供动力的车厢叫拖车。
假设动车组各车厢质量均相等,动车的额定功率都相同,动车组在水平直轨道上运行过程中阻力与车重成正比。
某列车组由8节车厢组成,其中第1、5节车厢为动车,其余为拖车,则该动车组( )A .启动时乘客受到车厢作用力的方向与车运动的方向相反B .做匀加速运动时,第5、6节与第6、7节车厢间的作用力之比为3∶2C .进站时从关闭发动机到停下来滑行的距离与关闭发动机时的速度成正比D .与改为4节动车带4节拖车的动车组最大速度之比为1∶2解析:选BD 启动时,乘客的加速度向前,车厢对人的作用力方向向前,与车运动的方向相同,选项A 错误。
专题二 功 和 能考情分析备考策略1.本专题主要利用功能的观点解决物体、带电体、带电粒子、导体棒在电场或磁场中的运动问题。
本部分命题情景新,联系实际密切,综合性强,是高考的压轴题。
2.高考对本专题考查的重点有以下几个方面:重力、摩擦力、电场力和安培力做功的特点和求解;与功、功率相关问题的分析与计算;几个重要的功能关系的应用;动能定理的综合应用;综合应用机械能守恒定律和能量守恒定律等。
1.深刻理解定义式、公式及关系式中各个物理量的准确含义;准确理解与记忆机械能守恒定律的条件,灵活运用守恒的观点处理典型的、生活中的热点情景及科技运用中出现的与机械能相关的问题。
2.深刻理解功能关系,抓住两种命题情景突破:一是综合应用动能定理、机械能守恒定律和能量守恒定律,结合动力学方法解决多运动过程问题;二是应用动能定理和能量守恒定律解决电场中带电体运动或电磁感应问题。
第1讲 功 功率和动能定理考向一 功和功率的计算 (选择题)1.恒力做功的公式W =Fl cos α(通过F 与l 间的夹角α判断F 是否做功及做功的正、负)。
2.功率(1)平均功率:P ==F cos α。
Wt v (2)瞬时功率:P =F v cos α(α为F 与v 的夹角)。
(2014·全国新课标Ⅱ)一物体静止在粗糙水平地面上。
现用一大小为F 1的水平拉[例1]力拉动物体,经过一段时间后其速度变为v 。
若将水平拉力的大小改为F 2,物体从静止开始经过同样的时间后速度变为2v 。
对于上述两个过程,用WF 1、WF 2分别表示拉力F 1、F 2所做的功,W f 1、W f 2分别表示前后两次克服摩擦力所做的功,则( )A .WF 2>4WF 1, W f 2>2W f 1B .WF 2>4WF 1, W f 2=2W f 1C .WF 2<4WF 1, W f 2=2W f 1D .WF 2<4WF 1, W f 2<2W f 1[思路探究](1)两次物体的加速度、位移存在什么关系?提示:因为前后两次t 相等,由a =,x =t 知,a 1∶a 2=1∶2,x 1∶x 2=1∶2。
功和能1.(2018·全国卷I ·T18) 如图,abc是竖直面内的光滑固定轨道,ab水平,长度为2R;bc是半径为R的四分之一圆弧,与ab相切于b点。
一质量为m 的小球,始终受到与重力大小相等的水平外力的作用,自a点处从静止开始向右运动。
重力加速度大小为g。
小球从a点开始运动到其轨迹最高点,机械能的增量为()A.2mgRB.4mgRC.5mgRD.6mgR【解题指南】解答本题应注意以下三点:(1)小球由a到c的过程,由动能定理求出小球在c点的速度大小。
(2)小球离开c点后水平方向和竖直方向的加速度大小均为g。
(3)小球轨迹最高点的竖直方向速度为零。
【解析】选C。
设小球运动到c点的速度大小为v c,小球由a到c的过程,由动能定理得:F·3R-mgR=12m2cv,又F=mg,解得:2c v=4gR。
小球离开c点后,在水平方向做初速度为零的匀加速直线运动,竖直方向在重力作用下做匀减速直线运动,整个过程运动轨迹如图所示,由牛顿第二定律可知,小球离开c点后水平方向和竖直方向的加速度大小均为g,则由竖直方向的运动可知,小球从离开c点到其轨迹最高点所需的时间t=cvg,小球在水平方向的位移为x=12gt2,解得x=2R。
小球从a点开始运动到其轨迹最高点的过程中,水平方向的位移大小为x+3R=5R,则小球机械能的增加量ΔE=F·5R=5mgR。
【题后反思】此题将运动的合成与分解、牛顿运动定律和动能定理有机融合,难度较大,能力要求较高。
2.(2018·全国卷II ·T14)如图,某同学用绳子拉动木箱,使它从静止开始沿粗糙水平路面运动至具有某一速度。
木箱获得的动能一定()A.小于拉力所做的功B.等于拉力所做的功C.等于克服摩擦力所做的功D.大于克服摩擦力所做的功【解析】选A。
根据动能定理可得:W F+W f=E k,又知道摩擦力做负功,即W f<0,所以木箱获得的动能一定小于拉力所做的功,选项A正确、B错误;根据W F+W f=E k,无法确定E k与-W f的大小关系,选项C、D错误。