贝叶斯分类器 讲课
- 格式:ppt
- 大小:887.00 KB
- 文档页数:13
第三讲贝叶斯分类器线性分类器可以实现线性可分的类别之间的分类决策,其形式简单,分类决策快速。
但在许多模式识别的实际问题中,两个类的样本之间并没有明确的分类决策边界,线性分类器(包括广义线性分类器)无法完成分类任务,此时需要采用其它有效的分类方法。
贝叶斯分类器就是另一种非常常见和实用的统计模式识别方法。
一、 贝叶斯分类1、逆概率推理Inverse Probabilistic Reasoning推理是从已知的条件(Conditions),得出某个结论(Conclusions)的过程。
推理可分为确定性(Certainty)推理和概率推理。
所谓确定性推理是指类似如下的推理过程:如条件B存在,就一定会有结果A。
现在已知条件B存在,可以得出结论是结果A一定也存在。
“如果考试作弊,该科成绩就一定是0分。
”这就是一条确定性推理。
而概率推理(Probabilistic Reasoning)是不确定性推理,它的推理形式可以表示为:如条件B存在,则结果A发生的概率为P(A|B)。
P(A|B)也称为结果A 发生的条件概率(Conditional Probability)。
“如果考前未复习,该科成绩有50%的可能性不及格。
”这就是一条概率推理。
需要说明的是:真正的确定性推理在真实世界中并不存在。
即使条件概率P(A|B)为1,条件B存在,也不意味着结果A就确定一定会发生。
通常情况下,条件概率从大量实践中得来,它是一种经验数据的总结,但对于我们判别事物和预测未来没有太大的直接作用。
我们更关注的是如果我们发现了某个结果(或者某种现象),那么造成这种结果的原因有多大可能存在?这就是逆概率推理的含义。
即:如条件B存在,则结果A存在的概率为P(A|B)。
现在发现结果A出现了,求结果B存在的概率P(B|A)是多少?例如:如果已知地震前出现“地震云”的概率,现在发现了地震云,那么会发生地震的概率是多少?再如:如果已知脑瘤病人出现头痛的概率,有一位患者头痛,他得脑瘤的概率是多少?解决这种逆概率推理问题的理论就是以贝叶斯公式为基础的贝叶斯理论。