PQ分解潮流算法简介
- 格式:ppt
- 大小:475.50 KB
- 文档页数:16
PQ分解法是一种用于电力系统潮流计算的算法,它将节点功率方程中的有功功率(P)和无功功率(Q)分离,从而简化了计算过程。
以下是PQ分解法计算潮流的基本步骤:
1. 建立节点功率方程:对于电力系统的每个节点,根据系统的拓扑结构和参数,建立节点功率方程。
这些方程通常表示为电压幅值和相角的函数。
2. 初始潮流假设:为每个节点的电压幅值和相角设置初始值。
这些初始值可以是基于系统的额定值或通过预计算得到的。
3. PQ分解:将节点功率方程中的有功功率(P)和无功功率(Q)分离。
这通常涉及到对节点功率方程进行线性化处理,以便将P和Q表示为电压幅值和相角的函数。
4. 迭代求解:使用迭代方法(如牛顿-拉夫森迭代法)来逐步求解节点电压幅值和相角。
在每次迭代中,都会更新P和Q的值,并重新计算节点电压。
5. 收敛判断:判断当前迭代是否收敛,即节点电压的变化是否小于预定的阈值。
如果未达到收敛条件,则继续进行迭代。
6. 输出结果:当迭代收敛后,输出每个节点的电压幅值和相角,以及系统的潮流分布情况。
7. 后处理:根据需要,对计算结果进行后处理,例如计算线路的功率损耗、检查系统的稳定性等。
PQ分解法相比于其他潮流计算方法(如牛顿-拉夫森法)的主要优势在于它能够减少计算量,特别是在处理大型电力系统时。
这是因为PQ分解法将复杂的节点功率方程分解为两个独立的方程组,分别求解有功功率和无功功率,从而降低了计算复杂性。
一、PQ 分解法的原理P —Q 分解法是牛顿-拉夫逊法潮流计算的一种简化方法。
P-Q 分解法利用了电力系统的一些特有的运行特性,对牛顿-拉夫逊法做了简化,以改进和提高计算速度。
的基本思想是根据电力系统实际运行特点:通常网络上的电抗远大于电阻,则系统母线电压幅值的微小变化对用功功率的改变影响很小。
同样,母线电压相角的的改变对无功功率的影响较小.因此,节点功率方程在用极坐标形式表示时。
它的修正方程式可简化为:00P H Q L U U θ∆∆⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥∆∆⎣⎦⎣⎦⎣⎦将P 、Q 分开来迭代计算,因此大大地减少了计算工作量.但是H 、L 在迭代过程中仍将不断变化,而且又都是不对称矩阵。
对牛顿法的进一步简化。
为把上式中的系数矩阵简化成迭代过程中不变的对称矩阵。
在一般情况下线路两端的电压相角ij θ是不大的,因此可以认为:cos 1sin ij ij ijijG B θθ≈2ii ii Q U B考虑到上述关系,可以得到:ij i ij j ij i ij jH U B U L U B U ==节点的功率增量为:11(cos sin )(sin cos )ni is i j ij ij ij ij j ni is i j ij ij ij ij j P P U U G B Q Q U U G B θθθθ==∆=-+∆=--∑∑P —Q 分解法的特点:以一个n-1阶和一个n —m —1阶线性方程组代替原有的2n —m —1阶线性方程组;修正方程的系数矩阵B'和B”为对称常数矩阵,且在迭代过程中保持不变;P —Q 分解法具有线性收敛特性,与牛顿—拉夫逊法相比,当收敛到同样的精度时需要的迭代次数较多。
二、程序说明1.数据说明Branch1。
txt:支路参数矩阵第1列为支路的首端编号;第2列为支路的末端编号(首端编号小于末端编号);第3列为之路的阻抗;第4为支路的对地容抗;第5列为支路的变比;第6列为折算到那一侧的标志Branch2。
第四节 PQ 分解法潮流计算一 、PQ 分解法的基本方程式60年代以来N —R 法曾经是潮流计算中应用比较普遍的方法,但随着网络规模的扩大(从计算几十个节点增加到几百个甚至上千个节点)以及计算机从离线计算向在线计算的发展,N —R 法在内存需要量及计算速度方面越来越不 适应要求。
70年代中期出现的快速分解法比较成功的解决了上述问题,使潮流计算在N —R 法的基础上向前迈进了一大步,成为取代N —R 法的算法之一。
快速分解法(又称P —Q 分解法)是从简化牛顿法极坐标形式计算潮流程序的基础上提出来的。
它的基本思想是根据电力系统实际运行特点:通常网络上的电抗远大于电阻值 ,则系统母线电压副值的微小变化V ∆对母线有功功率的改变P ∆影响很小。
同样,母线电压相角的少许改变θ∆,也不会引起母线无功功率的明显改变Q ∆。
因此,节点功率方程在用极坐标形式表示时,它的修正方程式可简化为:⎥⎦⎤⎢⎣⎡∆∆⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡∆∆V V L H Q P /00θ (4—19) 这就是把2(n —1)阶的线性方程组变成了两个n —1阶的线性方程组,将P 和Q 分开来进行迭代计算,因而大大地减少了计算工作量。
但是,H ,L 在迭代过程中仍然在不断的变化,而且又都是不对称的矩阵。
对牛顿法的进一步简化(也是最关键的一步),即把(4—19)中的系数矩阵简化为在迭代过程中不变的对称矩阵。
在一般情况下,线路两端电压的相角ij θ是不大的(不超过10○~20○)。
因此,可以认为:⎭⎬⎫<<≈ij ij ij ij B G θθsin 1cos (4—20)此外,与系统各节点无功功率相应的导纳B LDi 远远小于该节点自导纳的虚部,即 ii iiLDi B V Q B <<=2 因而 ii i i B V Q 2<< (4—21) 考虑到以上关系,式(4—19)的系数矩阵中的各元素可表示为: ij j i ij B V V H = (i,j=1,2,………,n-1) (4—22)ij j i ij B V V L = (i,j=1,2,……………,m ) (4—23)而系数矩阵H 和L 则可以分别写成:⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=------------11,1122,1111,1111,222222121211,1121211111n n n n n n n n n n n n V B V V B V V B V V B V V B V V B V V B V V B V V B V H =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--------1211,12,11,11,222211,11211121n n n n n n n n V V V B B B B B B B B B V V V =11D D BV V (4—24)⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=m mm m m m m m m m m m m V B V V B V V B V V B V V B V V B V V B V V B V V B V L 22122222212121121211111 =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡m mm m m m m m V V V B B B B B B B B B V V V2121222211121121=22''D D V B V (4—25) 将(4—24)和(4—25)式代入(4—19)中,得到[][][][][]θ∆'-=∆11D D V B V P[][][][]V B V Q D ∆-=∆''2用[]11-D V 和[]12-D V 分别左乘以上两式便得:[][][][][]θ∆-=∆-111'D D V B P V (4—26)[][][][]V B Q V D ∆-=∆-''12 (4—27)这就是简化了的修正方程式,它们也可展开写成:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡∆∆∆⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡∆∆∆----------1122111,12,11,11,222211,11211112211n n n n n n n n n n V V V B B B B B B B B B V P V P V P θθθ(4—28)⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡∆∆∆⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡∆∆∆m mm m m m m m mV V V B B B B B B B B B V Q V Q V Q 212122221112112211 (4—29) 在这两个修正方程式中系数矩阵元素就是系统导纳矩阵的虚部,因而系数矩阵是对称矩阵,且在迭代过程中保持不变。
ieee30pq分解法潮流计算潮流计算是电力系统中十分重要的一项分析工作,用于计算电力系统中各个节点的电压幅值和相角,以及各个支路的电流大小和相角。
这对于电力系统的运行和调度具有重要意义。
IEEE30PQ系统是一个经典的潮流计算案例,该系统有30个节点,其中包括负荷节点(PQ节点)和发电机节点(PV节点)。
以下将详细介绍IEEE30PQ系统的潮流计算方法。
一、潮流计算预备工作在进行潮流计算之前,需要对电力系统进行建模。
首先,将各个节点连接成一个拓扑结构,构成潮流计算图。
其次,确定系统中的潮流方向和节点类型。
IEEE30PQ系统中,负荷节点为PQ节点,发电机节点为PV节点。
同时,还需要确定各个节点的初始电压值和相角。
二、节点功率方程根据潮流计算的目标,可以得到节点功率方程。
在IEEE30PQ系统中,各个节点的功率方程可以表示为:节点m是PQ节点:Pm = Vm * ∑(Vm * Gkm * cos(θm - θk) + Vm * Bkm * sin(θm- θk))Qm = -Vm * ∑(Vm * Gkm * sin(θm - θk) - Vm * Bkm * cos(θm - θk))节点m是PV节点:Pm = Vm * ∑(Vm * Gkm * cos(θm - θk) + Vm * Bkm * sin(θm- θk))其中,Pm和Qm分别表示节点m的有功功率和无功功率,Vm和θm分别表示节点m的电压和相角,Gkm和Bkm分别表示节点m和节点k之间的导纳。
三、雅可比矩阵为了求解节点功率方程,需要构建雅可比矩阵。
雅可比矩阵是由节点功率方程对电压和相角的一阶导数构成的矩阵。
在IEEE30PQ系统中,节点功率方程包含有功和无功两种功率,因此雅可比矩阵也是一个2n×2n的矩阵。
其中,n为节点的数量。
四、潮流计算算法潮流计算可以采用迭代的方法,使节点功率方程逐步趋近于收敛。
其中,最常用的潮流计算算法是牛顿-拉夫逊法(Newton-Raphson)和高斯-赛德尔法(Gauss-Seidel)法。
ieee30pq分解法潮流计算
IEEE 30节点潮流计算是一种用于分析电力系统中节点电压和功率流分布的方法。
其中,P表示有功功率,Q表示无功功率。
以下是IEEE 30节点潮流计算的基本步骤:
确定系统拓扑结构:确定电力系统中各个节点的连接关系和线路参数。
假设初始值:为各个节点的电压和相角设定初始值。
建立雅可比矩阵:根据系统拓扑结构和设备参数,建立雅可比矩阵。
雅可比矩阵描述了电力系统中各个节点之间的关系。
计算注入导纳:根据系统参数和初始值,计算每个节点注入导纳。
注入导纳表示了每个节点产生或者吸收的有功和无功能量。
进行牛顿-拉夫逊法迭代:利用牛顿-拉夫逊法对每个节点进行迭代计算,直到满足收敛条件为止。
迭代过程中更新每个节点的电压幅值和相角。
计算线路有功/无功损耗:根据最终收敛后的结果,计算线路上的有功/无功损耗。
分析结果并进行验证:对计算结果进行分析和验证,如比较节点电压是否在允许范围内、检查功率平衡等。
通过以上步骤,可以得到IEEE 30节点电力系统中各个节点的电压和功率流分布情况,用于系统运行和规划的分析。
电力系统潮流分析与计算设计(P Q分解法)电力系统潮流分析与计算设计(p-q分解法)摘要潮流排序就是研究电力系统的一种最基本和最重要的排序。
最初,电力系统潮流排序就是通过人工手算的,后来为了适应环境电力系统日益发展的须要,使用了交流排序台。
随着电子数字计算机的发生,1956年ward等人基本建设了实际可取的计算机潮流排序程序。
这样,就为日趋繁杂的大规模电力系统提供更多了极其有力的排序手段。
经过几十年的时间,电力系统潮流排序已经发展得十分明朗。
潮流排序就是研究电力系统稳态运转情况的一种排序,就是根据取值的运转条件及系统接线情况确认整个电力系统各个部分的运转状态,例如各母线的电压、各元件中穿过的功率、系统的功率损耗等等。
电力系统潮流排序就是排序系统动态平衡和静态平衡的基础。
在电力系统规划设计和现有电力系统运转方式的研究中,都须要利用电力系统潮流排序去定量的比较供电方案或运转方式的合理性、可靠性和经济性。
电力系统潮流计算分为离线计算和在线计算,离线计算主要用于系统规划设计、安排系统的运行方式,在线计算则用于运行中系统的实时监测和实时控制。
两种计算的原理在本质上是相同的。
实际电力系统的潮流技术主要使用pq水解法。
1974年,由scottb.在文献(@)中首次提出pq分解法,也叫快速解耦法(fastdecoupledloadflow,简写为fdlf)。
本设计就是使用pq水解法排序电力系统潮流的。
关键词:电力系统潮流排序pq水解法第一章概论1.1详述电力系统潮流计算是研究电力系统稳态运行情况的一种计算,它是根据给定的运行条件及系统接线情况确定整个电力系统各个部分的运行状态,如各母线的电压、各元件中流过的功率、系统的功率损耗等等。
电力系统潮流计算是计算系统动态稳定和静态稳定的基础。
在电力系统规划设计和现有电力系统运行方式的研究中,都需要利用电力系统潮流计算来定量的比较供电方案或运行方式的合理性、可靠性和经济性。
第四节 PQ 分解法潮流计算一 、PQ 分解法的基本方程式60年代以来N —R 法曾经是潮流计算中应用比较普遍的方法,但随着网络规模的扩大(从计算几十个节点增加到几百个甚至上千个节点)以及计算机从离线计算向在线计算的发展,N —R 法在内存需要量及计算速度方面越来越不 适应要求。
70年代中期出现的快速分解法比较成功的解决了上述问题,使潮流计算在N —R 法的基础上向前迈进了一大步,成为取代N —R 法的算法之一。
快速分解法(又称P —Q 分解法)是从简化牛顿法极坐标形式计算潮流程序的基础上提出来的。
它的基本思想是根据电力系统实际运行特点:通常网络上的电抗远大于电阻值 ,则系统母线电压副值的微小变化V ∆对母线有功功率的改变P ∆影响很小。
同样,母线电压相角的少许改变θ∆,也不会引起母线无功功率的明显改变Q ∆。
因此,节点功率方程在用极坐标形式表示时,它的修正方程式可简化为:⎥⎦⎤⎢⎣⎡∆∆⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡∆∆V V L H Q P /00θ (4—19) 这就是把2(n —1)阶的线性方程组变成了两个n —1阶的线性方程组,将P 和Q 分开来进行迭代计算,因而大大地减少了计算工作量。
但是,H ,L 在迭代过程中仍然在不断的变化,而且又都是不对称的矩阵。
对牛顿法的进一步简化(也是最关键的一步),即把(4—19)中的系数矩阵简化为在迭代过程中不变的对称矩阵。
在一般情况下,线路两端电压的相角ij θ是不大的(不超过10○~20○)。
因此,可以认为:⎭⎬⎫<<≈ij ij ij ij B G θθsin 1cos (4—20)此外,与系统各节点无功功率相应的导纳B LDi 远远小于该节点自导纳的虚部,即 ii iiLDi B V Q B <<=2 因而 ii i i B V Q 2<< (4—21) 考虑到以上关系,式(4—19)的系数矩阵中的各元素可表示为: ij j i ij B V V H = (i,j=1,2,………,n-1) (4—22)ij j i ij B V V L = (i,j=1,2,……………,m ) (4—23)而系数矩阵H 和L 则可以分别写成:⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=------------11,1122,1111,1111,222222121211,1121211111n n n n n n n n n n n n V B V V B V V B V V B V V B V V B V V B V V B V V B V H =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--------1211,12,11,11,222211,11211121n n n n n n n n V V V B B B B B B B B B V V V =11D D BV V (4—24)⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=m mm m m m m m m m m m m V B V V B V V B V V B V V B V V B V V B V V B V V B V L 22122222212121121211111 =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡m mm m m m m m V V V B B B B B B B B B V V V2121222211121121=22''D D V B V (4—25) 将(4—24)和(4—25)式代入(4—19)中,得到[][][][][]θ∆'-=∆11D D V B V P[][][][]V B V Q D ∆-=∆''2用[]11-D V 和[]12-D V 分别左乘以上两式便得:[][][][][]θ∆-=∆-111'D D V B P V (4—26)[][][][]V B Q V D ∆-=∆-''12 (4—27)这就是简化了的修正方程式,它们也可展开写成:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡∆∆∆⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡∆∆∆----------1122111,12,11,11,222211,11211112211n n n n n n n n n n V V V B B B B B B B B B V P V P V P θθθ(4—28)⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡∆∆∆⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡∆∆∆m mm m m m m m mV V V B B B B B B B B B V Q V Q V Q 212122221112112211 (4—29) 在这两个修正方程式中系数矩阵元素就是系统导纳矩阵的虚部,因而系数矩阵是对称矩阵,且在迭代过程中保持不变。