“绿色”石油裂化中的沸石分子筛催化剂
- 格式:docx
- 大小:55.66 KB
- 文档页数:3
磷酸铝沸石分子筛
磷酸铝沸石分子筛是一类由铝、磷和氧元素构成的晶体化合物,具有规则的孔道结构和可调的酸性位,在工业催化、吸附分离、离子交换等领域有广泛应用。
以下是关于磷酸铝沸石分子筛的示例:
1.SAPO系列分子筛:SAPO系列分子筛是一种具有规则的孔道结构、优异的
离子交换性能和良好的热稳定性等特点的磷酸铝沸石分子筛。
SAPO-34、SAPO-11和SAPO-41等是SAPO系列分子筛的重要代表。
2.AlPO系列分子筛:AlPO系列分子筛是一类具有高硅铝比和高孔容等特点
的磷酸铝沸石分子筛。
该系列分子筛在石油工业中有广泛应用,可以作为催化剂或吸附剂用于烃类分子的分离和加工。
3.Zeolite系列分子筛:Zeolite系列分子筛是一类具有规则的孔道结构和可
调的酸性位的磷酸铝沸石分子筛。
该系列分子筛在工业催化领域有广泛应用,可以用于烃类分子的裂化、异构化和烷基化等反应。
总之,磷酸铝沸石分子筛是一类重要的晶体化合物,具有规则的孔道结构和可调的酸性位,在工业催化、吸附分离、离子交换等领域有广泛应用。
不同的系列和种类具有不同的特点和用途,可以根据实际需求进行选择和应用。
石油裂解催化剂
石油裂解催化剂是催化裂化过程中关键的化学物质,主要用于将重质石油原料(如渣油、减压蜡油等)转化为轻质石油产品,例如汽油、柴油和液化石油气。
裂解过程是在高温条件下进行的,并且在有催化剂参与的情况下可以更有效地把大分子烃类化合物分解为较小的、更有价值的分子。
石油裂解催化剂通常包含活性组分和载体或基质两部分:
1.活性组分:通常是酸性材料,如沸石(比如ZSM-5)、硅酸铝或者含有某些金属氧化物(如氧
化铝、氧化钛等)的混合物。
这些活性成分能够吸附并活化原料烃分子,促使它们发生裂解反应。
2.载体或基质:提供稳定的物理结构以支撑活性组分,并有助于提高催化剂的热稳定性和抗金属污
染的能力。
载体材料同样对催化剂性能有着重要影响。
现代石油裂解催化剂设计上强调以下几个特点:
1.提高裂解选择性,使得产物分布更加优化。
2.增强催化剂的耐热稳定性与抗积碳能力。
3.抗金属污染,因为原料中可能含有的金属杂质会降低催化剂活性。
4.通过科学配方和制备工艺改进催化剂的再生性能,延长使用寿命。
石油裂解催化剂的研发与生产对于提高炼油厂的产品收率、优化资源利用及降低环境污染具有重要意义。
全球范围内,多家化工公司如美国格雷斯、雅宝、德国巴斯夫等都在此领域处于领先地位。
沸石分子筛的发展及在石油化工中的应用1沸石分子筛的发展1756年,瑞典矿物学家克隆斯特[2]在选矿时发觉一种低密度、软性的矿石,这种矿石有一种特别性质,即在水中煮沸时会冒泡,因此把它叫做沸石。
化学家发觉沸石后,在很长时间内用它做吸水剂,后来又发觉沸石有交换离子的性质。
在本世纪初沸石用于净水,以除去硬水中的钙、镁等离子。
到50年月,沸石用于核能废水中阳离子处理剂、工业废气的汲取剂和工业废水的净化剂等。
50年月后期[3],莫比尔(Mobil)试验室首先发觉在沸石结构内部能进行催化反应,这一发觉标志着沸石催化研究的真正起点。
用沸石分子筛作催化剂,至今已经历了三个发展阶段。
自60年月苇茨(Weisz)和弗里莱特(Frilette)发觉合成沸石的催化作用以来[4],沸石在催化领域的用途快速扩大。
由于分子筛的多样性和稳定性[1],它的独特的选择与择形选择相结合的性能已经在吸附分别、催化及阳离子交换工业上广为应用。
分子筛催化很快发展成为催化领域中的一个特地分支学科,此阶段发展的中、低硅铝比沸石被称为第一代分子筛。
70年月莫比尔(Mobil)公司开发的以ZSM5为代表的高硅三维交叉直通道的新结构沸石,称之为第二代分子筛。
这些高硅沸石分子筛水热稳定性高,亲油疏水,绝大多数孔径在0.6nm左右,在甲醇及烃类转化反应中有良好的活性及选择性。
此种类型分子筛的合成,受到普遍重视。
年月联合碳化公司(UCC)成功地开发了非硅、铝骨架的磷酸铝系列分子筛,这就是第三代分子筛。
此类分子筛的开发,其科学价值在于给人们的启示:只要条件合适,其它非硅、铝元素也可形成具有类似硅、铝分子筛的结构,为新型分子筛的合成开拓了一条新途径。
迄今为止,已经发觉天然沸石分子筛40多种[5],人工合成的100多种。
2沸石分子筛的结构沸石是一族结晶型硅铝酸盐的总称。
目前同天然产物具有相同结晶结构的沸石以及按分类属于非天然产的沸石,大多数都能够人工合成出来。
化学新型绿色催化剂——分子筛催化剂【摘要】对微孔分子筛催化剂,介孔分子筛催化剂,复合分子筛催化剂进行了介绍,并简述其当今的研究现状和应用。
最后,笔者简要分析了分子筛催化剂的绿色化特点。
【关键词】分子筛催化剂;复合;研究与应用;绿色化学New Green Chemical CatalystsMolecular Sieve Based CatalystsAbstract The microporous catalysts,mesoporous catalysts and the compositemolecular sieve catalysts are introduced in the passage. And the current research status and application of those catalysts are also briefly introduced. At last, the author analyses the greening characteristics of molecular sieve based catalysts.Key words molecular sieve based catalysts, composite, analysis and application,green chemistry前言在学习《化学化工前沿知识讲座》的基础上,针对我要选择的应用化学的专业方向——精细化工,通过查阅资料等,对新型绿色催化剂——分子筛,进行了初步的研究。
为扩展自己的专业知识面,以及对大学即将进行的研究(科讯二、毕设),做好资料上的充分准备。
1 分子筛催化剂(molecular sieve based catalysts)分子筛,是具有均一微孔结构而能将不同大小分子分离或选择性反应的固体吸附剂或催化剂。
是一种结晶型的硅铝酸盐,有天然和合成两种,其组成SiO2与Al2O3之比不同,商品有不同的型号。
PROGRESSINCHEMISTRYDOI:10 7536/PC150112http://www.progchem.ac.cn㊀㊀ProgressinChemistry,2015,27(5):503 510沸石分子筛的绿色合成路线∗历㊀阳1㊀孙洪满1,2㊀王有和1,2∗∗㊀许本静1㊀阎子峰1∗∗(1.中国石油大学重质油国家重点实验室㊀中国石油催化重点实验室㊀青岛266580;2.中国石油大学(华东)理学院㊀青岛266580)摘㊀要㊀沸石分子筛因具有独特的孔道结构㊁较强的酸性和高的水热稳定性,在吸附分离㊁催化和离子交换等领域得到了广泛的应用㊂沸石分子筛的合成方法大多采用水热法,需要使用大量含硅铝的化工产品和有机模板剂,导致沸石分子筛的合成成本较高㊁效率较低,且环境污染较为严重,因此沸石分子筛高效绿色合成路线的研究具有重大意义㊂本文主要从沸石分子筛的合成原料绿色化㊁合成条件绿色化以及合成方法绿色化等三个方面综述了国内外沸石分子筛绿色合成路线的研究新进展,并提出现有沸石分子筛绿色合成路线存在的问题以及将来的发展方向㊂关键词㊀沸石分子筛㊀天然矿物㊀无胺法㊀无溶剂法㊀绿色合成路线中图分类号:O643 36;TQ426 6㊀文献标识码:A㊀文章编号:1005⁃281X(2015)05⁃0503⁃08收稿:2015年1月,收修改稿:2015年1月,网络出版:2015年5月5日㊀∗国家自然科学基金委员会⁃中国石油天然气集团公司石油化工联合基金项目(No.U1362202)和中国石油大学(华东)研究生创新工程项目(No.YCX2014037)资助TheworkwassupportedbythePetrochemicalJointFundsofNSFC⁃CNPC(No.U1362202)andPostgraduateInnovationProjectofChinaUniversityofPetroleum(EastChina)(No.YCX2014037).∗∗Correspondingauthor㊀e⁃mail:yhewang@upc.edu.cn;zfyancat@upc.edu.cnGreenRoutesforSynthesisofZeolites∗LiYang1㊀SunHongman1,2㊀WangYouhe1,2∗∗㊀XuBenjing1㊀YanZifeng1∗∗(1.StateKeyLaboratoryofHeavyOilProcessing,KeyLaboratoryofCatalysis,CNPC,ChinaUniversityofPetroleum,Qingdao266580,China;2.SchoolofScience,ChinaUniversityofPetroleum(EastChina),Qingdao266580,China)Abstract㊀Zeoliteshavebeenwidelyusedasadsorbents,heterogeneouscatalystsandion⁃exchangematerialsduetotheiruniqueporestructure,strongacidityandhighhydrothermalstability.Atpresent,mostofzeolitesaresynthesizedbyhydrothermalmethod,involvingtheuseofcommercialsilicon⁃andaluminum⁃containingreagentsandorganictemplates,whichleadstohighcost,lowefficiencyandseriouslyenvironmentalpollution.Therefore,theresearchofhighlyefficientandgreenroutesforsynthesisofzeolitesisofgreatsignificance.Threeaspectsincludingthegreenizationoftherawmaterials,synthesisconditionsandsynthesismethodsarereviewedinthispaper.Theexistingproblemsandfuturedirectionofdevelopmentarealsoputforward.Keywords㊀zeolite;naturalmineral;organotemplate⁃free;solvent⁃free;greenroutesContents1㊀Introduction2㊀Thegreenizationofrawmaterials2 1㊀Synthesisofzeolitefromkaolin2 2㊀Synthesisofzeolitefromdiatomite3㊀Thegreenizationofsynthesisconditions3 1㊀Directedmethod3 2㊀Seedsolution⁃assistedmethod3 3㊀Crystalseed⁃directedmethod4㊀Thegreenizationofsynthesismethods5㊀Conclusion网络出版时间:2015-05-06 11:18网络出版地址:㊃504㊀㊃ProgressinChemistry,2015,27(5):503 5101㊀引言沸石分子筛是一种无机晶体材料,因具有规整的孔道结构㊁较强的酸性和高的水热稳定性而广泛应用于催化㊁吸附和离子交换等领域中,并起着不可替代的作用㊂人们对于沸石分子筛的人工合成研究可追溯到20世纪40年代,Barrer等[1]通过对天然矿物在热的盐溶液中相态转变的研究,首次实现了沸石分子筛的人工合成,自此揭开了人工合成沸石分子筛的序幕㊂目前,人们已经发现206种沸石分子筛骨架结构类型[2],最为常用的合成沸石分子筛的方法是水热法㊂但是,随着人们对于 绿色化学 理念的不断追求,传统的水热法合成沸石分子筛因存在着效率低㊁能耗高㊁环境污染严重等问题正面临着严峻的考验,例如,(1)利用硅酸钠㊁铝酸钠等化工产品作为合成分子筛的原料,增大了沸石分子筛合成上游工艺的能耗;(2)有机模板剂的使用,造成沸石分子筛合成成本提高,同时有机模板剂的脱除过程会产生NOx等有毒有害的气体,造成较大的环境污染;(3)合成过程利用水作为溶剂,且合成体系的固液比较低,导致分子筛合成效率下降,废液排放量大,同时反应压力较高,存在一定的安全隐患㊂所以如何克服传统水热法存在的诸多弊端,成为人们最为关心的问题㊂近些年来,人们针对传统水热法存在的一系列问题,通过对沸石分子筛合成原料㊁合成条件和合成方法的研究改进,开发出了一系列绿色合成路线,包括天然矿物合成沸石分子筛㊁无胺法合成沸石分子筛以及无溶剂法合成沸石分子筛等㊂本文将重点从沸石分子筛合成的原料绿色化㊁合成条件绿色化以及合成方法绿色化等三个方面来介绍沸石分子筛绿色合成路线研究的最新进展情况,并提出现有沸石分子筛绿色合成路线存在的问题以及将来的发展方向㊂2㊀沸石分子筛合成原料的绿色化目前,利用硅酸钠㊁铝酸钠等化工原料合成沸石分子筛的技术已相当成熟,但是该方法需要大量的化工原料,使得沸石分子筛生产成本较高,同时由于这些化工原料的生产过程都伴随着巨大的能耗和环境污染等问题,所以寻找更为经济有效的绿色原料成为人们关注的焦点㊂以硅铝元素为主的天然矿物由于具有储量丰富㊁价格低廉等优势,在作为合成沸石分子筛的替代原料方面表现出巨大的潜力,因此,以天然矿物为原料合成沸石分子筛也逐渐成为人们研究的热点㊂在众多的天然矿物中,最为典型的合成沸石分子筛的原料为高岭土和硅藻土㊂下面主要介绍这两种天然矿物在沸石分子筛合成过程中的应用㊂2 1㊀高岭土合成沸石分子筛高岭土是一种以高岭石为主要成分,具有晶体结构的层状硅酸盐矿物,其理想化学组成为Al2O3㊃2SiO2㊃2H2O[3]㊂由于高岭土稳定的晶体结构,使其在作为合成沸石分子筛原料之前需要进行活化处理㊂研究表明[4],当焙烧温度为600 900ħ时,高岭土可转变成具有高反应活性的偏高岭土㊂因为高岭土中硅铝原子比约为1,所以较为适合作为低硅铝比沸石分子筛的合成原料,但若要合成高硅铝比沸石分子筛通常需要补加硅源或经脱铝处理㊂由于高岭土与4A沸石分子筛具有相同的硅铝比,因此高岭土是合成4A沸石分子筛的优良原料㊂自从Howell等[5]首次报道以高岭土为原料成功合成出4A沸石分子筛以来,人们对其做了大量的研究㊂翟彦霞等[6]通过采用将高岭土于500 600ħ焙烧活化后,再与氢氧化钠碱液混合,在水热条件下晶化合成出4A沸石分子筛㊂研究表明,高岭土焙烧转化成高活性的偏高岭土是决定能否成功合成4A沸石分子筛的关键因素,虽然该法操作流程较为简单,但是存在煅烧温度较高㊁原料活化不充分㊁晶化产物纯度低等缺点㊂胡芳华等[7]对原有工艺进行了改进,先利用碱液溶出活化高岭土中的硅铝酸盐,经过滤后,用硅铝酸盐滤液直接来合成4A沸石分子筛㊂该工艺大大提高了晶化产物的纯度和结晶度,并减少了晶化产物中微量元素的含量,提高了4A沸石分子筛的使用安全性,但是该工艺仍无法避免高温焙烧活化高岭土所造成的能耗损失㊂孔德顺等[8]采用高岭土与氢氧化钠共同焙烧活化的方式合成出了4A沸石分子筛,该工艺使得焙烧活化温化学进展,2015,27(5):503 510㊃505㊀㊃度由原来的600ħ左右降低至了400ħ,降低了沸石分子筛合成过程的能耗㊂Zhou等[9]采用两步晶化法进行了A沸石分子筛的研究,通过控制预晶化时间和温度,可加速分子筛成核,提高A沸石分子筛的结晶度并缩短晶化时间㊂Wang等[10]提出了以无需焙烧活化高岭土为原料合成A沸石分子筛的研究路线,使得分子筛合成能耗大大降低,但合成过程需引入大量的酸碱溶液,废液排放量较大㊂Y和ZSM⁃5沸石分子筛是石油炼制工业上最为重要的沸石分子筛,主要用于催化裂化催化剂和助剂㊂但是由于这两种沸石分子筛的硅铝比均大于高岭土原料的硅铝比,所以需要对高岭土进行补硅或脱铝处理㊂刘欣梅等[11,12]较早地进行了高岭土合成Y沸石分子筛的研究㊂他们以焙烧活化后的高岭土为主要原料,硅溶胶作为补充硅源,合成出了高结晶度㊁无杂晶的NaY沸石分子筛㊂王雪静等[13]对偏高岭土合成Y沸石分子筛的机理进行了探索研究,结果表明偏高岭土水热合成Y沸石分子筛遵循固相转变机理,晶化过程是一个扩散⁃成胶⁃原位重排的过程㊂为提高Y沸石分子筛的催化活性,人们还先后进行了高岭土合成小晶粒NaY[14]和原位合成NaY[15]沸石分子筛的研究㊂Pan等[16,17]开发了一种绿色高效的ZSM⁃5沸石分子筛合成方法,为了提高高岭土原料的硅铝比,他们对焙烧活化后的高岭土进行酸化处理,使得高岭土的SiO2/Al2O3摩尔比由原来的2 1增加至31 8㊂该实验方法避免了化工硅铝源的加入,大大降低了生产成本,同时还具有良好的环境效应㊂Holmes等[18]采用相似的方法也成功合成出了ZSM⁃5沸石分子筛㊂Wang等[19]以高岭土为原料,硅酸为补充硅源进行了原位合成ZSM⁃5沸石分子筛的研究,所得晶化产物在催化裂化反应中表现出优异的增产丙烯的催化活性㊂目前,美国Engelhard公司和中国石油股份公司兰州石化分公司催化剂厂已实现高岭土原位晶化技术的工业化,并开发出一系列高岭土型催化剂,如REY型和REHY型催化剂等[20]㊂Li等[21]以高岭土为硅铝源实现了ZSM⁃5/MCM⁃41等级孔沸石分子筛的合成,并表现出较高的催化酯化反应活性㊂由于高岭土自身的硅铝原子比较低,所以高岭土更适合作为低硅铝比分子筛的合成原料㊂同时高岭土的晶体结构虽然使其在作为原料前需要进行活化处理,但却在作为基质材料方面表现出良好的稳定性和机械强度,所以开发低能耗㊁高效的活化方法和原位合成技术是以高岭土为原料合成分子筛研究中的重点和难点㊂2 2㊀硅藻土合成沸石分子筛硅藻土是一种生物成因的硅质沉积岩,与高岭土相比,在作为沸石分子筛合成原料方面,硅藻土具有以下优点:(1)硅藻土的主要成分为SiO2,所以具有更高的硅铝原子比,可以用来作为合成高硅铝比沸石分子筛;(2)硅藻土中SiO2是无定形的,无需进行活化处理就可以直接合成沸石分子筛;(3)硅藻土具有独特有序排列的孔道结构,孔隙率高等优点㊂因此,硅藻土不仅可以作为沸石分子筛合成的生物质硅源,还可以用来作为沸石分子筛的载体材料[22]㊂Ghosh等[23]最早利用硅藻土合成出了A型沸石分子筛,并详细考察了合成体系中硅铝比㊁钠硅比及晶化条件对晶化产物的影响㊂满卓等[24]直接将硅藻土原料与氢氧化钠溶液混合晶化得到了P型沸石分子筛,大大简化了操作流程,并且在生产成本上具有明显的优势,但是由于原料未经纯化处理,所以晶化产物的纯度较低㊂Du等[25]首次提出采用水浴法合成P型沸石分子筛的工艺路线,使得工艺过程能耗进一步降低,并且硅藻土原料事先与六聚偏磷酸钠混合,除去原料中的黏土矿物等杂质并起到扩孔的作用,提高了晶化产物的纯度,表现出优异的钙离子吸附性能㊂Chaisena等[26,27]同样进行了硅藻土合成分子筛的研究,并通过对初始凝胶组成㊁晶化温度和时间等不同合成条件的考察,确定了P型㊁方沸石㊁方钠石等沸石分子筛的合成条件区间㊂Sanhueza等[28]以硅藻土为原料合成出了丝光沸石分子筛㊂研究者们以硅藻土为原料[29,30],在有机模板剂的作用下成功合成出了ZSM⁃5沸石分子筛㊂Shan等[31]采用相同的方法也得到了ZSM⁃5沸石分子筛,但是由于合成体系中引入NaCl,导致晶化产物以聚晶形式堆积成球形,具有大量的间隙孔道㊂硅藻土除了可以作为合成沸石分子筛的原料外,还可以作为分子筛载体,制备具有等级孔道结构的沸石分子筛㊂Wang等[32]以硅藻土为原料,提出气相转移法合成等级孔ZSM⁃5沸石分子筛的工艺路线,通过对实验条件的优化发现,当ZSM⁃5沸石分子筛负载量达到50%时,晶化产物中硅藻土原料的孔道结构仍然可以得到较好的保留,并且晶化产物表现出良好的水热稳定性能,这为等级孔ZSM⁃5沸石分子筛的催化应用提供了可能㊂张柯等[33 35]以硅藻土为原料,采用固相原位晶化法同样合成出了具有微孔⁃介孔等级孔ZSM⁃5沸石分子筛,㊃506㊀㊃ProgressinChemistry,2015,27(5):503 510晶化产物不仅具有丰富的孔结构㊁较高的结晶度及完整晶形,而且通过对其芳构化性能研究发现,该法制备的催化剂具有较高的芳构化活性和抗积炭能力㊂Jia等[36]采用蒸汽辅助晶化法实现了硅藻土原位合成纳米silicalite⁃1沸石分子筛,避免了传统水热法复杂的分离㊁纯化过程,大大简化了操作流程㊂Hill等[37]以硅藻土为载体采用晶种法合成出了具有等级孔结构的Y/硅藻土复合材料,并表现出优异的钴离子脱除能力㊂Cho等[38]在有机模板剂的作用下合成出了具有微孔⁃介孔⁃大孔结构的β/硅藻土复合材料㊂为了调节沸石分子筛合成体系的硅铝比,实现硅铝原料的全部天然矿物化,鲍晓军课题组[39,40]先后进行了以高岭土和硅藻土为原料合成Y(图1)和ZSM⁃5沸石分子筛的研究㊂图1㊀高岭土和硅藻土为原料合成Y沸石分子筛示意图[39]Fig.1㊀SchematicdiagramofsynthesisofzeoliteYfromkaoliniteanddiatomite[39]从上述合成实例可以看出,虽然硅藻土在作为分子筛合成原料方面更具优势,但是由于以硅藻土为原料合成沸石分子筛起步较晚,理论研究还不系统,因此还未见其工业化报道㊂无论以高岭土还是硅藻土为原料,都会受到其自身元素组成的限制,使得沸石分子筛合成范围较窄,所以只有充分利用各种天然矿物的组成和结构特点,才能真正实现分子筛合成原料的全部天然矿物化㊁绿色化㊂3㊀沸石分子筛合成条件的绿色化除了在合成原料方面着手外,沸石分子筛合成条件的绿色化改进也同样重要㊂在沸石分子筛的众多合成条件中,有机模板剂的使用所引发的问题最为严重,主要体现在以下方面:(1)大多数的有机模板剂都是有毒的并且价格昂贵,不仅会污染环境还会增加沸石分子筛的生产成本;(2)有机模板剂会占据沸石分子筛的孔道结构,所以在晶化结束后需要将其通过高温焙烧的方式脱除,这个过程会增大能耗,还会排放出NOx和CO2等有毒有害气体㊂所以,彻底避免有机模板剂的使用,对于沸石分子筛的工业化生产具有重大的研究意义㊂为解决有机模板剂带来的诸多问题,人们开发出了几种绿色合成沸石分子筛的工艺,主要包括:直接法㊁晶种导向液法和晶种法等㊂3 1㊀直接法直接法就是通过调节初始凝胶的组成来合成沸石分子筛,使得沸石分子筛的合成成本和环境破坏程度大大降低㊂直接法的发现打破了人们对于ZSM⁃5和ECR⁃1等沸石分子筛只有在有机模板剂或晶种存在条件下才能合成出来的观念,向沸石分子筛的绿色化合成迈进了一大步㊂Grose等[41]较早地进行了直接法合成ZSM⁃5沸石分子筛的研究,他们通过调节初始凝胶Na2O⁃SiO2⁃Al2O3⁃H2O体系中各物质的摩尔组成,在无有机模板剂条件下成功合成出具有高结晶度的ZSM⁃5沸石分子筛㊂与此同时,李赫咺等[42]在不外加任何有机模板剂和晶种的条件下,直接由水玻璃㊁硫酸铝和硫酸采用直接法成功合成出ZSM⁃5沸石分子筛,并对研究结果进行了100L的工业放大实验,证明该合成方法完全适用于工业生产,并且具有成本低㊁产量高㊁质量稳定㊁无三废问题等明显优势㊂南开大学催化剂厂利用该技术已实现直接法合成ZSM⁃5分子筛的工业化生产㊂随后,Shiralkar等[43]通过研究发现,无有机模板剂体系合成ZSM⁃5沸石分子筛过程中,硅铝比及钠铝比是影响晶化产物晶体结构的关键因素㊂对于初始凝胶组成为aSiO2ʒAl2O3:bNa2Oʒ1500H2O的反应体系来说,当初始凝胶组成为a=40并且b值为4 5 6 0时,通过Na+对分子筛骨架过剩电荷的平衡作用,可合成出具有高结晶度的ZSM⁃5沸石分子筛;而若硅铝比过低时,会伴随着丝光沸石杂晶的生成;若硅铝比过高,则会有α⁃石英相生成,同时随着b的增大,也会导致晶化产物中α⁃石英及丝光沸石等杂晶的出现,这说明直接法合成沸石分子筛的条件区间很窄,要严格控制反应条件㊂Huang等[44]采用两段晶化法,得到小晶粒ZSM⁃5沸石分子筛聚晶,研究发现,通过调控高温成核时间和低温晶化时间可有效调控ZSM⁃5沸石分子筛的晶粒尺寸,并且与一步晶化法相比,两步晶化法得到的ZSM⁃5沸石分子筛具有更大的比表面积和更多的Brönsted酸㊂Zhang等[45]采用直接法进行化学进展,2015,27(5):503 510㊃507㊀㊃了ZSM⁃5/ZSM⁃11共晶的合成研究,详细考察了硅源㊁铝源以及初始凝胶组成等因素对晶化过程的影响㊂直接法合成沸石分子筛的另一个典型应用是ECR⁃1沸石分子筛的合成㊂ECR⁃1沸石分子筛的合成通常是以二羟乙基二甲基氯化铵㊁TMA+等作为有机模板剂合成出来的[46 48],但是合成成本仍然很高㊂Song等[49]首次在无有机模板剂的作用下,通过调节初始凝胶中Na2O/SiO2的摩尔配比成功合成出来ECR⁃1沸石分子筛㊂通过研究发现,初始凝胶中的碱硅比是影响晶化产物最为重要的因素㊂当Na2O/SiO2=0 3时,晶化产物为纯的Y沸石分子筛;当Na2O/SiO2=0 28时,晶化产物为Y型和ECR⁃1型混晶;当Na2O/SiO2=0 25时,晶化产物为纯的ECR⁃1沸石分子筛;而当Na2O/SiO2=0 2时,晶化产物为无定形的SiO2㊂通过进一步对晶化速度随晶化温度变化的影响研究发现,ECR⁃1沸石分子筛随着晶化温度的升高,其晶化速度急剧的增加,但会伴随着杂晶的生成㊂直接法虽然可以彻底避免有机模板剂和晶种的加入,但是合成沸石分子筛的过程中极易产生杂晶,合成条件区间变窄,并且分子筛晶粒尺寸难于控制,晶化周期较长,给工业生产操作带来一定难度㊂3 2㊀晶种导向液法分子筛晶种导向液是指分子筛的前驱液或是含有初级和二级分子筛结构单元的溶液㊂通过向合成体系中加入晶种导向液,有利于提高晶化速度,缩短晶化周期,并抑制杂晶的生成㊂Xiao等[50]通过向合成体系中加入L分子筛晶种液成功诱导合成出了ZSM⁃34沸石分子筛,其原因是L与ZSM⁃34沸石分子筛中均含有CAN笼结构㊂通过对L分子筛晶种导向液加入量的研究发现,当加入量过少时晶化产物为无定形结构,而当加入量过多时,晶化产物均为L分子筛,所以严格控制晶种导向液加入量尤为重要㊂黄先亮等[51]通过向沸石分子筛合成体系中加入预晶化液的方式,合成出了ZSM⁃5沸石分子筛,并对预晶化液添加法合成ZSM⁃5沸石分子筛的生长机理进行了研究,研究表明,预晶化液可大大提高晶化速度,减少晶化时间㊂Zhang等[52]利用晶种导向液合成出了具有高硅铝比的FER沸石分子筛,并得到最适的FER水热合成条件为:初始凝胶摩尔组成(0 154 0 244)Na2OʒSiO2ʒ(0 024 0 035)Al2O3ʒ35H2O,晶种液RUB⁃37加入量为SiO2质量的5%,晶化温度150ħ,晶化时间72 168h,得到的晶化产物的硅铝比为14 5㊂晶种导向液法与直接法相比,在一定程度上降低了分子筛合成的难度,但是由于增加了晶种导向液的制备过程,使得工艺流程变长,不利于工业化生产操作㊂3 3㊀晶种法晶种法常常作为大规模工业合成分子筛的方法,这是因为通过向合成体系中加入晶种可起到缩短诱导期㊁提高晶化速度㊁抑制杂晶生成和调控晶粒尺寸等作用[53 55]㊂Xie等[56]提出了一种快速水热合成β沸石分子筛的方法,通过向摩尔组成10Na2Oʒ40SiO2ʒAl2O3ʒ570H2O的初始凝胶中加入β晶种干基,在140ħ下晶化17h后可得到高结晶度的β沸石分子筛㊂Majano等[57]采用相同的方法得到富铝β沸石分子筛㊂Kalvachev等[58]分别在OH-和F-体系下采用晶种法进行β沸石分子筛的合成研究,通过比较两种晶化产物物化性质发现,F-⁃β沸石分子筛具有较多的Brönsted酸,并表现出更强的间二甲苯转化活性㊂Kamimura等[59]进行了晶种法合成β沸石分子筛研究(图2),详细考察了各合成条件对晶化产物的影响,比如初始凝胶中硅铝比㊁钠硅比㊁水硅比以及晶化时间等㊂实验结果表明,由于晶种的加入,β沸石分子筛可在较宽的初始凝胶组成中合成出来,并分别以β[60]和ZSM⁃12[61,62]沸石分子筛为晶种进行了MTW沸石分子筛的合成研究㊂图2㊀晶种法合成β沸石分子筛示意图[59]Fig.2㊀Schematicdiagramofsynthesisofzeoliteβviacrystalseed⁃directedmethod[59]Yashiki等[63,64]以Y沸石分子筛(FAU)为原料,通过加入未经焙烧处理的晶种合成出了β和LEV沸石分子筛,实现了沸石分子筛之间的转化㊂Zhang等[65]以RUB⁃50为晶种进行了LEV沸石分子筛的合成研究,结果表明,合成体系中加入少量的醇类有利于抑制丝光沸石杂晶的生成,提高LEV沸石分子筛的纯度㊂Yoshioka等[66,67]采用RTH为晶种合成出一系列金属改性的TTZ⁃1沸石分子筛㊂㊃508㊀㊃ProgressinChemistry,2015,27(5):503 510Majano等[68]以纳米silicalite⁃1为晶种成功合成出纳米ZSM⁃5沸石分子筛,并发现晶种加入量会影响晶粒尺寸和晶化速度㊂Tang课题组[69 71]同样以纳米silicalite⁃1为晶种,详细地考察了晶种法合成ZSM⁃5沸石分子筛体系中碱度对晶化产物晶粒尺寸和骨架硅铝比的影响,并提出晶种表面晶化机理㊂姜杰等[72]以ZSM⁃5晶种合成出了ZSM⁃5沸石分子筛,研究结果表明,投料硅铝比㊁晶种加入量㊁硅源温度对分子筛性能有显著的影响㊂陈艳红等[73]通过对比晶种法和有机模板剂法合成的ZSM⁃5沸石分子筛在物性和重油催化裂化装置上的催化性能发现,两种方法合成的ZSM⁃5沸石分子筛的结晶度㊁晶体形貌都相差不大,并且均表现出优异的增产丙烯的催化效果㊂Yu等[74]提出了一种异质晶种导向ZSM⁃5沸石分子筛的合成方法,该方法以ZSM⁃11为晶种,初始凝胶组成为9 0Na2Oʒ1 0Al2O3ʒ65SiO2ʒ1300H2O,晶化时间为12 16h即可生成高结晶度的ZSM⁃5沸石分子筛,这与ZSM⁃5晶种相比,晶化时间缩短1/2以上㊂通过进一步研究发现,这可能是因为ZSM⁃11晶种有更多的末端Si OH,更加有利于吸附沸石分子筛结构单元,提高了沸石分子筛的成核和生长速率㊂关于晶种法合成沸石分子筛的机理,不同研究者的实验结果[70,75,76]可以归纳为:晶种在水热晶化初期先发生部分溶解形成小碎片,被液相中无定形硅铝酸盐经过溶解⁃缩聚形成的硅铝酸盐凝胶包围,形成一种以晶种为核心的壳层结构;随着晶化时间的延长,处于壳层结构中的无定形的铝酸盐凝胶逐渐生成分子筛的二级结构单元,并进一步浓缩⁃聚合成晶体前驱物种由壳层向核心沉积,最终使得无定形的硅铝凝胶全部转换成沸石分子筛㊂通过以上三种沸石分子筛合成条件绿色化方法对比发现,晶种法兼具直接法和晶种导向液法的优点,不仅能简化工艺流程㊁缩短晶化周期,还可以调控晶粒尺寸㊁抑制杂晶的生成,并且由于晶种加入量很少,并不会带来生产成本的大幅度提高,所以晶种法是目前最有工业化前景的绿色沸石分子筛合成路线㊂4㊀沸石分子筛合成方法的绿色化为克服常规水热法合成沸石分子筛过程中由于溶剂水的引入造成的含碱废水排放,合成体系压力过高㊁单釜产率过低等问题,人们开发出了无溶剂法绿色沸石分子筛合成路线㊂无溶剂法与传统水热法相比具有一下几点优势[77]:分子筛单釜产率高㊁废液排放少㊁无需进行液固相分离以及合成体系更加安全等㊂目前,关于沸石分子筛的无溶剂法的研究还处于起步阶段,相关的研究报道比较少㊂Ren等[78]提出了一条无溶剂法合成沸石分子筛的工艺路线,该方法只需通过将固体原料混合㊁研磨㊁加热晶化就可以得到目标沸石分子筛,具有操作流程简单㊁环境污染小㊁成本低等优势,并具有广泛的适用性㊂无溶剂法合成沸石分子筛的典型应用是silicalite⁃1沸石分子筛的合成(图3)㊂图3㊀无溶剂法合成silicalite⁃1沸石分子筛流程示意图Fig.3㊀Schematicdiagramofsynthesisofsilicalite⁃1viasolvent⁃freemethod通过对晶化过程中晶化产物的表征结果发现,无溶剂法合成沸石分子筛经历如下过程:晶化初期,固相原料在无定形二氧化硅中逐渐发生扩散,并伴随着硅物种的聚合;随着晶化时间的延长,无定形的二氧化硅逐渐向晶体转换㊂总的来说,固相合成反应过程经历了初始原料混合和扩散,硅羟基的不断缩合等过程,最终使得反应原料在固相状态下转换为silicalite⁃1沸石分子筛,反应发生在固相状态下,不存在像液相凝胶中发生的溶解,重排再生长的过程,反应原料中的结晶水起到反应引发剂的作用[79]㊂Wu等[80]首次将无模板剂法和无溶剂法相结合,采用将固体硅铝原料与晶种混合均匀后在研钵中充分研磨的方式,实现了β和ZSM⁃5沸石分子筛无溶剂法合成㊂该工艺流程不仅解决了有机模板剂引入所带来的环境污染㊁高成本等问题,还解决了由于水作为溶剂造成的合成体系压力过大㊁单釜效率过低㊁碱液排放量大等问题,在沸石分子筛的绿色合成方面具有极大的理论价值和意义㊂无溶剂法合成沸石分子筛与水热法相比虽然具有明显的优势,但仍处于理论研究阶段,还没有实现工业化大规模生产,这是因为人们对于沸石分子筛的合成机理还处于探索阶段,溶剂水在分子筛合成过程中所起到的作用还不是很清楚㊂所以,进一步加深对沸石分子筛合成机理的认识和研究是无溶剂法实现工业化的重要基础㊂。
催化裂化装置操作工鉴定题库一、选择题(每题3分,共30分)1. 催化裂化装置中,主要起催化作用的物质通常是()。
A. 金属氧化物B. 贵金属C. 沸石分子筛D. 活性炭答案:C。
解析:在催化裂化装置中,沸石分子筛是常用的催化剂,它具有独特的孔道结构和酸性中心,能够有效地催化石油馏分的裂化反应。
2. 催化裂化反应的温度一般在()。
A. 300 - 400℃B. 400 - 500℃C. 500 - 600℃D. 600 - 700℃答案:C。
解析:这个温度范围有利于石油馏分的裂化反应进行,能够在催化剂的作用下将大分子烃类裂解为小分子烃类。
3. 催化裂化装置中,提升管的主要作用是()。
A. 输送原料B. 提供反应场所C. 分离产物D. 预热原料答案:B。
解析:提升管内是催化裂化的主要反应区域,原料油和催化剂在提升管内迅速混合并发生反应。
4. 以下哪种物质不是催化裂化的产物()。
A. 汽油B. 柴油C. 重油D. 液化气答案:C。
解析:催化裂化是将重质油转化为轻质油的过程,重油是原料而不是产物。
5. 催化裂化装置中,再生器的作用是()。
A. 再生催化剂B. 储存催化剂C. 冷却催化剂D. 筛选催化剂答案:A。
解析:在反应过程中催化剂会积炭失活,再生器通过燃烧的方式去除积炭,使催化剂恢复活性。
6. 催化裂化装置操作工需要密切关注的参数不包括()。
A. 反应温度B. 反应压力C. 员工工资D. 催化剂活性答案:C。
解析:员工工资不属于装置操作过程中需要密切关注的操作参数,而反应温度、压力和催化剂活性对装置的运行和产品质量有重要影响。
7. 为了提高催化裂化装置的汽油产量,可以采取的措施是()。
A. 提高反应温度B. 降低反应温度C. 增加催化剂用量D. 减少催化剂用量答案:A。
解析:适当提高反应温度有利于提高汽油的产量,但过高的温度可能会导致其他问题。
8. 催化裂化装置中,原料油的雾化效果对()有重要影响。
1.分子筛1.1分子筛的概念狭义上讲,分子筛是结晶态的硅酸盐或硅铝酸盐,由硅氧四面体或铝氧四面体通过氧桥键相连而形成其晶体结构中具有规整而均匀的孔道和空腔体系,孔径大小为分子数量级(通常为0.3~2.0 nm),从而能把形状直径大小不同的分子,极性程度不同的分子,沸点不同的分子,饱和程度不同的分子分离开来,即具有“筛分“分子的特性,故称为分子筛。
随着分子筛合成与应用研究的深入,研究者发现了磷铝酸盐类分子筛,并且分子筛的骨架元素(硅或铝或磷)也可以由B、Ga、Fe、Cr、Ge、Ti、V、Mn、Co、Zn、Be和Cu等取代,其孔道和空腔的大小也可达到2 nm以上,因此分子筛按骨架元素组成可分为硅铝类分子筛、磷铝类分子筛和骨架杂原子分子筛;按孔道大小划分,孔道尺寸小于2 nm、2~50 nm 和大于50 nm的分子筛分别称为微孔、介孔和大孔分子筛。
由于具有较大的孔径,成为较大尺寸分子反应的良好载体,但介孔材料的孔壁为非晶态,致使其水热稳定性和热稳定性尚不能满足石油化工应用所需的苛刻条件。
目前分子筛在冶金,化工,电子,石油化工,天然气等工业中广泛使用。
分子筛有天然和人工合成两种。
天然沸石大部分由火山凝灰岩和凝灰质沉积岩在海相或湖相环境中发生反应而形成。
目前已发现有1000多种沸石矿,较为重要的有35种,常见的有斜发沸石、丝光沸石、毛沸石和菱沸石等。
主要分布于美、日、法等国,中国也发现有大量丝光沸石和斜发沸石矿床,日本是天然沸石开采量最分子筛大的国家。
因天然沸石受资源限制,从20世纪50年代开始,大量采用合成沸石。
1.2分子筛的性能分子筛为粉末状晶体,有金属光泽,硬度为3~5,相对密度为2~2.8,天然沸石有颜色,合成沸石为白色,不溶于水,热稳定性和耐酸性随着SiO2/Al2O3组成比的增加而提高。
分子筛有很大的比表面积,达300~1000m2/g,内晶表面高度极化,为一类高效吸附剂,也是一类固体酸,表面有很高的酸浓度与酸强度,能引起正碳离子型的催化反应。
绿色化学在石油加工中的应用前景石油作为现代工业的重要能源和化工原料,在经济发展中扮演着举足轻重的角色。
然而,传统的石油加工过程往往伴随着严重的环境污染和资源浪费。
随着环保意识的不断提高和可持续发展理念的深入人心,绿色化学逐渐成为石油加工领域的研究热点和发展方向。
本文将探讨绿色化学在石油加工中的应用前景,以期为实现石油工业的绿色转型提供有益的参考。
一、绿色化学的概念与原则绿色化学,又称环境友好化学,是指在化学产品的设计、开发和应用过程中,减少或消除有害物质的使用和产生,从源头上防止污染的化学。
绿色化学的核心原则包括预防污染、原子经济性、低毒化学合成、设计安全化学品、使用可再生原料、降低能耗以及使用催化剂提高选择性等。
二、石油加工中的环境问题传统的石油加工过程,如蒸馏、催化裂化、加氢处理等,会产生大量的废气、废水和废渣。
废气中含有二氧化硫、氮氧化物、挥发性有机物等污染物,对大气环境造成严重危害;废水中含有石油类、酚类、氨氮等有害物质,若未经妥善处理直接排放,会污染水体和土壤;废渣中含有重金属和多环芳烃等有毒物质,处理不当会对生态环境和人类健康构成威胁。
此外,石油加工过程中的能源消耗也相当巨大,加剧了能源短缺的压力。
三、绿色化学在石油加工中的应用(一)清洁生产技术1、超临界流体萃取技术超临界流体具有类似气体的扩散性和液体的溶解性,利用超临界二氧化碳等流体对石油中的重质组分进行萃取,可以实现高效分离,减少有机溶剂的使用和废弃物的产生。
2、膜分离技术通过具有特定孔径的膜对石油中的不同组分进行分离,可以提高分离效率,降低能耗,减少化学试剂的使用。
(二)新型催化剂的研发1、沸石分子筛催化剂沸石分子筛具有规整的孔道结构和良好的择形催化性能,在石油催化裂化、加氢裂化等反应中能够提高产品选择性,减少副产物的生成。
2、纳米催化剂纳米催化剂具有高比表面积和独特的电子结构,能够显著提高反应活性和选择性,降低反应温度和压力,从而减少能源消耗和污染物排放。
“绿色”石油裂化中的沸石分子筛催化剂
摘要:沸石分子筛催化剂是一种环境友好型的催化剂,不仅具有较高的催化活性,且其本身无毒无害,是当前催化剂研究的热点之一。
目前,分子筛已在工业中取得了广泛的应用,石油的催化裂化则是其中之一。
本文将简要介绍分子筛催化剂在催化裂化中的重要性,并着重探讨分子筛在石油裂化“绿色化”的道路中应如何发展。
关键词:分子筛催化剂;催化裂化;绿色化学
1、分子筛与石油催化裂化
分子筛(molecular sieves)是一种能在分子水平上筛分物质的多孔材料,常包括沸石、微孔玻璃、活性炭以及磷铝酸盐。
其中,沸石分子筛是具有均匀晶内孔道的结晶硅铝酸盐,而其作为一种固体酸催化剂,已被广泛用于石油化工及炼油领域。
例如,将重质油转化为裂化气、柴油等的加工过程——催化裂化,则需要活性高、可再生的催化剂的参与。
历经性能较差的天然白石与无定型硅铝酸盐,沸石分子筛在二十世纪六十年代开始登上催化裂化的舞台,大放异彩。
重质油裂化成轻质油与气体的过程,本质上即为一个脱碳的过程,焦炭与干
气可视为该反应的最终产物。
在工业中,催化裂化装置必须
包括反应与催化剂再生两个部分,故而在考虑催化剂活性、
寿命、选择性等因素时,其是否易再生必须引起足够重视。
沸石分子筛以硅氧四面体与铝氧四面体为基本结构,并通过
共用顶点相互连接成链或环进而构成三维空间的骨架(右图
为X\Y型沸石分子筛的晶体结构)。
Y型分子筛含有较高的硅
铝比,具有更高的裂化活性,相较于其他类型的沸石分子筛,Y性分子筛被更多用于裂化工业中,而为了适应较高的反应温度与催化剂再生温度,人们将Y型分子筛经高温水热处理铝或脱铝补硅以增强其稳定性,从而开发了一类超稳型沸石分子筛裂化催化剂(USY)。
目前常用的沸石分子筛裂化催化剂有如下四大类:稀土Y型(REY),稀土氢Y型(REHY),超稳Y型(USY),稀土超稳Y型(RE-USY)。
一般而言,稳定性、活性、选择性以及抗重金属污染能力是催化剂选择的几个关键因素,而酸性则是影响它们的重要指标之一。
对于硅-铝型催化剂而言,其酸性源于铝氧四面体。
相较于无定型硅酸铝,沸石分子筛酸中心浓度高,又因具备吸附能力强的微孔结构而能在酸中心附近吸附更多反应物,另外其筛孔穴中的电场会使C-H键极化促使碳正离子的生成和反应。
除此之外,因分子筛本身的孔结构特性以及晶体稳定性,使其比无定型硅铝酸等早期催化裂化催化剂具有更高的选择性以及水热稳定性。
而对于某些因沉积表面而使催化剂活性、选择性降低的重金属,如镍、铁等,沸石分子筛尽管已有了较为优良的抗污染能力,但在实际生产中因重金属污染所受的影响依然较大。
倘若具有较多的酸中心,则可稍降低该污染的影响。
当然,为了满足市场以及环境的需求,催化裂化的工业流程
一直在不断改善,而相应催化剂也正以极快的速度更新换代,大有必将“以一敌千”之势。
2、绿色化道路下的沸石分子筛催化剂
催化裂化最初为减压馏分油(VGO),而近年来,以常压渣油和减压渣油脱
沥青油为原料的重油催化裂化工艺(RFCC)则以迅猛之势席卷了整个石油工业领域,成为评估一个炼油厂效益的主要因素。
然直馏汽油、柴油数量不足,直馏汽油辛烷值又太低,种种因素极大地推动了催化裂化技术的发展。
而今,在重油日益劣质化而环保法规日益严格的矛盾中,趋于轻质化的市场需求还是随着绿色化学理念的号召脱颖而出。
但催化剂为何改进,究其根本,还是因其选择性与稳定性需提高,其制造成本需降低。
为达成这一目的,人们不只是着力于催化剂本身的提高,而是重视催化剂、催化剂基质及助剂、反应时间与压力等工业生产上所有可能影响到催化裂化反应的因素的整体拔高。
例如,近年来,北京石油化工科学研究院通过改善载体粒子孔结构改进分子筛催化剂GOR系列,在保持优质降
低烯烃含量效果的同时,还大大提升了对干气、焦炭的选择性。
此处变换角度也可说明的是,分子筛要充分发挥作用必然离不开化学反应工程的配合,而二者若需长远发展,则必不可避需走上绿色化道路。
当前市场对油品的需求,已不止于无铅化与高辛烷值,含硫量、蒸汽压、含氧化合物、芳烃含量等指标也日益浮上,致使催化裂化催化剂也面临着几近改朝换代的大革新局面。
以高岭土为主要成分的催化裂化半合成催化剂是当前石化工业的主体催化剂,相较于合成沸石分子筛,其比表面积小、孔体积大、稳定性好、抗金属污染能力也较强,最为重要的是,高岭土成本低廉。
但其酸中心较弱,制备时所引入的杂质较多,也就是说,倘若凭依于高岭土占主要成分的半合成催化剂,将需要大量的优质天然粘土资源。
现今,层柱粘土已成为研究最为活跃的新型催化剂材料之一,其中,层柱蒙脱石已取得了非凡的效果。
但对于载体的研究,应当将载体的矿物学特征与催化特性紧紧相连并深入探讨。
再者,即是对分子筛的离子改性。
碱土金属离子改性可消除强酸中心而保留弱酸中心,以此提高催化剂的选择性;稀土离子改性能通过稀土离子与骨架上氧原子的相互作用增强分子筛的水热稳定性,同时保持了其酸性,另外,稀土离子的极化诱导作用能很好地提高B酸强度,提高催化剂活性,而稀土易与钒作用的特性则很好地减轻了金属污染的效力,不过此方法的改性也不可避免地引起了焦炭的增加;磷作为改性元素引入分子筛,可改善基质与分子筛表面酸性,使强酸量以及焦炭产率下降,其引入量以2.5%左右为宜,但磷对反应活性影响不大,甚至会使其降低;过渡金
属离子的引入则可作为磷改性优缺点的平衡物,但过渡金属种类较多,目前研究并没有给出其对裂化反应的作用规律,不够完善。
从催化裂化反应原理分析,氢转移反应是使汽油烯烃含量降低的最主要反应,也是提高辛烷值的重要反应之一。
但氢转移反应过度则会使焦炭产率大幅增加,从这一点出发,稀土与磷相结合的粒子改性可以很好地达成此目的。
3、结束语
正如闵恩泽老先生所坚持的,开发新分子筛或其他新型催化材料,需要与化学工程结合,需要发展一个独特、先进的催化技术,而不能只依靠于催化材料解决问题。
在石油裂化原料日益重质、劣质化的今天,催化剂如何降低结焦率以及如何提高轻质产品收率,是我们需要解决的主要问题;如何使沸石分子筛催化剂
尽可能地满足绿色化石油裂化的需求,是我们研究其性能改善的重要目的;而适度扩展研究领域,则必将带来更为广阔的发展空间。
参考文献:
【1】杨一青、张海涛等.催化裂化催化剂新材料的应用现状与发展趋势.炼油与化工,2011,1
【2】闵恩泽.分子筛、绿色化学与化工过程强化.China Basic Science,2001,6 【3】刘志成、王仰东等. 从工业催化角度看分子筛催化剂未来发展的若干思考.催化学报,Vol. 33 No. 1。