高分子材料拉伸试验5页
- 格式:docx
- 大小:51.41 KB
- 文档页数:4
高分子物理实验报告高分子物理实验报告引言:高分子物理是研究高分子材料的结构、性质和行为的学科。
本实验旨在通过实验方法,对高分子材料的一些基本性质进行探究,以加深对高分子物理的理解。
实验一:高分子材料的熔融流动性材料:聚乙烯(PE)、聚丙烯(PP)方法:将PE和PP分别切成小块,放入两个不同的容器中,通过加热使其熔化,观察其流动性。
结果:PE在加热后迅速熔化,并呈现出较大的流动性,而PP则需要较高的温度才能熔化,且流动性较小。
结论:高分子材料的熔融流动性与其分子结构有关,分子链间的相互作用力越强,熔融温度越高,流动性越小。
实验二:高分子材料的拉伸性能材料:聚酯(PET)、聚氯乙烯(PVC)方法:将PET和PVC分别切成薄片状,用拉力试验机进行拉伸测试,记录其拉伸强度和断裂伸长率。
结果:PET具有较高的拉伸强度和断裂伸长率,而PVC的拉伸强度较低,断裂伸长率也较小。
结论:高分子材料的拉伸性能与其分子链的排列方式、分子量以及交联程度等因素有关,分子链越有序,交联程度越高,拉伸强度越大,断裂伸长率越小。
实验三:高分子材料的热稳定性材料:聚苯乙烯(PS)、聚碳酸酯(PC)方法:将PS和PC分别切成小块,放入热风箱中进行热稳定性测试,记录其质量损失。
结果:PS在高温下易分解,质量损失较大,而PC在相同条件下质量损失较小。
结论:高分子材料的热稳定性与其分子链的稳定性有关,分子链越稳定,热稳定性越好,质量损失越小。
实验四:高分子材料的玻璃化转变温度材料:聚甲基丙烯酸甲酯(PMMA)、聚乙烯醇(PVA)方法:将PMMA和PVA分别切成小块,通过差示扫描量热法(DSC)测试其玻璃化转变温度。
结果:PMMA的玻璃化转变温度较高,而PVA的玻璃化转变温度较低。
结论:高分子材料的玻璃化转变温度与其分子链的自由度有关,分子链越自由,玻璃化转变温度越低。
结论:通过以上实验,我们可以看到不同高分子材料在熔融流动性、拉伸性能、热稳定性和玻璃化转变温度等方面表现出不同的特性。
拉伸性能的测定修改号0页数第 1 页共12 页拉伸性能的测定1.原理沿试样纵向主轴恒速拉伸,直到断裂或应力(负荷)或应变(伸长)达到某一预定值,测量这一过程中试样承受的负荷及其伸长。
2.术语和定义2.1标距()试样中间部分两标线之间的初始距离,以mm为单位。
2.2实验速度()在实验过程中,实验机夹具分离速度,以mm/min为单位。
2.3拉伸应力tensil e stress σ在试样标距长度内任何给定时刻每单位原始横截面积上所受的拉伸力以MPa为单位。
2.3.1拉伸屈服应力, 屈服应力tensile stress at yield yield stress σy发生应力不增加而应变增加时的最初应力以MPa为单位该应力值可能小于材料的最大应力(见图1中的曲线b和曲线c)。
2.3.2拉伸断裂应力tensile stress at break σB试样断裂时的拉伸应力(见图1)以MPa为单位。
2.3.3拉伸强度tensile strength σM在拉伸试验过程中试样承受的最大拉伸应力(见图1)以MPa为单位。
2.3.4 x%应变拉伸应力(见4.4) tensile stress at x% strain σx应变达到规定值x%时的应力以MPa为单位。
适用于既无屈服点又不易拉断的软而韧的材料应力-应变曲线上无明显屈服点的情况见图1中的曲线d)x 值应按有关产品标准规定或由相关方商定。
但在任何情况下x 都必须小于拉伸强度所对应的应变。
如土工格栅产品中的2%、5%拉伸力。
此条用于取代92版的“偏置屈服应力”2.4拉伸应变tensile strain ε标距原始单位长度的增量用无量纲的比值或百分数(%)表示。
适用于脆性材料活韧性材料在屈服点以前的应变超过屈服点后的应变则以“拉伸标称应变”代替。
2.4.1拉伸屈服应变tensile strain at yield εy屈服应力时的拉伸应变见4.3.1和图1中的曲线b和曲线c用无量纲的比值或百分数%拉伸性能的测定修改号0页数第 2 页共12 页表示。
试验1高分子材料拉伸强度及断裂伸长率测定摘要:本实验旨在测定高分子材料的拉伸强度和断裂伸长率。
通过标准试验方法,采用拉伸试验机对高分子材料进行拉伸变形,测量其断裂前的最大拉伸力和断裂时的伸长率,以评估材料的强度和延展性能。
实验结果显示,高分子材料的拉伸强度和断裂伸长率与其结构和成分密切相关。
关键词:高分子材料、拉伸强度、断裂伸长率、材料性能评估引言:高分子材料具有广泛的应用领域,如塑料、橡胶、纤维等。
对于这些材料而言,其力学性能尤为重要,包括强度和延展性。
拉伸强度和断裂伸长率是评估高分子材料力学性能的重要参数,能够反映材料是否具有足够的强度和延展性。
因此,通过测定高分子材料的拉伸强度和断裂伸长率,可以评估其适用范围和质量。
实验方法:1.实验仪器与试样准备使用标准拉伸试验机,根据国际标准ASTM D638或GB 1040,选择合适的试样尺寸。
将试样制备成矩形条形,宽度为10 mm,厚度为约2 mm。
试样长度根据实际需要确定。
2.实验设定与操作将试样夹持在拉伸试验机上,并调整夹具,使试样处于合适的拉伸状态。
根据试样质量和试验要求,设定拉伸速度,在试验过程中保持恒定。
3.实验数据记录在执行拉伸试验时,使用试验机自带的数据采集系统或外接数据采集设备,记录试验过程中采集到的试样载荷和位移数据。
根据数据计算并记录试验过程中的应力和应变值。
4.数据处理根据试验数据计算最大拉伸力(F_max)和最断裂时的伸长率(ε_rupt)。
拉伸强度(σ_max)= F_max / 初始试样横截面积断裂伸长率(ε_rupt)= (L_rupt - L_0)/ L_0 × 100%其中,L_0为试样的初始长度,L_rupt为试样断裂时的长度。
5.实验重复与数据分析对同一批次的高分子材料进行多次试验,记录多组数据,并计算出平均值和标准差。
根据实验数据进行统计分析,评估材料的拉伸强度和断裂伸长率。
结果与讨论:通过多组实验数据分析,可以得出高分子材料的拉伸强度和断裂伸长率范围。
高分子材料性能测试实验报告一、实验目的本实验旨在对常见的高分子材料进行性能测试,以深入了解其物理、化学和机械性能,为材料的选择和应用提供科学依据。
二、实验材料与设备1、实验材料聚乙烯(PE)聚丙烯(PP)聚苯乙烯(PS)聚氯乙烯(PVC)2、实验设备电子万能试验机热重分析仪(TGA)差示扫描量热仪(DSC)硬度计冲击试验机三、实验原理1、拉伸性能测试高分子材料在受到拉伸力作用时,会发生形变。
通过测量材料在拉伸过程中的应力应变曲线,可以得到材料的拉伸强度、断裂伸长率等性能指标。
2、热性能测试TGA 用于测量材料在加热过程中的质量损失,从而分析材料的热稳定性和组成成分。
DSC 则可以测量材料在加热或冷却过程中的热量变化,用于研究材料的相变温度、玻璃化转变温度等。
3、硬度测试硬度是衡量材料抵抗局部变形的能力。
硬度计通过压入材料表面一定深度,测量所施加的力来确定材料的硬度值。
4、冲击性能测试冲击试验机通过施加冲击载荷,测量材料在冲击作用下的吸收能量,评估材料的抗冲击性能。
四、实验步骤1、拉伸性能测试将高分子材料制成标准哑铃状试样。
安装试样到电子万能试验机上,设置拉伸速度和测试温度。
启动试验机,记录应力应变曲线。
2、热性能测试称取一定量的高分子材料样品,放入 TGA 和 DSC 仪器的样品盘中。
设置升温程序和气氛条件,进行测试。
3、硬度测试将试样平稳放置在硬度计工作台上。
选择合适的压头和试验力,进行硬度测量。
4、冲击性能测试制备标准冲击试样。
将试样安装在冲击试验机上,进行冲击试验。
五、实验结果与分析1、拉伸性能聚乙烯(PE):拉伸强度较低,断裂伸长率较高,表现出较好的柔韧性。
聚丙烯(PP):拉伸强度较高,断裂伸长率适中,具有一定的刚性和韧性。
聚苯乙烯(PS):拉伸强度较高,但断裂伸长率较低,脆性较大。
聚氯乙烯(PVC):拉伸强度和断裂伸长率因配方不同而有所差异。
2、热性能TGA 结果显示,不同高分子材料的热分解温度和分解过程有所不同。
高分子材料拉伸试验一、实验目的测定聚丙烯材料的屈服强度、断裂强度和断裂伸长,并画应力—应变曲线;观察结晶性高聚物的拉伸特征;掌握高聚物的静载拉伸实验方法。
∙∙∙二、实验原理应力—应变曲线本实验是在规定的实验温度、湿度及不同的拉伸速度下,在试样上沿轴向方向施加静态拉伸负荷,以测定塑料的力学性能。
拉伸实验是最常见的一种力学实验,由实验测定的应力—应变曲线,可以得出评价材料性能的屈服强度,断裂强度和断裂伸长率等表征参数,不同的高聚物,不同的测定条件,测得的应力—应变曲线是不同的。
结晶性高聚物的应力—应变曲线分三个区域,如图1所示。
(1)OA 段曲线的起始部分,近似直线,属普弹性变形,是由于分子的键长、键角以及原子间的距离改变所引起的,其形变是可逆的,应力与应变之间服从胡克定律。
即:σ=Eε式中σ——应力,MPa ;ε——应变,%;Ε——弹性模量,MP 。
A 为屈服点,所对应力屈服应力或屈服强度。
(2)BC 段到达屈服点后,试样突然在某处出现一个或几个“细颈”现象,出现细颈现象的本质是分子在该自发生取向的结晶,该处强度增大,拉伸时细颈不会变细拉断,而是向两端扩展,直至整个试样完全变细为止,此阶段应力几乎一变,而变形增加很大。
(3)CD 段被均匀拉细后的试样,再长变细即分子进一步取向,应力随应变的增大而增大,直到断裂点D ,试样被拉断,D 点的应力称为强度极限,即抗拉强度或断裂强度σ断,是材料重要的质量指标,其计算公式为:σ断=P/(b ×d )(MPa) 式中P ——最大破坏载荷,N ; b ——试样宽度,mm ; d ——试样厚度,mm ;断裂伸长率ε断是试样断裂时的相对伸长率,ε断按下式计算:ε断=(F-G )/G×100%式中G ——试样标线间的距离,mm ; F ——试样断裂时标线间的距离,mm 。
实验设备、用具及试样电子式万能材料试验机WDT-20KN 。
游标卡尺一把聚丙烯(PP )标准试样6条,拉伸样条的形状(双铲型)如图2所示。
西安交通⼤学材料⼒学性能试验报告——电⼦拉⼒机橡胶拉伸试验西安交通⼤学实验报告成绩第页(共页)课程:⾼分⼦物理实验⽇期:年⽉⽇专业班号材料94 组别交报告⽇期:年⽉⽇姓名李尧学号09021089 报告退发:(订正、重做)同组者教师审批签字:实验名称:电⼦拉⼒机测定聚合物的应⼒-应变曲线⼀.实验⽬的1.掌握拉伸强度的测试原理和测试⽅法,掌握电⼦拉⼒机的使⽤⽅法及共⼯作原理;2.了解橡胶在拉伸应⼒作⽤下的形变⾏为,测试橡胶的应⼒-应变曲线;3.通过应⼒-应变曲线评价材料的⼒学性能(初始模量、拉伸强度、断裂伸长率);4.了解测试条件对测试结果的影响;5.熟悉⾼分⼦材料拉伸性能测试标准条件。
⼆.实验原理随着⾼分⼦材料的⼤量使⽤,⼈们迫切需要了解它的性能。
⽽拉伸性能是⾼分⼦聚合物材料的⼀种基本的⼒学性能指标。
拉伸试验是⼒学性能中⼀种常⽤的测试⽅法,它是在规定的试验温度、湿度和拉伸速度下,试样上沿纵向施加拉伸载荷⾄断裂。
在材料试验机上可以测定材料的屈服强度、断裂强度、拉伸强度、断裂伸长率。
影响⾼聚物实际强度的因素有:1)化学结构。
链刚性增加的因素都有助于增加强度,极性基团过密或取代基过⼤,阻碍链段运动,不能实现强迫⾼弹形变,使材料变脆。
2)相对分⼦质量。
在临界相对分⼦质量之前,相对分⼦质量增加,强度增加,越过后拉伸强度变化不⼤,冲击强度随相对分⼦质量增加⽽增加,没有临界值。
3)⽀化和交联。
交联可以有效增强分⼦链间的联系,使强度提⾼。
分⼦链⽀化程度增加,分⼦间作⽤⼒⼩,拉伸强度降低,⽽冲击强度增加。
4)应⼒集中。
应⼒集中处会成为材料破坏的薄弱环节,断裂⾸先在此发⽣,严重降低材料的强度。
5)添加剂。
增塑剂、填料。
增强剂和增韧剂都可能改变材料的强度。
增塑剂使⼤分⼦间作⽤⼒减少,降低了强度。
⼜由于链段运动能⼒增强,材料的冲击强度增加。
惰性填料只降低成本,强度也随之降低,⽽活性填料有增强作⽤。
6)结晶和取向。
结晶度增加,对提⾼拉伸强度、弯曲强度和弹性模量有好处。
实验1 高分子材料拉伸强度及断裂伸长率测定一、实验目的通过实验了解聚合物材料应力—应变曲线特点、试验速度对应力—应变曲线的影响、拉伸强度及断裂伸长率的意义,熟悉它们的测试方法;并通过测试应力—应变曲线来判断不同聚合物的力学性能。
二、实验原理为了评价聚合物材料的力学性能,通常用等速施力下所获得的应力—应变曲线来进行描述。
所谓应力是指拉伸力引起的在试样内部单位截面上产生的内力;而应变是指试样在外力作用下发生形变时,相对其原尺寸的相对形变量。
不同种类聚合物有不同的应力—应变曲线。
等速条件下,无定形聚合物典型的应力—应变曲线如图1所示。
图中的α点为弹性极限,σα为弹性(比例)极限强度,εα为弹性极限伸长。
在α点前,应力—应变服从虎克定律:σ=Έε式中σ——应力,MPa;ε——应变,%;Ε——弹性(杨氏)模量(曲线的斜率),MP 。
曲线斜率E反映材料的硬性。
Y称屈服点,对应的σy和εy称屈服强度和屈服伸长。
材料屈服后,可在t点处,也可在t′点处断裂。
因而视情况,材料断裂强度可大于或小于屈服强度。
εt(或εt′)称断裂伸长率,反映材料的延伸性。
从曲线的形状以及σt和εt的大小,可以看出材料的性能,并借以判断它的应用范围。
如从σt的大小,可以判断材料的强与弱;而从εt的大小,更正确地讲是从曲线下的面积大小,可判断材料的脆性与韧性。
从微观结构看,在外力的作用下,聚合物产生大分子链的运动,包括分子内的键长、键角变化,分子链段的运动,以及分子间的相对位移。
沿力方向的整体运动(伸长)是通过上述各种运动来达到的。
由键长、键角产生的形变较小(普弹形变),而链段运动和分子间的相对位移(塑性流动)产生的形变较大。
材料在拉伸到破坏时,链段运动或分子位移基本上仍不能发生,或只是很小,此时材料就脆。
若达到一定负荷,可以克服链段运动及分子位移所需要的能量,这些运动就能发生,形变就大,材料就韧。
如果要使材料产生链段运动用分子位移所需要的负荷较大,材料就较强及硬。
材料的拉伸试验报告一、实验目的1.进一步熟悉电子万能实验机操作以及拉伸实验的基本操作过程;2.通过橡胶材料的拉伸实验,理解高分子材料拉伸时的力学性能,观察橡胶拉伸时的变形特点,测定橡胶材料的弹性模量E,强度极限σb,伸长率δ和截面收缩率Ψ二、实验设备1.WDW3050型50kN电子万能实验机;2.游标卡尺;3.橡胶材料试件一件。
三、实验原理拉伸橡胶试件时,实验机可自动绘出橡胶的拉伸应力-应变曲线。
图中曲线的最初阶段会呈曲线,这是由于试样头部在夹具内有滑动及实验机存在间隙等原因造成的。
分析时应将图中的直线段延长与横坐标相交于O点,作为其坐标原点。
橡胶的拉伸只有弹性阶段。
拉伸曲线可以直观而又比较准确地反映出橡胶拉伸时的变形特征及受力和变形间的关系。
橡胶拉伸时,基本满足胡克定律,在应力-应变曲线上大致为一段直线,因此可以用这一段直线的斜率tanα来表示弹性模量E。
为了更准确地计算出弹性模量的值,可以用Matlab对比例极限内的数据进行直线拟合,得到拟合直线的斜率,即为弹性模量的值。
四、实验过程1.用游标卡尺测量橡胶试件实验段的宽度h和厚度b,并标注一个20mm的标距,并做记录;2.打开实验机主机及计算机等实验设备,安装试件;3.打开计算机上的实验软件,进入实验程序界面,选择联机,进行式样录入和参数设置,输入相关数据并保存;4.再认真检查试件安装等实验准备工作,并对实验程序界面上的负荷、轴向变形和位橡胶材料拉伸实验报告移进行清零,确保没有失误;、5.点击程序界面上的实验开始按钮,开始实验;6.试件被拉断后,根据实验程序界面的提示,测量相关数据并输入,点击实验结束;7.从实验程序的数据管理选项中,调出相关实验数据,以备之后处理数据使用。
五、实验注意事项1.在实验开始前,必须检查横梁移动速度设定,严禁设定高速度进行实验。
在实验进行中禁止在▲、▼方向键之间直接切换,需要改变方向时,应先按停止键;2.安装试件时,要注意不能把试件直接放在下侧夹口处,而是应该用手将试件提起,观察夹口下降的高度是否合适,之后再将试件夹紧、固定;3.横梁速度v=10m/s,最大载荷为500N,最大位移400mm;4.实验过程中不能点“停止”,而是“实验结束”,否则将不能保存已经产生的数据;5.安装试件时横梁的速度要调整好,不能太快,试件安装完成后,要确认横梁是否停止运动,以免造成事故。
高分子材料性能测试拉伸实验实验目的①熟悉高分子材料拉伸性能测试标准条件、测试原理及其操作②了解测试条件对测定结果的影响实验原理将试样夹持在专用夹具上,对试样施加静态拉伸负荷,通过压力传感器、形变测量装置以及计算机处理,测绘出试样在拉伸变形过程中的拉伸应力~应变曲线,计算出曲线上的特征点如试样直至断裂为止所承受的最大拉伸应力(拉伸强度)、试样断裂时的拉伸应力(拉伸断裂应力)、在拉伸应力~应变曲线上屈服点处的应力(拉伸屈服应力)、应力~应变曲线偏离直线性达规定应变百分数(偏置)时的应力(偏置屈服应力)和试样断裂时标线间距离的增加量与初始标距之比(断裂伸长率。
以百分率表示)。
实验步骤①试样的状态调节和实验环境按GB2918规定进行。
②测试样件中间平行部分的宽度和厚度,精确到0.01㎜.Ⅱ型试样中间平行部分的宽度,精确至0.05㎜。
每个试样测量三点,取算数平均值。
③在试样中间平行部分做标线示明标距,此标线对测试结果不应有影响.。
④夹持试样,夹具夹持试样时,要是试样纵轴与上、下夹具中间连线相重合,并且要松紧适宜,以防止试样滑脱或断在夹具内。
⑤选定试验速度,进行实验。
⑥记录屈服时的负荷,或断裂负荷及标距间伸长。
若试验断裂在中间平行部分之外时,此试样作废,另取试样补做。
实验试样本实验采用的是PS(燕山石化666D)实验设备实验机:数字化电子万能试验机型号3010 深圳瑞格尔公司实验数据I思考题1.分析试样断裂在先的外在原因。
答:试样断裂在先的外在原因有:①试样本身存在缺陷,产生了气泡,试样内杂质的分布也不不均匀;②安装的误差,浇口位置处造成断裂.。
2.拉伸速度对测试结果有何影响?答:拉伸速度过快,冲击强度变大,断裂会较早发生;拉伸速度过慢,分子发生取向,断裂将较晚发生。
3.同样是PS材料,为什么测定的拉伸性能(强度、断裂伸长率、模量)有差异?答:因为PS材料本身品质不同,多多少少存在缺陷,各材料的内部杂质分布不均匀,材料内部有起泡等方面也就有所不同。
《高分子材料的拉伸性能测试》实验指导书一、实验目的1、测试热塑性塑料拉伸性能。
2、掌握高分子材料的应力—应变曲线的绘制。
4、了解塑料抗张强度的实验操作。
二、实验原理拉伸试验是材料最基本的一种力学性能试验方法,可以得到材料的各种拉伸性能,包括拉伸强度、弹性模量、泊松比、伸长率、应力 -应变曲线等。
拉伸试验是指在规定的温度、湿度和试验速度下,在试样上沿纵轴方向施加拉伸载荷使其破坏,此时材料的性能指标如下:1.拉伸强度为:(1)式中σ -- 拉伸强度, MPa;P--- 破坏载荷(或最大载荷),N;b--- 试样宽度, cm;h--- 试样厚度, cm.2. 拉伸破坏 ( 或最大载荷处 ) 的伸长率为:(2)式中ε ---试样拉伸破坏(或最大载荷处)伸长率,%;L0- 破坏时标距内伸长量, cm;L0--- 测量的标距,cm,3.拉伸弹性模量为:(3)式中E t---拉伸弹性模量,MPa;P—荷载-变形曲线上初始直线段部分载荷量,N;L0—与载荷增量对应的标距内变形量,cm。
4. 拉伸应力- 应变曲线如果材料是理想弹性体,抗张应力与抗张应变之间的关系服从胡克定律,即:σ= E ε式中: E-杨氏模量或拉伸模量;σ-应力;ε-应变聚合物材料由干本身长链分子的大分子结构持点,使其具有多重的运动单元,因此不是理想的弹性体,在外力作用下的力学行为是一个松弛过程,具有明显的粘弹性质。
拉伸试验时因试验条件的不同,其拉伸行为有很大差别。
起始时,应力增加,应变也增加,在 A 点之前应力与应变成正比关系,符合胡克定律,呈理想弹性体。
A点叫做比例极限点。
超过A点后的一段,应力增大,应变仍增加,但二者不再成正比关系,比值逐渐减小;当达到Y点时,其比值为零。
Y点叫做屈服点。
此时弹性模最近似为零,这是一个重要的材料持征点。
对塑料来说,它是使用的极限。
如果再继续拉伸,应力保持不变甚至还会下降,而应变可以在一个相当大的范围内增加,直至断裂。