影响溶解度大小的因素和溶解度曲线解读
- 格式:ppt
- 大小:631.00 KB
- 文档页数:13
溶解度与溶解度曲线溶解度是指在一定条件下,单位溶剂中单位温度下溶质的最大溶解量。
溶解度受到多种因素的影响,如溶质和溶剂的性质、温度、压力等。
溶解度曲线则是描述溶解度随温度变化而呈现的曲线,对于理解溶解过程有重要的意义。
一、溶解度的定义和影响因素溶解度是溶质在溶剂中溶解的程度,通常用“溶质在100克溶剂中溶解的克数”或“溶质在100毫升溶剂中溶解的克数”来表示。
溶解度的单位通常为克/100克或克/100 mL。
溶解度受到多种因素的影响,主要包括以下几个方面:1. 溶剂的性质:溶剂的极性、溶剂分子的大小与溶质分子的大小之间的相互作用力是决定溶解度的关键因素之一。
溶剂与溶质之间的相互作用力越强,溶解度越大。
2. 溶质的性质:溶质的极性、溶质分子的大小与溶剂分子的大小之间的相互作用力也是影响溶解度的重要因素。
溶质分子越小、极性越大,溶解度越大。
3. 温度:温度是影响溶解度的重要因素之一。
一般情况下,溶解度随温度的升高而增大。
但某些物质的溶解度随温度的升高而降低,这是因为在溶解过程中伴随着吸热或放热反应的发生。
4. 压力:压力对溶解度的影响在一般情况下较小。
但对于气体溶解于液体的情况下,压力的增加会导致溶解度的增大。
二、溶解度曲线与溶解度变化规律溶解度曲线是随温度变化而描绘的曲线图,用于描述溶解度随温度变化的规律。
在溶解度曲线中,横坐标表示温度,纵坐标表示溶解度。
一般来说,溶解度曲线可分为以下几种类型:1. 随温度的升高而增大的曲线:这种曲线表明溶解过程是一个吸热反应,随着温度的升高,反应愈发有利,溶解度呈现上升趋势。
2. 随温度的升高而减小的曲线:这种曲线表明溶解过程是一个放热反应,温度升高会导致溶解度的降低。
3. 温度对溶解度没有显著影响的曲线:这种曲线表明溶解过程与温度无关,溶质的溶解度在一定温度范围内保持不变。
溶解度曲线对于理解溶解过程和溶解度变化规律具有重要的指导意义。
通过研究溶解度曲线,可以确定溶解过程的热力学特征和溶解度随温度变化的规律。
化学物质的溶解度曲线溶解度是指单位溶剂在一定温度和压力下溶解的物质的最大质量或体积。
溶解度与物质性质、溶剂性质、温度和压力等因素有关。
为了研究溶解度与温度的关系,科学家通常会制作溶解度曲线,以直观地表示溶解度的变化规律。
一、溶解度曲线的概念和基本形态溶解度曲线是指在一定温度下,溶质在溶剂中的溶解度与溶液中溶质的质量或体积之间的关系曲线。
通常情况下,溶解度曲线呈现出以下几种基本形态:1. 直线型溶解度曲线:当溶质的溶解满足几乎无吸热或放热的条件时,其溶解度随溶质质量或体积的增加呈线性变化。
2. 正曲线型溶解度曲线:当溶质的溶解满足吸热条件时,其溶解度随溶质质量或体积的增加呈正曲线变化。
3. 反曲线型溶解度曲线:当溶质的溶解满足放热条件时,其溶解度随溶质质量或体积的增加呈反曲线变化。
以上三种基本形态可以通过实验数据的拟合获得溶解度曲线的数学表达式,并在坐标系中进行画图,以便直观地观察溶解度的变化规律。
二、影响溶解度曲线的因素溶解度曲线的形态及其在不同温度下的变化规律受多种因素的影响。
1. 温度:温度是影响溶解度曲线的重要因素之一。
一般情况下,温度升高会导致溶解度的增加,溶解度曲线向右移动。
但对于某些物质而言,温度的升高反而会降低其溶解度。
2. 压力:在大部分情况下,压力对溶解度的影响并不明显,因此通常在溶解度曲线的研究中不考虑压力的影响。
3. 溶质和溶剂的性质:溶质和溶剂的性质对溶解度也有一定的影响。
比如极性溶质在极性溶剂中的溶解度通常较高,而非极性溶质在非极性溶剂中的溶解度较高。
4. 其他因素:除了温度、压力、溶质和溶剂的性质外,其他因素如物质的晶体结构、溶液的浓度等也可能会对溶解度曲线产生影响。
三、溶解度曲线的应用溶解度曲线的研究对于理解物质的溶解过程、寻找合适的溶剂和控制溶解度具有重要意义。
1. 制定合理的溶解工艺:对于某些工业制品的制造过程中,需要调整溶解度来控制产品的质量。
通过研究溶解度曲线,可以确定最佳溶解条件和工艺参数,提高产品的质量和产量。
二、溶解度1.固体物质的溶解度:在一定温度下,某固体物质在100 g溶剂里达到饱和状态时所溶解的质量。
2.溶解度四要素:一定温度、100 g溶剂、饱和状态、溶质质量。
3.影响因素:影响溶解性大小的因素主要是溶质、溶剂的本性,其次是温度(固体溶质)或温度和压强(气体溶质)等。
固体物质的溶解度一般随温度的升高而增大,其中变化较大的如硝酸钾、变化不大的如氯化钠,但氢氧化钙等少数物质比较特殊,溶解度随温度的升高反而减小。
4.溶解度曲线:(1)表示:物质的溶解度随温度变化的曲线。
(2)意义:①表示同一种物质在不同温度时的溶解度;②可以比较同一温度时,不同物质的溶解度的大小;③表示物质的溶解度受温度变化影响的大小等。
5.气体的溶解度(1)定义:在压强为101 kPa和一定温度时,气体溶解在1体积水里达到饱和状态时的气体体积。
(2)五要素:101 kPa、一定温度、1体积水、饱和状态、气体体积。
(3)影响因素:温度、压强。
升高温度,气体溶解度减小;降低温度,气体溶解度增大。
增大压强,气体溶解度增大;减小压强,气体溶解度减小。
【例题2】对照溶解度概念分析“36 g食盐溶解在100 g水中,所以食盐的溶解度为36 g”这句话应怎样改正。
【解析】溶解度概念包括四要素:“一定的温度”“100 g溶剂”“饱和状态”“溶质的质量”。
题中错误之处在于:一没有指明在什么温度下,因为物质的溶解度随温度的改变而改变。
二没有指明是否达到饱和状态,所以不正确。
【答案】在20 ℃时,36 g NaCl溶解在100 g水中恰好达到饱和状态,所以20 ℃时NaCl的溶解度为36 g。
【例题3】甲、乙物质的溶解度均随温度的升高而增大。
在10 ℃时,在20 g水中最多能溶解3 g甲物质;在30 ℃时,将23 g乙物质的饱和溶液蒸干得到3 g乙物质。
则20 ℃时甲、乙两种物质的溶解度的关系是()A.甲=乙 B.甲<乙C.甲>乙 D.无法确定【解析】比较不同物质的溶解度大小,一定要在相同温度下进行。
3.2.3溶解度溶解度曲线一溶解度影响固体溶解性的影响因素:溶质的种类,溶剂的种类,温度1、溶解度定义:在一定温度下,某物质在100g溶剂(通常是水)里达到饱和状态时,所溶解得最大克数。
符号:S,单位:g/100g水2、溶解度的含义:20℃时,S NaCl = 36g/100g水含义:20℃,食盐在100g水里达到饱和状态时最多溶解36克。
举例:20℃时,S AgNO3 = 222g/100g水影响固体溶质溶解度的唯一因素是对于气体溶质影响溶解度的因素有和二绘制溶解度曲线图(1)请根据下表列出硝酸钾、氢氧化钙在不同温度下的溶解度,在坐标系中作出温度(℃)0 20 40 60 80 溶解度(g/100g水)13.3 31.6 63.9 110 169 KNO3温度(℃)0 20 40 100 溶解度(g/100g水)0.173 0.165 0.121 0.076Ca(OH)2(2)溶解度曲线的运用溶解度曲线上表示溶液的点的位置所表示的含义及点的移动操作诀窍例1:右图是A、B、C三种物质的溶解度曲线,看图回答:(1)60℃时,B物质的溶解度是。
(2)10℃时,B物质的溶解度(填<、=或>)A物质的溶解度。
(3)℃时,A、B两物质的溶解度相同。
例2:.右图是X、Y、Z三种物质的溶解度曲线(1)A点所表示的意义(2)若X、Y、Z三种物质中,有一种是气态物质,该物是。
判断的依据是。
(3)20℃时,N处物质X的溶液呈(填饱和或不饱和)状态、要使该溶液从N状态变为M状态.应采取的措施有或三有关溶解度的计算公式:S 100 =m(溶质)m(溶剂)SS+100=((+(mm m溶质)溶质)溶剂)=m(m溶质)(溶液)例1、在T℃时,向80克水中加入硝酸钾固体20克,恰好达到饱和,求该温度下的溶解度例2、在20℃时,氯化钠的溶解度是36g/100g水,则在此温度下,30克水中最多能溶解氯化钠多少克?T℃,硝酸钾饱和溶液200克,蒸发20克水后析出晶体12克,则该温度时,硝酸钾的溶解度为_____________当堂训练1.下列说法正确与否,为什么?(1)20℃时,把10克食盐溶解在100克水里,所以20℃时食盐的溶解度是10 (2)20℃时,100克食盐饱和溶液里含有26.4克食盐,所以20℃时食盐的溶解度是26.4克/100克水(3)20℃时,食盐的溶解度是36克/100克水。
溶解度曲线的意义及应用一、溶解度曲线的概念在直角坐标系中,用横坐标表示温度(t),纵坐标表示溶解度(S),由t—S的坐标画出固体物质的溶解度随温度变化的曲线,称之为溶解度曲线。
二、溶解度曲线的意义1、点:曲线上的点叫饱和点。
①曲线上任一点表示对应温度下(横坐标)该物质的溶解度(纵坐标);②两曲线的交点表示两物质在交点的温度下溶解度相等。
2、线:溶解度曲线表示物质的溶解度随温度变化的趋势。
其变化趋势分为三种:①陡升型大多数固体物质的溶解度随温度升高而增大,如KNO3;②缓升型少数物质的溶解度随温度升高而增幅小,如NaCl;③下降型极小数物质的溶解度随温度升高而减小,如Ca(OH)2。
3、面(或线外的点):⑴溶解度曲线下方的面(曲线下方的点)表示不同温度下该物质的不饱和溶液。
⑵溶解度曲线上方的面(曲线上方的点)表示相应温度下的过饱和溶液(不作要求)。
三、溶解度曲线的应用例1:右图是a、b、c三种物质的溶解度曲线,a与c的溶解度曲线相交于P点。
据图回答:(1)P点的含义是。
(2)t2℃时30g a物质加入到50g水中不断搅拌,形成的溶液是(饱和或不饱和)溶液,溶液质量是 g。
(3)t2℃时a、b、c三种物质的溶解度按由小到大的顺序排列是__________(填写物质序号)。
Q(4)在t2℃时,将等质量的a、b、c三种物质的饱和溶液同时降温至t1℃时,析出晶体最多的是,所得溶液中溶质质量分数(浓度)由大到小的顺序是。
(5)把t1℃a、b、c三种物质的饱和溶液升温到t2℃时,所得a、b、c 三种物质的溶液中溶质质量分数(浓度)大小关系。
(6)若把混在a中的少量b除去,应采用___________方法;若要使b从饱和溶液中结晶出去,最好采用___________。
若要使C从饱和溶液中结晶出去,最好采用___________。
巩固练习1、图2是硝酸钾和氯化钠的溶液度曲线,下列叙述中不正确的是()A. t1℃时,120gKNO3饱和溶液中含有20gKNO320B. t2℃时,KNO3和NaCl的饱和溶液中溶质的质量分数相同C. KNO3的溶解度大于NaCl的溶解度D. 当KNO3中含有少量的NaCl时,可以用结晶方法提纯KNO32、右图为A物质的溶解度曲线。
一、饱和溶液与不饱和溶液1.饱和溶液与不饱和溶液的定义在一定温度下,向一定量溶剂里加入某液;当溶质还能继续溶解时,所得到的溶液2.对饱和溶液与不饱和溶液的理解(1)首先,要明确“一定温度”和“一定相转化的。
(2)其次,要明确“某一溶质的”饱和还能溶解KNO 3,此时的溶液是NaCl 的饱的饱和或不饱和溶液。
(3)有些物质能与水以任意比互溶3.饱和溶液与不饱和溶液的转化条件(1)一般规律:此转化条件适合大多数固体物质的溶液(2)特殊情况(如氢氧化钙):极少数物质在一定量水中溶解的最大溶液时,要升高温度;若把饱和溶液转化4.判断溶液是否饱和的方法一般地,可以向原溶液中再加入少量原继续溶解,则说明原溶液是该溶质的不饱和如果有且溶质的量不再减少,未溶解的溶质二、固体的溶解度1.定义在一定温度下,某固态物质在100 g 溶剂里度。
如果不说明溶剂,通常所说的溶解度是2.正确理解溶解度概念需要抓住的四个要(1)条件:一定温度。
因为物质的溶解度溶解度溶液加入某种溶质,当溶质不能继续溶解时,所得到的溶的溶液叫做这种溶质的不饱和溶液。
理解一定量的溶剂”。
因为改变溶剂量或温度时,饱和溶饱和溶液或不饱和溶液。
例如,在一定温度下不能再的饱和溶液,对KNO 3来说就不一定是饱和溶液了互溶,不能形成饱和溶液,如酒精没有饱和溶液。
化条件 的溶液,因为大多数固体物质在一定量水中溶解的最的最大量随温度的升高而降低(如熟石灰),此类物质转化成不饱和溶液,要降低温度。
少量原溶质,如果不能继续溶解,说明原溶液是该溶不饱和溶液。
或者在一定温度下,看该溶液中有没有不的溶质与溶液共存,那么这种溶液就是这种溶质的饱溶剂里达到饱和状态时所溶解的质量,叫做这种固态度是指物质在水里的溶解度。
四个要点溶解度随温度的变化而变化,所以不指明温度时,溶解到的溶液叫做这种溶质的饱和溶饱和溶液与不饱和溶液是可以互不能再溶解NaCl 的溶液,可能液了。
因此必须指明是哪种溶质解的最大量随温度升高而增大。
溶解度与溶解度曲线的关系溶解度是指在一定温度下,溶质在溶剂中能够溶解的最大量。
它是描述溶解过程中溶质与溶剂相互作用的重要参数。
溶解度曲线则是描述溶解度随温度变化的曲线。
溶解度与溶解度曲线之间存在着密切的关系,下面将从溶解度的影响因素、溶解度曲线的特点以及溶解度曲线的应用等方面进行探讨。
一、溶解度的影响因素溶解度受多种因素的影响,其中最主要的是温度、压力和溶质浓度。
首先,温度对溶解度的影响较为显著。
一般情况下,随着温度的升高,溶解度会增加。
这是因为温度升高会使溶质分子的动能增大,溶质分子与溶剂分子的相互作用力减弱,从而促进溶质分子进入溶剂中。
但是,对于某些溶质来说,随着温度的升高,溶解度反而会减小,这是由于溶质分子在溶剂中的溶解过程是吸热过程,温度升高会使溶解过程的熵变增大,从而导致溶解度的减小。
其次,压力对溶解度的影响相对较小,一般情况下可以忽略不计。
只有在气体溶解度较高的情况下,压力的变化才会对溶解度产生一定的影响。
当气体溶解度较高时,增大压力会使溶质分子更容易进入溶剂中,从而增加溶解度。
最后,溶质浓度对溶解度的影响也是很重要的。
溶质浓度越高,溶解度也会相应增加。
这是因为溶质浓度的增加会导致溶质分子之间的相互作用增强,从而增加溶质分子进入溶剂中的倾向。
二、溶解度曲线的特点溶解度曲线是描述溶解度随温度变化的曲线。
一般情况下,溶解度曲线呈现出以下特点。
首先,溶解度曲线的斜率代表了溶解度随温度变化的速率。
斜率越大,溶解度随温度的变化越快,反之则越慢。
其次,溶解度曲线在某些温度点上可能会出现突变。
这是因为在某些特定的温度下,溶质分子与溶剂分子的相互作用力发生了变化,导致溶解度发生突变。
最后,溶解度曲线在不同的溶剂中可能会呈现出不同的形状。
这是由于不同的溶剂有不同的分子结构和相互作用力,从而影响了溶解度随温度变化的规律。
三、溶解度曲线的应用溶解度曲线在实际应用中有着广泛的应用价值。
首先,它可以用于溶解度的预测和计算。