勒让德多项式及性质共53页文档
- 格式:ppt
- 大小:2.80 MB
- 文档页数:53
第7章 勒让德多项式在第三章中我们介绍了一类特殊函数—贝塞尔函数,我们利用贝塞尔函数给出了平面圆域上拉普拉斯算子特征值问题的解,从而求解了一些与此特征值问题相关的定解问题。
为求解空间中球形区域上与拉普拉斯算子相关的一些定解问题,需要引入另一类特殊函数—勒让德(Legendre )多项式,用于求解空间中球形区域上拉普拉斯算子的特征值问题。
需要说明的是勒让德多项式不仅是解决数学物理方程中许多问题的重要工具,在自然科学的其它领域也有许多的应用。
§7⋅1勒让德多项式本节介绍勒让德多项式及相关的一些特征值问题,为分离变量法的进一步应用作准备。
7.1.1 勒让德方程及勒让德多项式 考虑如下二阶常微分方程2[(1)]0d dyx y dx dxλ-+=,11x -<< (7.1.1) 其中0λ≥为常数,方程(7.1.1)称为勒让德方程。
设α是非负实数,使得(1),λαα=+则方程(7.1.1)可表示成如下形式2(1)2(1)0x y xy y αα'''--++=,11x -<< (7.1.2) 方程(7.1.2)满足第3章中定理3.1的条件,其中222(1)(), ()11x p x q x x x αα+=-=-- 故(7.1.2)在区间(1,1)-有解析解,设其解为0()k k k y x a x ∞==∑ (7.1.3)其中(0)k a k ≥为待定常数。
将该级数及一阶和二阶导数代入到原方程中得22121(1)(1)2(1)0k k k k k k k k k x k k a xx ka xa x αα∞∞∞--===---++=∑∑∑或20(1)(2)(1)2(1)0kkkkk k k kk k k k k k ax k ka x ka x a x αα∞∞∞∞+====++---++=∑∑∑∑ 即20[(1)(2)()(1)]0k k k k k k a k k a x αα∞+=+++-++=∑比较两端k x 的系数,可得2(1)(2)()(1)0, 0k k k k a k k a k αα++++-++=≥ 由此式可得系数递推关系2()(1), 0(1)(2)k k k k a a k k k αα+-++=-≥++ (7.1.4)当系数k a 指标分别取偶数和奇数时,(7.1.4)可表示为22(1)(22)(21), 1(21)2k k k k a a k k k αα--++-=-≥-212(1)1(21)(2), 12(21)k k k k a a k k k αα+-+-++=-≥+连续使用上述递推关系可知,当1k ≥时20(2)(22)(1)(3)(21)(1)(2)!k k k k a a k αααααα-⋅⋅⋅-+++⋅⋅⋅+-=-211(1)(3)(21)(2)(4)(2)(1)(21)!k k k k a a k αααααα+--⋅⋅⋅-+++⋅⋅⋅+=-+记220k k a c a =,21211k k a c a ++=, 可得勒让德方程(7.1.2)的如下两个解2,120()kk k y x c x α∞==∑, 21,2210() k k k y x c x α∞++==∑ (7.1.5)其中011c c ==。