解直角三角形练习题(一)及答案
- 格式:doc
- 大小:534.00 KB
- 文档页数:4
第一章 解直角三角形(一)班级 姓名 学号一、选择题(每小题3分,共30分。
)1.(2013·天津中考)tan 60︒ 的值等于( )A.1B.2C.3D.2 2.(2013·重庆中考)计算6tan 452cos 60︒-︒ 的结果是( ) A.43 B.4C.53D.53.(2013·浙江温州中考)如图,在ABC △中,90,5,3,∠C AB BC =︒== 则sin A 的值是( ) A.34B.34C.35D.454.在ABC △中,90C =︒∠,如果2,1AB BC ==,那么sin A 的值是( ) A.21 B.55C.33 D.23 5.在ABC △中,90C =︒∠,5,3,AB BC ==则sin B = ( )A. 34B. 53 C. 43 D. 456.已知在Rt ABC △中,390sin 5C A ∠==°,,则tan B 的值为( ) A.43 B.45C.54D.347.如图,一个小球由地面沿着坡度12∶i =的坡面向上前进了10 m ,此时小球距离地面的高度为( )A.5 mB.25 mC.45 mD.310m 8.已知直角三角形两直角边长之和为7,面积为6,则斜边长为( )阶段性学业评价试卷九年级(下)数学 第7题图第3题图ACBA. 5B.37C. 7D. 389.如图,已知:45°<∠A <90°,则下列各式成立的是( ) A.sin cos A A = B.sin cos A>A C.sin tan A>AD.sin cos A<A10.如图,在菱形ABCD 中,⊥DE AB ,3cos 5A =,2BE =,则tan ∠DBE 的值是( ) A .12B .2C .52 D .55二、填空题(每题3分,共24分)11.(2013·广东中考)在Rt △ABC 中, 90,3,4=︒==ABC AB BC ∠,则sin A =______. 12.(2013·陕西中考)比较大小:8cos 31︒35.(填“>”“=”或“<”)13.如图,小兰想测量南塔的高度,她在A 处仰望塔顶,测得仰角为30°,再往塔的方向前进50 m 至B 处,测得仰角为60°,那么塔高约为 _________ m.(小兰身高忽略不计,31732.≈)14.已知等腰三角形的腰长为2,腰上的高为1,则它的底角等于________.15.大坝的横断面是梯形,坝内斜坡的坡度,坝外斜坡的坡度,则两个坡角的和为 .16.如图,△ABC 的顶点都在方格纸的格点上,则sin A =_ .17.如图,在四边形ABCD 中,609069=︒==︒==A B D BC ,CD ∠,∠∠,,则AB =__________. 18.如图,在△ABC 中,已知324530,∠,∠AB B C ==︒=︒,则AC =________. 三、解答题 (本题共有7小题,共46分)ABC第9题图ACB第18题19.(5分)计算:(1)()42460sin 45cos 22+- ; (2)2330tan 3)2(0-+--.20.(5分)在Rt △ABC 中,∠C =900,若12sin 13A =,求cosA, sinB, cosB.21.(6分)等腰梯形的一个底角的余弦值是223,腰长是6,上底是22求下底及面积22.(6分)某工程队修建一条高速公路,在某座山处要打通一条东西走向的隧道AB(如图),为了预算造价,应测出隧道AB 的长,为此,在A 的正南方向1500米的C 处,测得∠ACB=620,求隧道AB 的长.(精确到1米,供选用的数:sin620=0.8829,cos620=0.4695,tan620=1.881,cot620=0.5317)23.(6分)已知tanA=2,求AA AA cos 5sin 4cos sin 2+-的值。
《解直角三角形》整章测试【1】一、选择题(每小题3分,共24分)1.在Rt △ABC 中, ∠C=90︒,AB=4,AC=1,则cos A 的值是( )(A )154(B)14(C)15 (D)42.计算:2)130(tan -︒=( )(A)331-(B)13- (C)133-(D )1-3 3.在ABC ∆中,,A B ∠∠都是锐角,且sinA =21, cosB =23,则ABC ∆的形状( ) (A )直角三角形(B )钝角三角形 (C )锐角三角形 (D )不能确定4.如图,在Rt ABC △中,3tan 2B =,23BC =,则AC 等于( )(A )3(B )4(C )43(D )65.如图,小颖利用有一个锐角是30°的三角板测量一棵树的高度,已知她与树之间的水平距离BE 为5m ,AB 为1.5m (即小颖的 眼睛距地面的距离),那么这棵树高是( ) (A)(53332+)m (B)(3532+)m (C)533m (D)4m 6.因为1sin 302=,1sin 2102=-, 所以sin 210sin(18030)sin 30=+=-;因为2sin 452=,2sin 2252=-,所以sin 225sin(18045)sin 45=+=-,由此猜想,推理知:一般地当α为锐角时有sin(180)sin αα+=-,由此可知:sin 240=( )(A )12-(B)22-(C)32- (D)3-7.如图,客轮在海上以30km/h 的速度由B 向C 航行,在B 处测得 灯塔A 的方位角为北偏东80,测得C 处的方位角为南偏东25,航 行1小时后到达C 处,在C 处测得A 的方位角为北偏东20,则C 到A 的距离是( )(A)156km(B)152km (C)15(62)+km(D)5(632)+km北东ABC8.如图,在Rt ABC △中,906cm A AC ∠==,,8cm AB =,把AB 边翻折,使AB 边落在BC 边上,点A 落在点E 处,折痕为BD ,则sin DBE ∠的值为()(A)13(B)310(C)37373(D)1010二、填空题(每小题3分,共24分) 9.计算sin 60tan 45cos30-的值是.10. 用“>”或“<”号填空:1sin 50cos 402-0.(可用计算器计算) 11.在Rt ABC △中,90C ∠=,:3:4BC AC =,则cos A =. 12.如图,一架梯子斜靠在墙上,若梯子到墙的距离AC =3米,3cos 4BAC ∠=,则梯子AB 的长度为米.13.如图,一轮船由南向北航行到O 处时,发现与轮船相距40海里的A 岛在北偏东33方向.已知A 岛周围20海里水域有暗礁, 如果不改变航向,轮船(填“有”或“没有”)触暗礁 的危险.(可使用科学计算器)14. 如图,在菱形ABCD 中,DE ⊥AB ,垂足为E ,DE=6cm ,3sin 5A =,则菱形ABCD 的面积是__________2cm . 15.根据指令[s,A](s ≥0,0°≤A <360°)机器人在平面上能完成如下动作:先在原地逆时针旋转角度A ,再朝其面对的方向沿直线行走距离s .现在机器人在平面直角坐标系的原点,且面对y 轴的负方向,为使其移动到点(-3,3),应下的指令是.16. 有古诗“葭生池中”今有方池一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐,问: 水深、葭长各几何?(1丈=10尺)回答:水深,葭长. 17.(本题8分)计算:242(2cos 45sin 60)4︒-︒+. 18.(本题10分)某校数学兴趣小组在测量一座池塘边上A B ,两点间的距离时用了以下三种测量方法,如下图所示.图中a b c ,,表示长度,β表示角度.请你分别求出AB 的长度(用含有a b c β,,,字母的式子表示).(1)______AB = (2)______AB = (3)______AB =19.(本题10分)小强家有一块三角形菜地,量得两边长分别为40m ,50m ,第三边上的高为30m ,请你帮小强计算这块菜地的面积(结果保留根号). 20.(本题12分)海中有一个小岛P ,它的周围18海里内有暗礁,渔船跟踪鱼群由西向东航行,在点A 测得小岛P 在北偏东60°方向上,航行12海里到达B 点,这时测得小岛P 在北偏东45°方向上.如果渔船不改变航线继续向东航行,有没有触礁危险?请说明理由. (1A C B a b(2AC B a β (3AC B aD Ec b A BCD EA BC21.(本题12分)如图,AC是某市环城路的一段,AE,BF,CD都是南北方向的街道,其与环城路AC的交叉路口分别是A,B,C.经测量花卉世界D位于点A的北偏东45°方向、点B的北偏东30°方向上,AB=2km,∠DAC=15°.(1)求B,D之间的距离;(2)求C,D之间的距离.四、附加题(本题20分)22.现代家居设计的“推拉式”钢窗,运用了轨道滑行技术,纱窗装卸时利用了平行四边形的不稳定性,操作步骤如下:(1)将矩形纱窗转化成平行四边形纱窗后,纱窗上边框嵌入窗框的上轨道槽(如图1).(2)将平行四边形纱窗的下边框对准窗框的下轨道槽(如图2).(3)将平行四边形纱窗还原成矩形纱窗,同时下边框嵌入窗框的下轨道槽(如图3).在装卸纱窗的过程中,如图所示α∠的值不得小于81,否则纱窗受损.现将高96cm的矩形纱窗恰好安装在上、下槽深分别为0.9cm,高96cm(上、下槽底间的距离)的窗框上.试求合理安装纱窗时α∠的sin810.987=0.990=sin830.993=0.995=cos90.987=0.990=0.993=0.995=章《解直角三角形》整章测试答案:~8 BABA ACDD三、17.解:2=原式2=-2=18.解:(1)AB=(2)tanAB aβ=(3)acABb=.19.解:分两种情况:(1)当ACB∠为钝角时,BD是高,90ADB∴∠=.在Rt BCD△中,40BC=,30BD=∴CD==.在Rt ABD△中,50AB=,ABC中山路文化路D和平路45°15°30°环城路EF 图1 2 图3∴40AD ==.40AC AD CD ∴=-=-,新课标第一网∴211(4030(600)22ABC S AC BD ==-⨯=-△. (2)当ACB ∠为锐角时, BD 是高,90ADB BDC ∴∠=∠=,在Rt ABD △中,5030AB BD ==,,40AD ∴==.同理CD ==∴(40AC AD CD =+=+,∴211(4030(600)22ABC S AC BD ==+⨯=+△.综上所述:2(600)ABC S =±△.20.解:有触礁危险.理由: 过点P 作PD ⊥AC 于D .设PD 为x ,在Rt △PBD 中,∠PBD=90°-45°=45°. ∴BD =PD =x .在Rt △PAD 中,∵∠PAD =90°-60°=30°,∴x .xAD 330tan =︒=∵BD ,AB AD +=∴x .x +=123 ∴)13(61312+=-=x .∵,<18)13(6+∴渔船不改变航线继续向东航行,有触礁危险.21. 解:(1)由题意得,∠EA D =45°,∠FBD=30°. ∴∠EAC=∠EA D +∠DA C =45°+15°=60°. ∵ AE∥BF∥CD,∴ ∠FBC=∠EAC =60°. ∴ ∠DBC=30°.又∵ ∠DBC=∠DAB+∠ADB, ∴ ∠ADB=15°.∴∠DAB=∠ADB.∴ BD=AB=2. 即B ,D 之间的距离为2km .(2)过B 作BO⊥DC,交其延长线于点O , 在Rt△DBO 中,BD=2,∠DBO=60°. ∴ DO=2×sin60°=2×323=,BO=2×cos60°=1. 在Rt△CBO 中,∠CBO=30°,CO=BOtan30°=33, ∴ CD=DO-CO=332333=-(km ). 即C ,D 之间的距离为332km . 22. 解:能够合理装上平行四边形纱窗时的最大高度:960.995.1-=(cm ) 能够合理装上平行四边形纱窗时的高:96sin α∠或96cos(90)α-∠·°当81α∠=°时,纱窗高:96sin81960.98794.75295.1=⨯=<° ∴此时纱窗能装进去,当82α∠=°时,纱窗高:96sin82960.99095.0495.1=⨯=<° ∴此时纱窗能装进去.当83α∠=°时,纱窗高:96sin83960.99395.32895.1=⨯=>° ∴此时纱窗装不进去.因此能合理装上纱窗时α∠的最大值是82°.。
北师大版九年级数学下册第一章《4.解直角三角形》课时练习题(含答案)一、单选题1.在△ABC中,∠B=45°,∠C=75°,AC=6,则AB的长是()A.2(31)+ +B.3(31)+C.4(31)+D.5(31)2.如图,△AOB中,OA=4,OB=6,AB=27,将△AOB绕原点O旋转90°,则旋转后点A的对应点A′的坐标是()A.(4,2)或(﹣4,2)B.(23,﹣4)或(﹣23,4)C.(﹣23,2)或(23,﹣2)D.(2,﹣23)或(﹣2,23)3.△ABC中,若AB=6,BC=8,∠B=120°,则△ABC的面积为()A.123B.12 C.243D.4834.如图,在等腰直角三角形ABC中,∠C=90°,AC=6,D是AC上一点,如果tan∠DBA=1,那么AD的长为()5A.1 B.2 C.2D.225.如图,Rt△ABC中,∠ACB = 90°,AB = 5,AC= 3,把Rt△ABC沿直线BC向右平移3个单位长度得到△A'B'C' ,则四边形ABC'A'的面积是()A.15 B.18 C.20 D.226.如图,小明在一条东西走向公路的O 处,测得图书馆A 在他的北偏东60︒方向,且与他相距200m ,则图书馆A 到公路的距离AB 为( )A .100mB .1002mC .1003mD .2003m 3 7.如图,在平面直角坐标系中,将边长为1的正方形OABC 绕点O 顺时针旋转45︒后得到正方形111OA B C ,依此方式,绕点O 连续旋转2019次得到正方形201920192019OA B C ,那么点2019A 的坐标是( )A .22,22⎛⎫- ⎪ ⎪⎝⎭B .(1,0)C .22,22⎛⎫-- ⎪ ⎪⎝⎭D .(0,1)-8.如图,在BAC 中,90BAC ∠=︒,2AB AC =,将BAC 绕点A 顺时针旋转至DAE ,点D 刚好落在BC 直线上,则BDE △的面积为( )A .24BD B .22BC C .4BC BD ⋅ D .22AB二、填空题9.如图,在菱形ABCD 中,∠A =60°,AB =6.折叠该菱形,使点A 落在边BC 上的点M 处,折痕分别与边AB ,AD 交于点E ,F .当点M 与点B 重合时,EF 的长为________;当点M的位置变化时,DF 长的最大值为________.10.如图,在Rt ABC 中,∠C =90°,sinA =35,AB =10,D 是AC 的中点,则BD =______.11.如图,已知四边形ABCD ,AC 与BD 相交于点O ,∠ABC =∠DAC =90°,14tan ,23BO ACB OD ∠==,则ABDCBD S S =___.12.如图是小明画的卡通图形,每个正六边形的边长都相等,相邻两正六边形的边重合,点A ,B ,C 均为正六边形的顶点,AB 与地面BC 所成的锐角为β,则tan β的值是______.13.如图,在矩形ABCD 中,AB =4,BC =43P 在线段BC 上运动(含B 、C 两点),连接AP ,以点A 为中心,将线段AP 逆时针旋转60°到AQ ,连接DQ ,则线段DQ 的最小值为____.14.如图,在矩形ABCD 中,AB=4,BC=3,E ,F 分别为AB ,CD 边的中点.动点P 从点E 出发沿EA 向点A 运动,同时,动点Q 从点F 出发沿FC 向点C 运动,连接PQ ,过点B 作BH ⊥PQ 于点H ,连接DH .若点P 的速度是点Q 的速度的2倍,在点P 从点E 运动至点A 的过程中,线段PQ 长度的最大值为_____,线段DH 长度的最小值为_____.三、解答题15.如图,菱形ABCD 中,120D ∠=︒,F 是AD 中点,连接BF ,BE DC ⊥,垂足是E .(1)求证:BF BE =;(2)若23BF =BEDF 的面积.16.如图,在△ABC 中,∠B =45°,AC =5,cosC =35,AD 是BC 边上的高线. (1)求AD 的长;(2)求△ABC 的面积.17.如图,在ABC 中,390,tan ,3C A ABC ∠==∠的平分线BD 交AC 于点.3D CD =.求AB 的长?18.如图,一艘海轮位于灯塔P 的南偏东30°方向,距离灯塔120海里的A 处,它计划沿正北方向航行,去往位于灯塔P 的北偏东45°方向上的B 处.(1)问B 处距离灯塔P 有多远?(结果精确到0.1海里)(2)假设有一圆形暗礁区域,它的圆心位于射线PB 上,距离灯塔150海里的点O 处.圆形暗礁区域的半径为50海里,进入这个区域,就有触礁的危险.①请判断海轮到达B 处是否有触礁的危险?并说明理由.②如果海轮从B 处继续向正北方向航行,是否有触礁的危险?直接写出结论,不用说明理由.2 1.4≈3 1.7≈)参考答案1.B2.C3.A4.B5.A6.A7.A8.A 9.33633-10.21311.3 3212.1931513.214.3213﹣215.(1)证明:连接BD∵四边形ABCD是菱形,∠ADC=120°,∴AB=CB=CD=AD,∠A=∠C=60°,∵F是AD中点,BE⊥DC,∴△ABD、△CBD是等边三角形,∵F是AD中点,BE⊥DC,∴BF⊥AD,∴∠AFB=∠CEB =90°,∵∠A=∠C,AB=CB,∴△ABF≌△CBE(AAS),∴BF=BE;(2)由(1)得△ABF是直角三角形,∠A=60°,∵BF=3sin60°3∴AB=CB=CD=AD=4,AF=12AB=2,∴ABCD =234S菱形=83ABF CEB1S=S=2232⨯⨯△△=23∴四边形BEDF 的面积=ABF CEB ABCD S S S --△△菱形16.解:(1)∵AD ⊥BC ,∴∠ADC =∠ADB =90°.在Rt △ACD 中,AC =5,cosC =35, ∴CD =AC•cosC =3,∴AD4.(2)∵∠B =45°,∠ADB =90°, ∴∠BAD =90°﹣∠B =45°, ∴∠B =∠BAD ,∴BD =AD =4,∴S △ABC =12AD•BC =12×4×(4+3)=14.17.解:在Rt ABC 中,90,C tanA ∠== 30,60,A ABC ∴∠=∠= BD 是ABC ∠的平分线,30,CBD ABD ∴∠=∠=︒ 又3,CD =330CD BC tan ∴==, 在Rt ABC 中,90,30∠=︒∠=︒C A , 630BC AB sin ∴==︒. 故答案为:6.18.(1)解:过点P 作PD AB ⊥交于点D . 由题意可知,120PA =海里,903060APD ∠=︒-︒=︒,45BPD ∠=︒. 906030A ∴∠=︒-︒=︒.1602PD PA ∴==(海里), 在Rt PBD 中,45BPD ∠=︒,PBD ∴∆是等腰直角三角形, 2602PB PD ∴==(海里)84.8≈(海里). 答:B 处距离灯塔P 约84海里. (2)解:①海轮到达B 处没有触礁的危险,理由如下: 由题意知:150OP =海里,602PB =海里, (150602)OB OP PB ∴=-=-海里65≈海里50>海里, ∴海轮到达B 处没有触礁的危险. ②过点O 作OE AB ⊥交于E ,交AB 延长线于点E ,则90OEB ∠=︒, 45OBE PBD ∠=∠=︒, sin OE OB OBE ∴=∠ 2(150602)=-752604650=≈<, ∴海轮从B 处继续向正北方向航行,有触礁的危险.。
学 号密封教师填写 内容 考试类型 考试【 】 考查【 】 命题人 绝密★启用前解直角三角形测试时间:30分钟一、选择题1.在△ABC 中,∠C=90°,AB=10,cos A=45,则BC 的长为( ) A.6 B.7.5 C.8 D.12.52.如下图,在△ABC 中,AD ⊥BC,垂足为点D,若AC=6√2,∠C=45°,tan ∠ABC=3,则BD 等于( )A.2B.3C.3√2D.2√33.如下图所示,在△ABC 中,AD ⊥BC 于D,CE ⊥AB 于E,且BE=2AE,已知AD=3√3,tan ∠BCE=√33,那么CE等于( )A.2√3B.3√3-2C.5√2D.4√3二、填空题4.小明用一块含30°角的直角三角板在已知线段AB 上作出△ABC,如下图(1)(2)所示.若AB=6,则△ABC 的面积为 .5.如下图,在四边形ABCD 中,AB=2,BC=CD=2√3,∠B=90°,∠C=120°,则线段AD 的长为 .三、解答题6.在Rt △ABC 中,∠C=90°,∠A 、∠B 、∠C 的对边分别为a 、b 、c.若a=2,sin A=13,求b 和c.7.在Rt △ABC 中,∠C=90°,∠A 、∠B 、∠C 所对的边分别为a 、b 、c,根据下列条件:c=8√3,∠A=60°,求出直角三角形的其他元素.8.如下图,在△ABC 中,AD 是BC 边上的高,AE 是BC 边上的中线,∠C=45°,sin B=13,AD=1. (1)求BC 的长;(2)求tan ∠DAE 的值.9.阅读下面材料:小红遇到这样一个问题:如下图(1),在四边形ABCD 中,∠A=∠C=90°,∠D=60°,AB=4√3,BC=√3,求AD 的长.小红发现,延长AB 与DC 相交于点E,如下图(2),通过构造Rt △ADE,经过推理和计算能够使问题得到解决,过程如下:在△ADE 中,∠A=90°,∠D=60°,∴∠E=30°. 在Rt △BEC 中,∠BCE=90°,∠E=30°,BC=√3, ∴BE=2BC=2√3,∴AE=AB+BE=4√3+2√3=6√3.在Rt △ADE 中,∠A=90°,∠E=30°,AE=6√3, ∴AD=AE·tan E=6√3×√33=6.参考小红思考问题的方法,解决问题:如下图(3),在四边形ABCD 中,tan A=12,∠B=∠C=135°,AB=9,CD=3,求BC 和AD 的长.横线以内不许答题参考答案一、选择题1.答案A如下图,∵cos A=AC AB =45,AB=10,∴AC=8,由勾股定理得BC=√AB 2-AC 2=√102-82=6.故选A.2.答案 A ∵在△ABC 中,AC=6√2,∠C=45°,AD ⊥BC,∴AD=AC·sin 45°=6√2×√22=6,∵tan ∠ABC=3,∴AD BD =3,∴BD=AD3=2,故选A.3.答案 D 在Rt △BCE 中,∵tan ∠BCE=√33,∴∠BCE=30°,∴∠B=60°.又∵在Rt △ABD 中,AD=3√3,∴AB=6,∵BE=2AE,∴BE=4.在Rt △BEC 中,BE=4,∠BCE=30°,∴CE=4√3,故选D.二、填空题4.答案 3√3解析 如下图,作CD ⊥AB,垂足为D,由题意易知∠A=∠B=30°,又CD ⊥AB,∴AD=DB,∵AB=6,∴AD=3.在Rt △ACD 中,CD=AD·tan A=√3,∴S △ABC =12AB·CD=3√3.5.答案 2√7解析 如下图,连接AC.在Rt △ABC 中,∠B=90°,AB=2,BC=2√3,∴tan ∠ACB=AB BC =2√3=√33,∴∠ACB=30°,∴AC=2AB=4.∵∠BCD=120°,∴∠ACD=∠BCD -∠ACB=120°-30°=90°.∴在Rt △ADC 中,∠ACD=90°,AC=4,CD=2√3,∴AD=√AC 2+CD 2=√42+(2√3)2=2√7.三、解答题6.解析 如下图.∵a=2,sin A=a c =13,∴c=a sinA =213=6,则b=22=√622=4√2.7.解析 如下图,∵∠C=90°,∠A=60°, ∴∠B=90°-60°=30°,又∵c=8√3,∴b=12c=12×8√3=4√3,∴a=√c 2-b 2=√(8√3)2-(4√3)2=12.8.解析 (1)在△ABC 中,AD 是BC 边上的高, ∴∠ADB=∠ADC=90°.在Rt △ADC 中,∠ADC=90°,∠C=45°,AD=1, ∴DC=AD=1.在Rt △ADB 中,∠ADB=90°,sin B=13,AD=1, ∴AB=ADsinB =3,∴BD=√AB 2-AD 2=2√2, ∴BC=BD+DC=2√2+1.(2)∵AE 是BC 边上的中线,∴CE=12BC=√2+12, ∴DE=CE -CD=√2-12,∴tan ∠DAE=DEDA =√2-12.9.解析 如下图,延长AB 与DC 相交于点E.∵∠ABC=∠BCD=135°,∴∠EBC=∠ECB=45°,∴BE=CE,∠E=90°. 设BE=CE=x,则BC=√2x,AE=9+x,DE=3+x. 在Rt △ADE 中,∠E=90°, ∵tan A=12,∴DE AE =12,即3+x 9+x =12,∴x=3. 经检验,x=3是所列方程的解,且符合题意,∴BC=3√2,AE=12,DE=6,∴AD=√AE2+DE2=√122+62=6√5.题答许不内以线横。
解直角三角形—题集1.如图,在地面上的点处测得树顶的仰角为度,米,则树高为( ).A.米B.米C.米D.米【答案】A【解析】米.【标注】【知识点】仰角与俯角2.如图,斜坡,坡顶到水平地面的距离为米,坡底为米,在处,处分别测得顶部点的仰角为,,求的长度.(结果保留根号).【答案】的长度为米.【解析】设米,则米,由题意得,四边形为矩形,∴,在中,∴ ,在中,,∴,∴,解得,,∴.答:的长度为米.【标注】【知识点】仰角与俯角A.的值越小,梯子越陡B.的值越小,梯子越陡C.的值越小,梯子越陡D.陡缓程度与的函数值无关3.如图,梯子跟地面的夹角为,关于的三角函数值与梯子的倾斜程度之间,叙述正确的是().【答案】B【标注】【知识点】坡度4.某地的一座人行天桥如图所示,天桥高为米,坡面的坡度为,文化墙在天桥底部正前方米处(的长),为了方便行人推车过天桥,有关部门决定降低坡度,使新坡面的坡度为.(1)(2)若新坡面坡角为,求坡角度数.有关部门规定,文化墙距天桥底部小于米时应拆除,天桥改造后,该文化墙是否需要拆除?请说明理由.(参考数据:,)【答案】(1)(2).该文化墙需要拆除,证明见解析.【解析】(1)(2)∵新坡面坡角为,新坡面的坡度为,∴,∴.作于点,则米,∵新坡面的坡度为,∴,解得,米,∵坡面的坡度为,米,∴米,∴米,又∵米,∴米米,故该文化墙需要拆除.【标注】【知识点】坡度游船港口海警船北(1)(2)5.一艘观光游船从港口以北偏东的方向出港观光,航行海里至处时发生了侧翻沉船事故,立即发出了求救信号,一艘在港口正东方向的海警船接到求救信号,测得事故船在它的北偏东方向,马上以海里每小时的速度前往救援.求点到直线的距离.求海警船到达事故船处所需的大约时间.(温馨提示:,)【答案】(1)(2)海里.小时.【解析】游船港口海警船北(1)(2)如图,过点作交延长线于.在中,∵,,海里,∴点到直线距离海里.在中,∵,,∴(海里),∴海警船到达事故船处所需的时间大约为:(小时).【标注】【知识点】方位角在锐角三角函数中的应用6.一副直角三角板按如图所示放置,点在的延长线上,,,,,,则的长为 .【答案】【解析】过点作于点,在中,,,,∴.∵,∴.,在中,,,∴,∴,∴.【标注】【知识点】三角板拼接问题7.如图,是一辆小汽车与墙平行停放的平面示意图,汽车靠墙一侧与墙平行且距离为米,一辆小汽车车门宽为米,当车门打开角度为时,车门是否会碰到墙? .(填“是”或“否”)请简述你的理由 .(参考数据:,,).【答案】否 ; 点到的距离小于与墙的距离【解析】过点作,垂足为点,如图.在中,∵,米,∴米,∵汽车靠墙一侧与墙平行且距离为米,∴车门不会碰到墙(点到的距离小于与墙的距离).故答案为:否;点到的距离小于与墙的距离.【标注】【知识点】测量物体之间的距离8.小明想测量一棵树的高度,他发现树的影子恰好落在地面和一斜坡上;如图,此时测得地面上的影长为米,坡面上的影长为米.已知斜坡的坡角为,同一时刻,一根长为米、垂直于地面放置的标杆在地面上的影长为米,求树的高度.【答案】米.【解析】延长交延长线于点,则,作于,在中,,,∴(米),(米),在中,∵同一时刻,一根长为米、垂直于地面放置的标杆在地面上的影长为米,(米),,∴(米),∴(米),在中,(米),故答案为:米.【标注】【知识点】影子问题(1)(2)9.如图,在中,,点是边的中点,,.求和的长.求的值.【答案】(1)(2),..【解析】(1)(2)∵点是边的中点,且∴.∵,∴.∵在中,,,∴.在中,,,∴.故,.如图,作交于点.∵在中,,,∴设,,由勾股定理可得,解得,∴.在中,∵,,∴.即.【标注】【知识点】解直角三角形的综合应用10.如图,在四边形中,,于点,已知,,,求的长.【答案】.【解析】过点作于.∵在中,,,∴,.∵,,∴,∵,∴.∴在中,,,∴,.又∵在中,,,.∴.【标注】【知识点】解直角三角形的综合应用11.如图,在中,,,=, ,求.【答案】.【解析】 在中,,,,,,由勾股定理得:,∵,∴,∵∴,,∴.【标注】【知识点】解直角三角形的综合应用。
解直角三角形练习题1一. 选择题:(每小题2分,共20分)1. 在△EFG 中,∠G=90°,EG=6,EF=10,则cotE=( ) A.43 B. 34 C. 53 D. 35 2. 在△ABC 中,∠A=105°,∠B=45°,tanC 的值是( ) A.21B. 33C. 1D. 33. 在△ABC 中,若22cos =A ,3tan =B,则这个三角形一定是( )A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形4. 如图18,在△EFG 中,∠EFG=90°,FH ⊥EG ,下面等式中,错误的是( )A.EGEF G =sin B. EFEH G =sinC. FGGH G =sin D. FGFH G =sin 5. sin65°与cos26°之间的关系为( )A. sin65°<cos26°B. sin65°>cos26°C. sin65°=cos26°D. sin65°+cos26°=1 6. 已知30°<α<60°,下列各式正确的是( ) A.B.C.D.7. 在△ABC 中,∠C=90°,52sin =A ,则sinB 的值是( ) A.32 B.52 C.54D.521 8. 若平行四边形相邻两边的长分别为10和15,它们的夹角为60°,则平行四边形的面积是( )米2A. 150B.375C. 9D. 79. 如图19,铁路路基横断面为一个等腰梯形,若腰的坡度为i= 2∶3,顶宽是3米,路基高是4米,则路基的下底宽是( )A. 7米B. 9米C. 12米D. 15米 10. 如图20,两条宽度都为1的纸条,交叉重叠放在一起,且它们的交角为α,则它们重叠部分(图中阻影部分)的面积为( ) A.αsin 1 B. αcos 1C. αsinD. 1二. 填空题:(每小题2分,共10分)11. 已知0°<α<90°,当α=__________时,21sin =α,当α=__________时,Cota=3. 12. 若,则锐角α=__________。
初三数学解直角三角形试题答案及解析1.一测量爱好者,在海边测量位于正东方向的小岛高度AC,如图所示,他先在点B测得山顶点A的仰角为30°,然后向正东方向前行62米,到达D点,在测得山顶点A的仰角为60°(B、C、D三点在同一水平面上,且测量仪的高度忽略不计).求小岛高度AC(结果精确的1米,参考数值:,)【答案】53米.【解析】首先利用三角形的外角的性质求得∠BAD的度数,得到AD的长度,然后在直角△ADC 中,利用三角函数即可求解.试题解析:∵∠ADC=∠B+∠BAD,∴∠BAD=∠ADC-∠B=60°-30°=30°,∴∠B=∠BAD,∴AD=BD=62(米).在直角△ACD中,AC=AD•sin∠ADC=62×=31≈31×1.7=52.7≈53(米).答:小岛的高度约为53米.【考点】解直角三角形的应用-仰角俯角问题.2.如图,等腰△ABC中,AB=AC,∠BAC=36°,BC=1,点D在边AC上且BD平分∠ABC,设CD=x.(1)求证:△ABC∽△BCD;(2)求x的值;(3)求cos36°-cos72°的值.【答案】(1)证明见解析;(2);(3).【解析】(1)由等腰三角形ABC中,顶角的度数求出两底角度数,再由BD为角平分线求出∠DBC的度数,得到∠DBC=∠A,再由∠C为公共角,利用两对角相等的三角形相似得到三角形ABC与三角形BCD相似;(2)根据(1)结论得到AD=BD=BC,根据AD+DC表示出AC,由(1)两三角形相似得比例求出x的值即可;(3)过B作BE垂直于AC,交AC于点E,在直角三角形ABE和直角三角形BCE中,利用锐角三角函数定义求出cos36°与cos72°的值,代入原式计算即可得到结果.试题解析:(1)∵等腰△ABC中,AB=AC,∠BAC=36°,∴∠ABC=∠C=72°,∵BD平分∠ABC,∴∠ABD=∠CBD=36°,∵∠CBD=∠A=36°,∠C=∠C,∴△ABC∽△BCD;(2)∵∠A=∠ABD=36°,∴AD=BD,∵BD=BC,∴AD=BD=CD=1,设CD=x,则有AB=AC=x+1,∵△ABC∽△BCD,∴,即,整理得:x2+x-1=0,解得:x1=,x2=(负值,舍去),则x=;(3)过B作BE⊥AC,交AC于点E,∵BD=CD,∴E为CD中点,即DE=CE=,在Rt△ABE中,cosA=cos36°=,在Rt△BCE中,cosC=cos72°=,则cos36°-cos72°=-=.【考点】1.相似三角形的判定与性质;2.等腰三角形的性质;3.黄金分割;4.解直角三角形.3.如图,在△ABC中,∠BAC=90°,AD⊥BC于D,AD=3,cosB=3/5,则AC等于()A.4B.5C.6D.7【答案】B.【解析】∵∠BAC=90°,AD⊥BC于D,∴∠BAD+∠CAD=90°,∠BAD+∠B=90°,∴∠CAD=∠B,∴cos∠CAD=cosB=,在直角△ACD中,∵∠ADC=90°,AD=3,∴cos∠CAD=,∴AC=5.故选B.【考点】解直角三角形.4.在△ACB中,∠C=90°,AB=10,,,.则BC的长为()A.6B.7.5C.8D.12.5【答案】A.【解析】∵∠C=90°,∴.又∵AB=10,∴.故选A.【考点】1.解直角三角形;2.锐角三角函数定义.5.已知:如图,斜坡AP的坡度为1:2.4,坡长AP为26米,在坡顶A处的同一水平面上有一座古塔BC,在斜坡底P处测得该塔的塔顶B的仰角为45°,在坡顶A处测得该塔的塔顶B的仰角为76°.求:(1)坡顶A到地面PQ的距离;(2)古塔BC的高度(结果精确到1米).(参考数据:sin76°≈0.97,cos76°≈0.24,tan76°≈4.01)【答案】(1)10米;(2)19米.【解析】(1)过点A作AH⊥PQ,垂足为点H,利用斜坡AP的坡度为1:2.4,得出AH,PH,AH的关系求出即可;(2)利用矩形性质求出设BC=x,则x+10=24+DH,再利用tan76°=,求出即可.试题解析::(1)过点A作AH⊥PQ,垂足为点H.∵斜坡AP的坡度为1:2.4,∴,设AH=5k,则PH=12k,由勾股定理,得AP=13k.∴13k=26.解得k=2.∴AH=10.答:坡顶A到地面PQ的距离为10米.(2)延长BC交PQ于点D.∵BC⊥AC,AC∥PQ,∴BD⊥PQ.∴四边形AHDC是矩形,CD=AH=10,AC=DH.∵∠BPD=45°,∴PD=BD.设BC=x,则x+10=24+DH.∴AC=DH=x-14.在Rt△ABC中,tan76°=,即,解得x=,即x≈19,答:古塔BC的高度约为19米.【考点】1.解直角三角形的应用-坡度坡角问题;2.解直角三角形的应用-仰角俯角问题.6.超速行驶是引发交通事故的主要原因之一.上周末,小明和三位同学尝试用自己所学的知识检测车速,如图,观测点设在A处,离益阳大道的距离(AC)为30米.这时,一辆小轿车由西向东匀速行驶,测得此车从B处行驶到C处所用的时间为8秒,∠BAC=75°.(1)求B、C两点的距离;(2)请判断此车是否超过了益阳大道60千米/小时的限制速度?(计算时距离精确到1米,参考数据:sin 75°≈0.965 9,cos 75°≈0.258 8,tan 75°≈3.732,≈1.732,60千米/小时≈16.7米/秒)【答案】(1)112(米) (2)此车没有超过限制速度【解析】解:(1)在Rt△ABC中,∠ACB=90°,∠BAC=75°,AC=30,∴BC=AC·tan ∠BAC=30×tan 75°≈30×3.732≈112(米).(2)∵此车速度=112÷8=14(米/秒)<16.7(米/秒)=60(千米/小时)∴此车没有超过限制速度.7.在△ABC中,若∠A、∠B满足|cos A-|+=0,则∠C=________.【答案】75°【解析】∵|cos A-|+=0,∴cos A-=0,sin B-=0,∴cos A=,sin B=,∴∠A=60°,∠B=45°,则∠C=180°-∠A-∠B=180°-60°-45°=75°.8.在△ABC中,∠C=90°,,则().A.B.C.D.【答案】D.【解析】由sin A=,设∠A的对边是3k,则斜边是5k,∠A的邻边是4k.再根据正切值的定义,得tanA=.故选D.【考点】锐角三角函数.9.如图,将45°的∠AOB按下面的方式放置在一把刻度尺上:顶点O与尺下沿的端点重合,OA与尺下沿重合,OB与尺上沿的交点B在尺上的读数恰为2cm.若按相同的方式将37°的∠AOC放置在该刻度尺上,则OC与尺上沿的交点C在尺上的读数约为cm.(结果精确到0.1cm,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)【答案】2.7【解析】过点B作BD⊥OA于D,过点C作CE⊥OA于E.在△BOD中,∠BDO=90°,∠DOB=45°,∴BD=OD=2cm,∴CE=BD=2cm.在△COE中,∠CEO=90°,∠COE=37°,∵tan37°=≈0.75,∴OE≈2.7cm.∴OC与尺上沿的交点C在尺上的读数约为2.7 cm.10.如图,一段河坝的横截面为梯形ABCD,试根据图中数据,求出坝底宽AD.(i=CE∶ED,单位:m)【答案】(7.5+4)m【解析】解:作BF⊥AD于点F.则BF=CE=4m,在直角△ABF中,AF===3m,在直角△CED中,根据i=,则ED===4m.则AD=AF+EF+ED=3+4.5+4=(7.5+4)m.11.如图,A、B两地之间有一座山,汽车原来从A地到B地经过C地沿折线A→C→B行驶,现开通隧道后,汽车直接沿直线AB行驶.已知AC=10千米,∠A=30°,∠B=45°.则隧道开通后,汽车从A地到B地比原来少走多少千米?(结果保留根号)【答案】(5+5-5)千米【解析】解:过C作CD⊥AB于D,在Rt△ACD中,∵AC=10,∠A=30°,∴DC=ACsin30°=5,AD=ACcos30°=5,在Rt△BCD中,∵∠B=45°,∴BD=CD=5,BC=5,则用AC+BC-(AD+BD)=10+5-(5+5)=5+5-5(千米).答:汽车从A地到B地比原来少走(5+5-5)千米.12.在Rt△ABC中,若∠C=90°,cosA=,则sinA的值为()A.B.C.D.【答案】A.【解析】先根据特殊角的三角函数值求出∠A的值,再求出sinA的值即可.∵Rt△ABC中,∠C=90°,∴∠A是锐角,∵cosA==,∴设AB=25x,BC=7x,由勾股定理得:AC=24x,∴sinA=.故选A.考点:同角三角函数的关系.13.如图,在△中,,,则△的面积是()A.B.12C.14D.21【答案】A【解析】如图,作因为,所以.由勾股定理得.又,所以所以所以所以14.计算下列各题:(1);(2).【答案】(1)2 (2)【解析】解:(1)(2)15.在Rt△ABC中,∠C=90°,sinA=,则cosB的值为()A.B.C.D.【答案】C.【解析】在Rt△ABC中,∠C=90°,sinA=,设BC=3x,则AB=5x,∴AC=4x.∴cosB=.故选C.考点: 互余两角三角函数的关系.16.计算:【答案】-2.【解析】本题涉及零指数幂、特殊角的三角函数值、二次根式化简、负整数指数幂以及绝对值等考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.试题解析:考点: 实数的混合运算.17.若(为锐角),则=【答案】1.【解析】因为所以得,代入可得值为1【考点】正切和正、余弦函数的关系.18.如图所示,直角三角形纸片的两直角边长分别为6,8,现将如图那样折叠,使点与点重合,折痕为,则的值是________【答案】.【解析】折叠后形成的图形相互全等,利用三角函数的定义可求出.根据题意,BE=AE.设CE=x,则BE=AE=8-x.在Rt△BCE中,根据勾股定理得:BE2=BC2+CE2,即(8-x)2=62+x2解得x=,∴tan∠CBE==考点:(1)锐角三角函数的定义;(2)勾股定理;(3)翻折变换(折叠问题).19.(1)一个人由山底爬到山顶,需先爬450的山坡200m,再爬300的山坡300m,求山的高度(结果可保留根号)。
初二数学解直角三角形试题答案及解析1.为缓解“停车难”问题,某单位拟建造地下停车库,建筑设计师提供了该地下停车库的设计示意图。
按规定,地下停车库坡道口上方要张贴限高标志,以便告知停车人车辆能否安全驶入。
(其中AB=9m,BC=0.5m)为标明限高,请你根据该图计算CE。
(精确到0.1m)(参考数值,,)【答案】2.3m【解析】根据锐角三角函数的定义,可在Rt△ACD中解得BD的值,进而求得CD的大小;在Rt△CDE中,利用正弦的定义,即可求得CE的值.解:在Rt△ABD中,∠BAD=18°,AB=9m,∴BD=AB×tan18°≈2.92m,∴CD=BD-BC=2.92-0.5=2.42m,在Rt△CDE中,∠CDE=72°,CD≈2.42m,∴CE=CD×sin72°≈2.3m.答:CE的高为2.3m.【考点】解直角三角形的应用点评:解直角三角形的应用是中考必考题,一般难度不大,正确作出辅助线构造直角三角形是解题关键.2.阳光明媚的一天,郑州某中学数学兴趣小组的同学们去测量一棵树的高度(这棵树底部可以到达,顶部不易到达),可以提供的测量工具:皮尺、标杆、一副三角尺、小平面镜.请你在他们提供的测量工具中选出所需工具,设计一种测量方案.(1)所需的测量工具是:__________;(2)请画出测量示意图;(3)设树高为x,请用所测数据(用小写字母表示)求出x.【答案】(1)皮尺、标杆;(2)如下图;(3)【解析】根据题意特征可以构造相似三角形,根据相似三角形的性质求解即可.(1)所需的测量工具是:皮尺、标杆;(2)测量示意图如图所示:(3)如图,测得标杆DE=a,树和标杆的影长分别为AC=b,EF=c,由△DEF∽△BAC,得∴,∴.【考点】相似三角形的应用点评:相似三角形的应用是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.3.如图,由于台风的影响,一棵树在离地面处折断,树顶落在离树干底部处,则这棵树在折断前(不包括树根)长度是 m.【答案】16【解析】由题意分析可知,折断后的上面树的高度是,所以折断前的树德高度是16【考点】勾股定理点评:本题属于对勾股定理的基本知识的理解和运用4.如图,是一个三级台阶,它的每一级的长、宽、高分别为20dm、3dm、2dm,•A和B是这个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿着台阶面爬到B点的最短路程是()A.15 dm B.20dm C.25dm D.30dm【答案】C【解析】依题意知作楼梯平面图。
解直角三角形测试题与答案一、选择题(每小题 5 分,共 25 分)1、在直角三角形中,若一个锐角为 30°,斜边与较小直角边的和为 12,则斜边的长为()A 4B 6C 8D 10答案:C解析:设较小直角边为 x,则斜边为 2x,由题意得 2x + x = 12,解得 x = 4,所以斜边为 8。
2、在 Rt△ABC 中,∠C = 90°,sinA =,则 tanB 的值为()A B C D答案:D解析:因为 sinA =,设 BC = 4x,AB = 5x,则 AC = 3x,所以tanB =。
3、如图,在△ABC 中,∠C = 90°,AC = 8,∠A 的平分线 AD =,则 BC 的长为()A 12B 10C 8D 6答案:B解析:因为 AD 是∠A 的平分线,所以∠CAD =∠BAC。
在Rt△ACD 中,cos∠CAD =,即,解得 CD = 6。
在 Rt△ABC 中,BC =。
4、已知在 Rt△ABC 中,∠C = 90°,tanA =,则 sinA 的值为()A B C D答案:B解析:设 BC = 3x,AC = 4x,则 AB = 5x,所以 sinA =。
5、如图,在菱形 ABCD 中,DE⊥AB,cosA =,BE = 2,则tan∠DBE 的值是()A B 2C D答案:C解析:因为 cosA =,设 AD = 5x,AE = 3x,则 DE = 4x。
因为BE = 2,所以 5x 3x = 2,解得 x = 1,所以 DE = 4。
在 Rt△BDE 中,tan∠DBE =。
二、填空题(每小题 5 分,共 25 分)1、在 Rt△ABC 中,∠C = 90°,若 sinA =,AB = 10,则 BC=________。
答案:6解析:因为 sinA =,所以,设 BC = 3x,AB = 5x,因为 AB =10,所以 5x = 10,解得 x = 2,所以 BC = 6。
中考数学解直角三角形同步测试题(一)1、旗杆的上一段BC 被风吹断,顶端着地与地面成300角,顶端着地处B 与旗杆底端相距4米,则原旗杆高为_________米。
2、在Rt △ABC 中,∠ACB =900,CD ⊥AB 于D ,BC =7,BD =5,则sinB = ,cosA= ,sinA = ,tanA = ,cotA = 。
3、在△ABC 中,∠ACB =900,CD ⊥AB 于D ,若AC =4,BD =59,则sinA = ,tanB = 。
4、若α为锐角,cot α=21,则sin α= ,cos α= 。
5、查正弦表得8474sin 0'=0.9650,则2115cos 0'= ;若2'对应的修正值为0.0002,则0115cos 0'= ;若3'对应的修正值为0.0004,且cosA =0.9646,则A = 。
6、计算:(1)02256cos 34cos 1--= ; (2)000069sin 21cos 69cos 21sin += 。
7、计算:300310)30cot 31()30tan 3(⋅= 。
8、当x = 时,xx xx cos sin cos sin -+无意义。
(00<x <900)9、在△ABC 中,∠C =900,若sinA >cosA ,则∠A 的取值范围是 。
10、已知△ABC 中,AB =24,∠B =450,∠C =600,AH ⊥BC 于H ,则AH = ;CH = 。
11、已知cotA =3,求锐角A ( ) A 、320 B 、300 C 、600 D 、50012、在Rt △ABC 中,如果一条直角边和斜边的长度都缩小至原来的51,那么锐角A 的各个三角函数值( ) A 、都缩小51B 、都不变C 、都扩大5倍D 、无法确定 13、若α是锐角,且054sin cos 0=-α,则α为( ) A 、540 B 、360C 、300D 、60014、在△ABC 中,∠C =900,CD 是AB 边上的高,则CD ∶CB 等于( ) A 、sinA B 、cosA C 、tanA D 、cotA15、在△ABC 中,∠C =900,CD ⊥AB 于D ,∠ACD =α,若tan α=23,则sinB =( ) A 、553 B 、552 C 、13133 D 、1313216、A 、B 、C 是△ABC 的三个内角,则2sinB A +等于( ) A 、2cos C B 、2sin CC 、C cosD 、2cosBA + 17、若00<∠A <900,且5)90cot(0=-A ,则A c o t 的值为( ) A 、5B 、51C 、34 D 、4318、化简250tan 50cot 0202-+的结果是( )A 、050tan 50cot - B 、050cot 50tan - C 、250tan 50cot 00-- D 、0050cot 50tan +19、在Rt △ABC 中,∠C =900,32cos =B ,则a ∶b ∶c 为( )A 、2∶5∶3 B 、2∶5∶3 C 、2∶3∶13 D 、1∶2∶320、在△ABC 中,若AB =AC ,则sinB 等于( ) A 、2sin A B 、2cos AC 、A sinD 、A cos21、0000245tan 45cos 230cos 60tan 45sin +⋅+22、10001000022)25tan 2()65tan 21(30cot 230tan ⋅-+-23、已知如图:AB ∥DC ,∠D =900,BC =10,AB =4,C tan =31,求梯形ABCD 的面积。
解直角三角形测试题与答案一、选择题(每小题 3 分,共 30 分)1、在直角三角形中,若一个锐角为 30°,斜边与较小直角边的和为 12,则斜边的长为()A 4B 6C 8D 10答案:C解析:在直角三角形中,30°角所对的直角边等于斜边的一半。
设较小直角边为 x,则斜边为 2x,由题意得 2x + x = 12,解得 x = 4,所以斜边为 8。
2、已知在 Rt△ABC 中,∠C = 90°,sinA =,则 tanB 的值为()A B C D答案:A解析:因为 sinA =,所以设 BC = 3x,AB = 5x,则 AC = 4x。
所以 tanB =。
3、在△ABC 中,∠C = 90°,AB = 15,sinA =,则 BC 等于()A 9B 12C 10D 6答案:B解析:因为 sinA =,所以 BC = AB×sinA = 15×= 9。
4、如图,在 Rt△ABC 中,∠C = 90°,AC = 4,AB = 5,则cosB 的值是()A B C D答案:A解析:因为在 Rt△ABC 中,∠C = 90°,AC = 4,AB = 5,所以BC = 3。
所以 cosB =。
5、一个直角三角形的两条直角边分别为 6 和 8,则其斜边上的高为()A 48B 5C 3D 10答案:A解析:根据勾股定理可得斜边为 10,设斜边上的高为 h,根据面积相等可得 ×6×8 = ×10×h,解得 h = 48。
6、在 Rt△ABC 中,∠C = 90°,若 sinA =,则 cosA 的值为()A B C D答案:B解析:因为 sin²A + cos²A = 1,sinA =,所以 cosA =。
7、如图,在 Rt△ABC 中,∠ACB = 90°,CD⊥AB 于点 D,若AC =,BC = 2,则 sin∠ACD 的值为()A B C D答案:A解析:因为∠ACB = 90°,AC =,BC = 2,所以 AB = 3。
初三数学解直角三角形试题答案及解析1.周末,小强在文化广场放风筝.如图,小强为了计算风筝离地面的高度,他测得风筝的仰角为58°,已知风筝线BC的长为10米,小强的身高AB为1.55米.请你帮小强画出测量示意图,并计算出风筝离地面的高度(结果精确到0.1米).(参考数据:sin58°=0.85,cos58°=0.53,tan58°=1.60)]【答案】10.1【解析】根据题意画出图形,根据sin58°=可求出CE的长,再根据CD=CE+ED即可得出试题解析:如图,过点C作地面的垂线CD,垂足为D,过点B作BE⊥CD于E.在Rt△CEB中,∵sin∠CBE=,∴CE=BC•sin58°=10×0.85≈8.5m,∴CD=CE+ED=8.5+1.55=10.05≈10.1m,【考点】解直角三角形的应用-仰角俯角问题2.在平面直角坐标系中,设点P到原点O的距离为,OP与x轴正方向的夹角为,则用[,]表示点P的极坐标;显然,点P的极坐标与它的坐标存在一一对应的关系.例如,点P的坐标(1,1),则极坐标为[,45°].若点Q的极坐标为[4,60°],则点Q的坐标为()A.B.C.D.(2,2)【答案】A.【解析】:作QA⊥x轴于点A,则OQ=4,∠QOA=60°,故OA=OQ×cos60°=2,AQ=OQ×sin60°=2,∴点Q的坐标为(2,2).故选A.【考点】点的坐标.3.在Rt△ABC中,∠A=90°,有一个锐角为60°,BC=6.若点P在直线AC上(不与点A,C重合),且∠ABP=30°,则CP的长为.【答案】6或2或4【解析】如图1:当∠C=60°时,∠ABC=30°,与∠ABP=30°矛盾;如图2:当∠C=60°时,∠ABC=30°,∵∠ABP=30°,∴∠CBP=60°,∴△PBC是等边三角形,∴CP=BC=6;如图3:当∠ABC=60°时,∠C=30°,∵∠ABP=30°,∴∠PBC=60°﹣30°=30°,∴PC=PB,∵BC=6,∴AB=3,∴PC=PB=;如图4:当∠ABC=60°时,∠C=30°,∵∠ABP=30°,∴∠PBC=60°+30°=90°,∴PC=BC÷cos30°=4.故答案为:6或2或4.【考点】解直角三角形4.如图,在电线杆上的C处引拉线CE、CF固定电线杆,拉线CE和地面成60°角,在离电线杆6米的B处安置测角仪,在A处测得电线杆上C处的仰角为30°,已知测角仪高AB为1.5米,求拉线CE的长(结果保留根号).【答案】CE的长为(4+)米【解析】根据题意过点A作AH⊥CD于H,由三角函数可求出CH的长,从而可求出CD的长,在Rt△CED中,由∠CED=60°,利用三角函数可求出CE的长.试题解析:过点A作AH⊥CD,垂足为H,由题意可知四边形ABDH为矩形,∠CAH=30°,∴AB=DH=1.5,BD=AH=6,在Rt△ACH中,tan∠CAH=,∴CH=AH•tan∠CAH,∴CH=AH•tan∠CAH=6tan30°=6×(米),∵DH=1.5,∴CD=2+1.5,在Rt△CDE中,∵∠CED=60°,sin∠CED=,∴CE=(米),答:拉线CE的长为(4+)米.【考点】1、三角函数;2、解直角三角形5.某煤矿发生瓦斯爆炸,该地救援队立即赶赴现场进行救援,救援队利用生命探测仪在地面A、B两个探测点探测到C处有生命迹象.已知A、B两点相距6米,探测线与地面的夹角分别是30°和45°,试确定生命所在点C的深度.(精确到0.1米,参考数据:)【答案】8.2米.【解析】过点C作CD⊥AB于点D,设CD=x,在Rt△ACD中表示出AD,在Rt△BCD中表示出BD,再由AB=6米,即可得出关于x的方程,解出即可.试题解析:过点C作CD⊥AB于点D,设CD=x,在Rt△ACD中,∠CAD=30°,则AD=CD=x,在Rt△BCD中,∠CBD=45°,则BD=CD=x,由题意得x-x=6,解得:x=3(+1)≈8.2.答:生命所在点C的深度为8.2米.【考点】解直角三角形的应用.6.如图1是一张折叠椅子,图2是其侧面示意图,已知椅子折叠时长1.2米,椅子展开后最大张角∠CBD=37°,且BD=BC,AB:BG:GC=1:2:3,座面EF与地面平行,当展开角最大时,请解答下列问题:(1)求∠CGF的度数;(2)求座面EF与地面之间的距离。
解直角三角形一、选择题1、如图,已知正方形ABCD 的边长为2,如果将线段BD 绕着点 B 旋转后,点 D 落在CB 的延长线上的D′处,那么tan∠BAD ′等于()(A) .1 (B) . 2(C).22(D).2 22、如果是锐角,且4cos ,那么sin 的值是().5(A)925(B)45(C)35(D)16253、等腰三角形底边长为10 ㎝,周长为36cm,那么底角的余弦等于().(A)513 (B)1213(C)1013(D)5124、. 以下不能构成三角形三边长的数组是( )2 2 2 (A)(1,3 ,2)(B)( 3 ,4 ,5 )(C)(3,4,5)(D)(3,4 ,5)5、在Rt△ABC 中,∠C=90°,下列式子中正确的是().(A)sin A sin B (B)sin A cos B(C)tanA tanB (D)cot A cot B6、在矩形ABCD 中,DE⊥AC 于E,设∠ADE= ,且3cos ,5A DAB = 4, 则AD 的长为().(A)3 (B)163(C)203(D)165B7、某市在“旧城改造”中计划在一块如图所示的三角形空地上种植某种草皮以美20米30米化环境,已知这种草皮每平方米 a 元,则购买这种草皮至少要().150 (A)450a 元(B)225a 元(C)150a 元(D)300a 元8、已知α为锐角,tan(90°-α)= 3,则α的度数为()(A)30°(B)45°(C)60°(D)75°9、在△ABC中,∠C=90°,BC=5,AB=13,则sin A的值是( )(A)513(B)1213(C)512(D)12510、如果∠ a 是等边三角形的一个内角,那么cosa 的值等于().1(A)12(B)22(C)32(D)1 C二、填空题A B11、如图,在△ABC 中,若∠A=30°,∠B=45°,AC=22,则BC=w12、如图,沿倾斜角为30 的山坡植树,要求相邻两棵树的水平距离AC为2m,那么相邻两棵树的斜坡距离AB为m 。
初三数学解直角三角形试题答案及解析1.如图,一艘核潜艇在海面DF下600米A点处测得俯角为30°正前方的海底C点处有黑匣子,继续在同一深度直线航行1464米到B点处测得正前方C点处的俯角为45°.求海底C点处距离海面DF的深度(结果精确到个位,参考数据:≈1.414,≈1.732,≈2.236).【答案】2600米.【解析】作CE⊥AB于E,构造直角三角形,依题意,AB=1000,∠EAC=30°,∠CBE=45°,设CD=x,则BE=x,进而利用正切函数的定义求出x即可.试题解析:解:如答图,过点C作CE⊥AB于E,依题意,AB=1464,∠EAC=30°,∠CBE=45°,设CE=x,则BE=x,Rt△ACE中,tan30°=,整理得出:3x=1464,解得:x=732(+1)≈2000米,∴AD+CE=2000+600=2600答:黑匣子C离海面约2600米.【考点】1.解直角三角形的应用(仰角俯角问题);2. 锐角三角函数定义;3.特殊角的三角函数值;4.方程思想的应用.2.如图,一艘海轮在A点时测得灯塔C在它的北偏东42°方向上,它沿正东方向航行80海里后到达B处,此时灯塔C在它的北偏西55°方向上.(1)求海轮在航行过程中与灯塔C的最短距离(结果精确到0.1);(2)求海轮在B处时与灯塔C的距离(结果保留整数).(参考数据:sin55°≈0.819,cos55°≈0.574,tan55°≈1.428,tan42°≈0.900,tan35°≈0.700,tan48°≈1.111)【答案】(1)34.4海里;(2)60海里.【解析】(1)过点C作CD⊥AB于点D,则CD的长为海轮在航行过程中与灯塔C的最短距离. (2)在Rt△BCD中,根据55°角的余弦值即可求出海轮在B处时与灯塔C的距离.试题解析:解:(1)如答图,过点C作CD⊥AB于点D,依题意得:∠ACD=∠CAE=42°,∠BCD=∠CBF=55°,设CD的长为x海里,在Rt△ACD中,tan42°=,则AD=x•tan42°,在Rt△BCD中,tan55°=,则BD=x•tan55°,∵AB=80,∴AD+BD="80." ∴x•tan42°+x•tan55°=80,解得:x≈34.4.答:海轮在航行过程中与灯塔C的最短距离是34.4海里.(2)在Rt△BCD中,cos55°=,∴BC=≈60海里.答:海轮在B处时与灯塔C的距离是60海里.【考点】1.解直角三角形的应用(方向角问题);2.锐角三角函数定义.3.如图,轮船从点A处出发,先航行至位于点A的南偏西15°且点A相距100km的点B处,再航行至位于点A的南偏东75°且与点B相距200km的点C处.(1)求点C与点A的距离(精确到1km);(2)确定点C相对于点A的方向.(参考数据:)【答案】(1)173;(2)点C位于点A的南偏东75°方向.【解析】(1)作辅助线,过点A作AD⊥BC于点D,构造直角三角形,解直角三角形即可.(2)利用勾股定理的逆定理,判定△ABC为直角三角形;然后根据方向角的定义,即可确定点C相对于点A的方向.试题解析:解:(1)如答图,过点A作AD⊥BC于点D.由图得,∠ABC=75°﹣10°=60°.在Rt△ABD中,∵∠ABC=60°,AB=100,∴BD=50,AD=50.∴CD=BC﹣BD=200﹣50=150.在Rt△ACD中,由勾股定理得:AC=(km).答:点C与点A的距离约为173km.(2)在△ABC中,∵AB2+AC2=1002+(100)2=40000,BC2=2002=40000,∴AB2+AC2=BC2. ∴∠BAC=90°.∴∠CAF=∠BAC﹣∠BAF=90°﹣15°=75°.答:点C位于点A的南偏东75°方向.【考点】1.解直角三角形的应用(方向角问题);2. 锐角三角函数定义;3.特殊角的三角函数值;4. 勾股定理和逆定理.4.已知:如图,正方形ABCD中,点E为AD边的中点,联结CE.求cos∠ACE和tan∠ACE的值.【答案】;.【解析】过点E作EF⊥AC于点F,设AE=DE=x,则AD=DC=2x,利用三角函数的关系分别表示出CE、CF的长度,从而利用三角函数的表示方法可得出cos∠ACE和tan∠ACE的值.试题解析:如图,过点E作EF⊥AC于点F,∵四边形ABCD是正方形,∴∠BAD=90°,∠D=90°,AC平分∠BAD,AD=DC.∴∠CAD=45°,.∵E是AD中点,∴.设AE=DE=x,则.在Rt△AEF中,.∴.∴,.【考点】1.解直角三角形;2.矩形的性质.5.如图1是一张折叠椅子,图2是其侧面示意图,已知椅子折叠时长1.2米,椅子展开后最大张角∠CBD=37°,且BD=BC,AB:BG:GC=1:2:3,座面EF与地面平行,当展开角最大时,请解答下列问题:(1)求∠CGF的度数;(2)求座面EF与地面之间的距离。
《解直角三角形》练习11.正方形网格中,AOB ∠如图1放置,则cos AOB ∠的值为( ) A.55 B.255 C.12 D.22.如果由点A 测得点B 在北偏东15°的方向,那么由点B 测点A 的方向为( )A. 北偏东15°B. 北偏西75°C. 南偏西15°D. 南偏东75°3.如图,是一水库大坝横断面的一部分,坝高h =6m ,迎水斜坡AB =10m ,斜坡的坡角为α,则tan α的值为 ( ) A.53 B .54 C .34 D .43 4. 如图2斜坡AB 和水平面的夹角为α,下列命题中,不正确的是( )图2A. 斜坡AB 的坡角为αB. 斜坡AB 的坡度为BC ABC. 斜坡AB 的坡度为tan αD. 斜坡AB 的坡度为BC AC二. 填空题5. 在△ABC 中,∠C =90°,若a =85,b =815,则c =__________, ∠A =__________,∠B =__________.6. 一物体沿坡度为1:8的山坡向上移动65米,则物体升高了__________米.7. Rt △ABC 中,一锐角的正切值为0.75,周长是36,则它的两条直角边的和是_____.8. 在地面上一点,测得一电视塔尖的仰角45°,沿水平方面,再向塔底前进a 米,A B O图1又测得塔尖的仰角为60°,那么电视塔为__________.9. 如图3,在高2米,坡角为30°的楼梯表面铺地毯,地毯的长度至少需__________米.(精确到0.1米).图3三. 解答题10. 如图4,要测池塘A 、B 两端的距离,可以在平地上与AB 垂直的直线BF 上取一点C ,使∠FCA =120°,并量得BC =20m ,求A ,B 两端的距离(不取近似值).图411. 从一船上看到在它的南偏东30°的海面上有一座灯塔,船以30海里/时的速度向东南方航行,半小时后,看到这个灯塔在船的正西,求这时船与灯塔的距离.12.某校教学楼后面紧邻着一个山坡,坡上面是一块平地,如图所示,BC ∥AD ,BE ⊥AD ,斜坡AB 长26米,坡角∠BAD=68°.为了减缓坡面防止滑坡,保障安全,学校决定对该斜坡进行改造,经地质人员勘测,当坡角不超过50°时,可确保不滑坡.(1)求改造前坡顶到地面的距离BE 的长(精确到0.1米);(2)如果改造时保持坡脚A 不动,坡顶B 沿BC 左移11米到F 点处,问这样改造能确保安全吗?(参考数据:sin 680.93≈,cos 680.37≈,tan 68 2.48≈,'sin 58120.85≈,'tan 4930 1.17≈)答案:(1)在Rt △ABE 中,AB=26,∠BAD=68°, ∵BE sin BAD AB∠=,∴BE=AB·sin BAD ∠=26×sin 68≈24.2(米).(2)过点F 作FM ⊥AD 于点M ,连结AF.∵BC ∥AD ,BE ⊥AD ,BF=11,∴FM=BE=24.2,EM=BF=11.在Rt △ABE 中, ∵AE cos BAE AB∠=, ∴AE=AB·cos BAE ∠=26×cos 68≈9.62.∴AM=AE-EM=9.62+11=20.62.在Rt △AFM 中, ∵FM 24.2tan FAM AM 20.62∠==≈1.17, ∴'FAM 493050∠=<.∴这样改造能确保安全.〖参考答案〗一.选择题(1)C(2)C(3)D(4)B二. 填空题5. 165,30°,60°6. 1米7. 218. 1233()+a 米9. 5.5米三. 解答题:10. 解:根据题意,有∠ABC =90°在Rt △ABC 中,∠ACB =180°-∠FCA =180°-120°=60° ∵tan ∠ACB ABBC =∴AB BC ACB m ===·∠·°tan tan ()2060203 答:A 、B 两端之间的距离为203m .11.解:如图5所示,AC =30×0.5=15图5在Rt △COB 中,AO OC AC ACO ====cos ∠×15221522 在Rt △COB 中,OB OC BCO ===tan ∠×152233526 ∴AB OA OB =-=-1522526448≈. 答:此时船与灯塔的距离约为4.48海里.12.答案:(1)在Rt △ABE 中,AB=26,∠BAD=68°, ∵BE sin BAD AB∠=, ∴BE=AB·sin BAD ∠=26×sin 68≈24.2(米).(2)过点F 作FM ⊥AD 于点M ,连结AF.∵BC ∥AD ,BE ⊥AD ,BF=11,∴FM=BE=24.2,EM=BF=11.在Rt △ABE 中,∵AE cos BAE AB∠=, ∴AE=AB·cos BAE ∠=26×cos 68≈9.62. ∴AM=AE-EM=9.62+11=20.62. 在Rt △AFM 中, ∵FM 24.2tan FAM AM 20.62∠==≈1.17, ∴'FAM 493050∠=<.∴这样改造能确保安全.。
《解直角三角形》典型例题例1 在Rt △ABC 中,∠C=90°,∠B=60°,a=4,解这个三角形. 分析 本题实际上是要求∠A 、b 、c 的值.可根据直角三角形中各元素间的关系解决. 解 (1) ;(2)由abB =tan ,知 ;(3)由c a B =cos ,知860cos 4cos =︒==B a c . 说明 此题还可用其他方法求b 和c .例 2 在Rt △ABC 中, ∠C=90°,∠A=30°,3=b ,解这个三角形.解法一 ∵ ∴设 ,则由勾股定理,得∴ .∴.解法二 133330tan =⨯=︒=b a说明 本题考查含特殊角的直角三角形的解法,它可以用目前所学的解直角三角形的方法,也可以用以前学的性质解题. 例 3 设 中,于D ,若,解三角形ABC .分析“解三角形ABC”就是求出的全部未知元素.本题CD不是的边,所以应先从Rt入手.解在Rt中,有:∴在Rt中,有说明(1)应熟练使用三角函数基本关系式的变形,如:(2)平面几何中有关直角三角形的定理也可以结合使用,本例中“”就是利用“对30°角的直角边等于斜边的一半”这一定理.事实上,还可以用面积公式求出AB的值:所以解直角三角形问题,应开阔思路,运用多种工具.例4在中,,求.分析(1)求三角形的面积一方面可以根据面积公式求出底和底上的高的长,也可以根据其中规则面积的和或差;(2)不是直角三角形,可构造直角三角形求解.解如图所示,作交CB的延长线于H,于是在Rt△ACH中,有,且有;在中,,且,∴;于是,有,则有说明还可以这样求:例5 如图,在电线杆上离地面高度5m 的C 点处引两根拉线固定电线杆,一根拉线AC 和地面成60°角,另一根拉线BC 和地面成45°角.求两根拉线的总长度(结果用带根号的数的形式表示).分析 分别在两个直角三角形ADC 和BDC 中,利用正弦函数的定义,求出AC 和BC .解: 在Rt △ADC 中,331023560sin ==︒=DC AC 在Rt △BDC 中,221022545sin ==︒=DC BC说明 本题考查正弦的定义,对于锐角三角函数的定义,要熟练掌握.学习要有三心:一信心;二决心;三恒心.知识+方法=能力,能力+勤奋=效率,效率×时间=成绩. 宝剑锋从磨砺出,梅花香自苦寒来.。
解直角三角形
一、选择题
1、如图,已知正方形ABCD 的边长为2,如果将线段BD 绕着点B 旋转后,点D 落在CB 的延长
线上的D ′处,那么tan ∠BAD ′等于( ) (A).1 (B).2 (C).
2
2 (D).22
2、如果α是锐角,且5
4
cos =
α,那么αsin 的值是( ). (A )
259 (B ) 54 (C )53 (D )25
16
3、等腰三角形底边长为10㎝,周长为36cm ,那么底角的余弦等于( ). (A )
513
(B )
1213 (C )10
13
(D )512
4、. 以下不能构成三角形三边长的数组是 ( )
(A )(1,3,2) (B )(3,4,5) (C )(3,4,5) (D )(32,42,52) 5、在Rt △ABC 中,∠C =90°,下列式子中正确的是( ).
(A )B A sin sin = (B )B A cos sin = (C )B A tan tan = (D )B A cot cot = 6、在矩形ABCD 中,DE ⊥AC 于E ,设∠ADE=α,且5
3cos =
α, AB = 4, 则AD 的长为( ).
(A )3 (B )316 (C )320 (D )5
16
7、某市在“旧城改造”中计划在一
块如图所示的三角形空地上种植某种草皮以美 化环境,已知这种草皮每平方米a 元,则购买这种草皮至少要( ). (A )450a 元 (B )225a 元 (C )150a 元 (D )300a 元 8、已知α为锐角,tan (90°-α)=3,则α的度数为( ) (A )30° (B )45° (C )60° (D )75°
9、在△ABC 中,∠C =90°,BC =5,AB =13,则sin A 的值是( ) (A )
13
5 (B )1312 (C )125 (D )512
10、如果∠a 是等边三角形的一个内角,那么cos a 的值等于( ).
A
B
C
D
E
︒15020米30米
(A )
2
1 (B )22
(C )23 (D )1
二、填空题
11、如图,在△ABC 中,若∠A =30°,∠B =45°,AC =
22
, 则
BC = w
12、如图,沿倾斜角为30︒的山坡植树,要求相邻两棵树的水
平距离AC 为2m ,那么相邻两棵树的斜坡距离AB
为 m 。
(精确到0.1m)
13、离旗杆20米处的地方用测角仪测得旗杆顶的仰角为α, 如果测角仪高为1.5米.那么旗杆的高为 米(用含α的三角函数表示).
14、校园内有两棵树,相距12米,一棵树高13米,另一棵树高8米。
一只小鸟从一
棵树的顶端飞到另一棵树的顶端,小鸟至少要飞__________米。
15、某校自行车棚的人字架棚顶为等腰三角形,
D 是AB 的中点,中柱CD = 1米,∠A=27°,
则跨度AB 的长为 (精确到0.01米)。
三、解答题
16、已知:如图,在ΔABC 中,∠ACB =90°,CD ⊥AB ,垂足为D ,若∠B =30°,CD =6,求AB 的长.
17、如图,某公路路基横断面为等腰梯形.按工程设计要求路面宽度为10米,坡角为︒55,路基高度为5.8米,求路基下底宽(精确到0.1米).
18、为申办2010年冬奥会,须改变哈尔滨市的交通状况。
在大直街拓宽工程
中,要伐掉一棵树AB ,在地面上事先划定以B 为圆心,半径与AB 等长的圆形危险区,现在某工人站在离B 点3米远的D 处,从C 点测得树的顶端A 点的仰角为60°,树的底部B 点的俯角为30°. 问:距离B 点8米远的保护物是否在危险区内?
C
B
A
C A D
B
︒
60︒
30B
D
C A
M E N C
A
19、如图,某一水库大坝的横断面是梯形ABCD ,坝顶宽CD =5米,斜坡AD =16
米,坝高 6米,斜坡BC 的坡度3:1 i .求斜坡AD 的坡角∠A (精确到1分)和坝底宽AB .(精确到0.1米)
20. 在一次实践活动中,某课题学习小组用测倾器、皮尺测量旗杆的高度,他们设计了如下的方案(如图1所示):
(1) 在测点A 处安置测倾器,测得旗杆顶部M 的仰角∠MCE =α ;
(2) 量出测点A 到旗杆底部N 的水平距离AN =m; (3) 量出测倾器的高度AC =h 。
根据上述测量数据,即可求出旗杆的高度MN 。
如果测量工具不变,请参照上述过程,重新设计一个方案测量某小山高度(如图2) 1) 在图2中,画出你测量小山高度MN 的示意图
(标上适当的字母) 2)写出你的设计方案。
((图2)
D
C
B A
参考答案
一、选择题
1、B
2、C
3、A
4、D
5、B
6、B
7、C
8、A
9、A 10、A 二、填空题
11、
2
1
12、2.3 13、1.5 +20tan α 14、13 15、3.93米 三、解答题
16、83 17、18.1米 18、可求出AB= 43米 ∵8>43
∴距离B 点8米远的保护物不在危险区内 19、 ∠A =22 01′ AB=37.8米 20、1)
2)方案如下:
(1) 测点A 处安置测倾器,测得旗杆顶部
M 的仰角∠MCE =α ;
(2) 测点B 处安置测倾器,测得旗杆顶部
M 的仰角∠MDE =β;
(3) 量出测点A 到测点B 的水平距离AB =m; (4) 量出测倾器的高度AC =h 。
根据上述测量数据可以求出小山MN 的高度。