音频信号光纤通信物理实验报告(有数据)
- 格式:doc
- 大小:1.44 MB
- 文档页数:12
实验报告:音频信号光纤传输(本报告仅供参考,每个同学应根据指导老师讲解和实际实验过程自行撰写)实验目的:1、 学习音频信号光纤传输系统的基本结构和各部件的选配原则。
2、 熟悉光纤传输系统中电光/光电转换器件的基本性能。
3、训练如何在音频信号光纤传输系统中获得较好的信号传输质量。
实验仪器TKGT-1型音频信号光纤传输实验仪 信号发生器 双踪示波器实验原理光纤,又名光导纤维,是20世纪70年代为光通信而发展起来的一种新型材料,具有损耗低、频带宽、耐高温、绝缘性好、抗电磁干扰、光学特性好等优点。
1970年,美国康宁公司率先研制出了世界上第一根传输衰减损耗小于20dB/km 的石英光纤。
目前,普通单模光纤的传输损耗在工作波长为1550纳米窗口损耗小于0.2dB/km ,在1310纳米窗口小于0.3 dB/km 。
目前商用光纤制作工艺多为渐变折射率芯层光纤。
从传输模式来说,光纤分为单模和多模两种;从结构上来说,分为普通光纤和特殊光纤,普通光纤包括单模和多模光纤,特殊光纤包括保偏光纤、单偏振光纤和塑料光纤等。
普通光纤的外径为125微米,单模光纤芯径为5-10微米,多模光纤芯径为50、62.5、80、100微米,加护套总直径约为1毫米。
目前通信干线用光纤一般为单模光纤,光纤工作波长为1550纳米。
一般光纤的结构是由导光的纤芯和周围包覆的涂层组成。
光纤的工作基础是光的全反射。
由于纤芯的折射率大于涂层的折射率,当光从纤芯射向涂层,且入射角大于临界角,则射入的光在界面上产生全反射,成“之”字形前进,传播到圆柱形光纤的另一端而发射出去,这就是光纤的传光原理。
附:光的全反射原理根据光的反射和折射定律,即11θθ=' 2211sin n sin n θθ= 若n1>n2,横线上为2,下为1介质,即光由光密介质射入光疏介质,且入射角大于临界角,即c θθ>时,就发生光的全反射现象。
由于在临界状态下,22πθ=,代入上式,则⎪⎪⎭⎫⎝⎛=12c n n arcsin θ ,称为全反射临界角。
物理实验教案十二实验名称:音频信号光纤传输实验教学时数:3学时教学目的及要求:1、了解光纤通信的基本工作原理。
2、熟悉光纤传输系统中电光/光电转换器件的基本性能。
3、测试音频信号在光纤通信实验系统中的传输质量。
教学内容提要:1、光导纤维(1)光纤的结构光导纤维是用石英、玻璃或特制塑料等介质拉成的柔软而极细纤维,光能在其内部沿着轴线传播,简称光纤。
(2)光纤的类型光纤折射率沿径向分布有两种类型:阶跃型:由n1到n2有明显的边界,光全反射的传播路径是折线。
渐变型:从纤芯到包层芯折射率逐渐变小,光全反射的传播路径是光滑曲线,并产生自聚焦现象。
(3)光纤通信的优点光纤通信的主要优点:容量大、传输距离远、,抗电磁干扰能力强、保密性好、抗腐蚀、抗辐射、质量轻、体积小。
2、光纤通信系统基本组成和工作原理(1)光纤传输系统的基本组成光纤传输系统由“光信号发送端”、光信号的传输介质“光纤”和“光信号接收端”三部分组成。
(2)传输系统的技术参数本实验光纤传输系统:光源采用发光二极管,波长为0.84μm;传输介质采用多模石英光纤,低损耗窗口为0.84μm、1.3μm、1.55μm;硅光电二极管的峰值响应波段为0.8-0.9μm;因此,各个部分器件能够完全匹配。
(3)实验仪器TKGT-1型音频信号光纤传输实验仪;信号发生器;双踪示波器3、实验内容(1)测定光纤传输系统的静态电光/光电传输特性(2)测定光纤传输系统的幅频特性,测定系统的低频截止频率ƒL和高频截止频率ƒh。
(3)测定发光二极管偏置电流与无截止失真最大调制幅度的关系(4)观察各种波形在光纤中的传输(5)音频信号的传输实验教学重点与难点:教学重点是掌握光纤通信的基本工作原理;教学难点是确定传输系统的低频截止频率ƒL和高频截止频率ƒh。
思考题问题讨论:如何确定半导体材料的导电类型?实验报告的要求:实验原理部分要求,做光纤传输系统基本组成的方框图,并简述原理。
实验内容一、二、三项必做。
北京邮电大学音频信号光纤传输试验(北京邮电大学,北京市,100876)摘要:随着光纤通信技术的发展,一个以微电子技术、激光技术、计算机技术和现代通信技术为基础的超高速宽带信息网正在改变人们的生活。
光纤通信以其诸多优点将成为现代通信的主流,未来信息社会的一项基础技术和主要手段。
本文旨在使读者了解光纤通信的基本工作原理,熟悉半导体电光-光电元件的基本性能和主要特性的测试方法。
关键词:光纤通信;光电二极管SPD;信号放大中图分类号:[TN913.7]文献标识码:AOptical fiber transmission of audio signal(Beijing University of Post&Telecommunication, Beijing, 100876, China)Abstract:With the development of optical fiber communication technology, a microelectronic technology, laser technology, computer technology and modern communication technology-based ultra-high-speed broadband information network is changing people's lives. Optical fiber communication with its many advantages will become the mainstream of modern communication, the future of the information society and the main means of an underlying technology. This article aims to enable readers to understand the basic working principle of optical fiber communication, familiar with semiconductor electro-optic - Optoelectronics basic properties and main characteristics of the test methods.Keywords: Optical Fiber Communication; Photodiode; Signal amplification光导纤维是近40年发展起来的一项新兴技术,是现代光信息技术的重要组成部分。
8-1 音频信号光纤传输技术实验预习要求通过预习应理解以下几个问题:1.音频信号光纤传输系统由那几个部分组成、主要器件(LED、SPD和光纤)的工作原理;2.LED调制、驱动电路工作原理3.LED偏置电流和调制信号的幅度应如何选择、;4.测量SPD光电流的I-V变换电路的工作原理。
实验目的1.熟悉半导体电光/光电器件基本性能及主要特性的测试方法;2.了解音频信号光纤传输系统的结构及各主要部件的选配原则;3.掌握半导体电光和光电器件在模拟信号光纤传输系统中的应用技术;4.学习音频信号光纤传输系统的调试技术。
实验原理一.系统的组成音频信号光纤传输系统的原理图如图8-1-1所示。
它主要包括由LED(光源)及其调制、驱动电路组成的光信号发送器、传输光纤和由光—电转换、I—V变换及功放电路组成的光信号接收器三个部分。
光源器件LED的发光中心波长必须在传输光纤呈现低损耗的0.85μm、1.3μm或1.5μm附近。
本实验采用中心波长0.85μm的GaAs半导体发光二极管作光源、峰值响应波长为0.8~0.9μm的硅光二极管SPD作光电检测元件。
为了避免或减少谐波失真,要求整个传输系统的频带宽度能够覆盖被传信号的频谱范围。
对于音频信号,其频谱在20Hz~20KHz 的范围内。
光导纤维对光信号具有很宽的频带,故在音频范围内,整个系统的频带宽度主要决定于发送端调制放大电路和接收端功放电路的频率特性。
图8-1-1 音频信号光纤传输系统原理图二、光纤的结构及传光原理衡量光纤信道性能好坏有两个重要指标:一是看它传输信息的距离有多远,二是看它单位时间内携带信息的容量有多大。
前者决定于光纤的损耗特性,后者决定于光纤的频率特性。
目前光纤的损耗容易做到每公里零点几dB水平。
光纤的损耗与工作波长有关,所以在工作波长的选用上,应尽量选用低损耗的工作波长。
光纤通讯最早是用短波长0.85μm,近来发展到能用1.3~1.55μm范围的波长,在这一波长范围内光纤不仅损耗低,而且“色散”也小。
音频信号光纤实验报告音频信号光纤实验报告引言:音频信号光纤实验是一项重要的实验,它是研究音频信号传输和光纤通信原理的基础。
本文将介绍音频信号光纤实验的目的、实验原理、实验步骤、实验结果以及实验总结。
一、实验目的音频信号光纤实验的目的是通过实验,了解音频信号的特点以及光纤通信的原理。
通过实验,掌握如何使用光纤传输音频信号,并能够分析光纤传输中的损耗和失真情况。
二、实验原理音频信号是一种连续变化的电信号,它的频率范围通常在20Hz到20kHz之间。
光纤通信是一种利用光信号传输信息的技术,其原理是利用光的全反射特性,将光信号沿光纤传输。
在音频信号光纤实验中,我们需要将音频信号转换为光信号,并通过光纤传输到接收端。
具体的原理是,将音频信号输入到光电转换器中,光电转换器将音频信号转换为光信号,然后通过光纤传输到接收端。
接收端的光电转换器将光信号转换为音频信号。
三、实验步骤1. 准备实验所需材料和设备,包括音频信号源、光纤、光电转换器等。
2. 将音频信号源与光电转换器连接,确保连接正确。
3. 将光纤连接到光电转换器的输出端,并确保光纤连接牢固。
4. 将另一端的光纤连接到接收端的光电转换器的输入端。
5. 打开音频信号源和接收端的光电转换器,调节音频信号源的音量,观察接收端是否能够正常接收到音频信号。
6. 测量音频信号在光纤传输过程中的损耗情况,记录下相关数据。
四、实验结果通过实验,我们观察到音频信号能够成功通过光纤传输到接收端,并且能够正常播放。
在测量过程中,我们发现音频信号在光纤传输过程中会产生一定的损耗,损耗的大小与光纤的质量和长度有关。
我们还发现,如果光纤连接不牢固或者光纤质量较差,会导致音频信号的失真。
因此,在实际应用中,需要注意光纤的连接质量和选择合适的光纤。
五、实验总结通过音频信号光纤实验,我们深入了解了音频信号的特点以及光纤通信的原理。
我们掌握了如何使用光纤传输音频信号,并且能够分析光纤传输中的损耗和失真情况。
一、实验目的1. 理解光纤的基本原理和结构,掌握光纤的传输特性。
2. 学习光纤的耦合技术,了解光纤器件的传输效率。
3. 掌握光纤光谱仪的使用方法,通过实验验证光纤的传输特性。
二、实验原理光纤是一种利用光在玻璃或塑料制成的纤维中的全反射原理而达成的光传导工具。
光纤具有损耗低、频带宽、耐高温、绝缘性好、抗电磁干扰、光学特性好等优点,因此在现代通信、医疗、传感等领域得到广泛应用。
光纤的传输模式分为单模和多模两种。
单模光纤的芯径很小,只允许一种模式的光传播,适用于长距离通信;多模光纤的芯径较大,允许多种模式的光传播,适用于短距离通信。
光纤器件主要包括光源、光纤、光耦合器、光开关等。
其中,光源是光纤通信系统的核心部件,其性能直接影响系统的传输质量。
光纤光谱仪是一种用于测量光波谱的仪器,可以用于分析光纤的传输特性。
三、实验仪器与设备1. 光纤耦合器2. 光纤器件传输效率测试仪3. 光纤光谱仪4. 信号发生器5. 双踪示波器四、实验内容1. 光纤耦合及光纤器件传输效率测试实验(1)将光源、光纤和光纤耦合器连接起来,形成光纤传输系统。
(2)使用光纤器件传输效率测试仪测量光纤器件的传输效率。
(3)记录实验数据,分析光纤器件的传输特性。
2. 音频信号光纤传输实验(1)搭建音频信号光纤传输系统,包括信号发生器、光纤、光纤耦合器、光纤光谱仪等。
(2)将音频信号输入到系统中,观察光纤传输后的信号质量。
(3)分析实验结果,验证音频信号光纤传输系统的性能。
3. 光纤光谱仪实验(1)将光纤光谱仪与光源连接,设置实验参数。
(2)测量光纤的传输光谱,分析光纤的传输特性。
(3)比较不同光纤的传输特性,了解光纤的选型原则。
五、实验结果与分析1. 光纤耦合及光纤器件传输效率测试实验实验结果显示,光纤器件的传输效率较高,达到90%以上。
这说明光纤耦合技术较为成熟,可以满足实际应用需求。
2. 音频信号光纤传输实验实验结果显示,音频信号光纤传输系统具有良好的传输质量,失真度较低。
一、实验目的1. 理解光纤通信的基本原理,包括光的全反射特性和光纤的传输特性。
2. 学习光纤通信系统的基本组成部分,如光源、光纤和光接收器。
3. 掌握光纤通信实验的基本操作和测量方法。
4. 通过实验验证光纤通信系统的性能,如传输损耗、带宽和信号质量。
二、实验原理光纤通信是一种利用光波在光纤中传输信息的技术。
其基本原理是利用光的全反射特性,将光信号在光纤中传输。
具体来说,当光线从光纤的高折射率核心进入低折射率包层时,如果入射角大于临界角,光线将在光纤内部发生全反射,从而实现长距离的信息传输。
光纤通信系统主要由以下三个部分组成:1. 光源:将电信号转换为光信号,常用的光源有激光二极管(LED)和发光二极管(LED)。
2. 光纤:作为传输介质,由高折射率的核心和低折射率的包层构成,其特性决定了光信号的传输距离和损耗。
3. 光接收器:将光信号转换为电信号,常用的光接收器有光电二极管(PD)和雪崩光电二极管(APD)。
三、实验仪器与设备1. 光纤通信实验装置一套,包括光源、光纤、光接收器、测试仪等。
2. 信号发生器:用于产生待传输的信号。
3. 示波器:用于观察和分析信号波形。
4. 光功率计:用于测量光信号的功率。
5. 光纤连接器:用于连接光纤。
四、实验步骤1. 搭建实验装置:按照实验要求,将光源、光纤、光接收器等设备连接好。
2. 调整光源功率:调节光源的功率,使其满足实验要求。
3. 测试光纤损耗:将光源发出的光信号通过光纤传输,利用光功率计测量输入和输出光信号的功率,计算光纤的损耗。
4. 测试光纤带宽:通过改变输入信号的频率,观察输出信号的幅度变化,确定光纤的带宽。
5. 测试信号质量:利用示波器观察输入和输出信号的波形,分析信号质量。
五、实验结果与分析1. 光纤损耗:实验测得光纤的损耗为0.5dB/km,符合实验要求。
2. 光纤带宽:实验测得光纤的带宽为1GHz,满足实验要求。
3. 信号质量:实验结果显示,输出信号的波形与输入信号基本一致,说明信号质量较好。
音频信号光纤传输实验研究性报告摘要:光导纤维技术是近40年发展起来的一项新兴技术,是现代信息技术的重要组成部分,其最主要的应用是光纤通信。
光纤通信是目前通信技术中最有发展前途的通信方式之一,它以光载波载送信息,光纤作为传输介质传动关在信息,具有通信容量大,传输质量高,频带宽,保密性好,抗电磁干扰性强等优点。
声音是一种低频信号,低频信号的传播受周围环境影响较大,传播范围有限,使用光纤传输音频信号可方便地解决失真,速度限制等问题,故得到越来越广泛的应用。
本实验目的在于了解光纤通信的基本工作原理,了解音频信号光纤传输系统的结构,熟悉半导体电光-光电器件的基本性能并掌握其主要特性的测试方法,学会音频信号光纤传输调试技能。
关键词:光纤通信;半导体发光二极管(LED);调制放大电路;硅光电二极管(SPD)中图分类号:文献标识码:AExperimental study of the audio signal optical fiber transmissionexperimentSunXiaoqing(BeiJing University of Posts and Telecommunications BeiJing 100876,China)Abstract: Optical fiber engineering is a new technology developed in recent 40 years. As an important part of modern information technology, it is the most important application of fiber communication. Optical fiber communication is one of the most promising way of communication in communication technology, it takes light carrier to carry information, optical fiber as transmission medium transmission in information, has a large capacity of communication, high quality of transmission ,wide frequency band, good secrecy and strong resistance to electromagnetic interference. Sound is a kind of low frequency signal, which will be greatly influenced by the surrounding so that its transmission range is limited. The use of optical fiber transmission of audio signals can easily solve problems of distortion, speed limited and so on, thus has been accepted more and more widely. The purpose of this experiment is to understand the basic working principle of optical fiber communication, understand the structure of the audio signal optical fiber transmission system, be familiar with the basic properties of the semiconductor lighting-photoelectric device and master the main testing methods and characteristic of institute of audio signal optical fiber transmission debugging skills.Keywords: optical fiber communications; semiconductor light-emitting diode(LED); modulation amplifier circuit; silicon photodiode引言:声音为一种低频信号,以前进行音频信号传输时,通信技术中多使用一个高频信号作为载波,利用被传播音频信号对载波信号进行调频,当信号到达传输地时需进行解调,滤除高频载波。
·224· 实验28 音频信号光纤传输技术最早提出纤维光电子学概念的人是英国物理学家约翰·丁达尔(John Tyndall )。
丁达尔在1870年发现光可以随着水流进入一个容器中,然而,直到第二次世界大战前这—发现未得到应用。
1966年英国标准通信实验室的高琨(C .Kao )提出,只要将玻璃中的杂质提纯使其传输损耗降低到20dB /km 以下,玻璃纤维可以作为光信息的传输介质。
从那时开始,光学传输技术得到迅速发展,并成为一门重要的新技术。
各种新型光纤、光连接器光发射器件以及相应的电子学器件相继问世,到1980年,在世界范围内就建立起了实用且经济可行的光纤通信系统。
现在光纤通信已成为全球电信和数据通信网的支柱。
光纤是光学纤维的简称,是一种能传输光波的介质波导。
光纤由纤芯和包层组成,其基本结构如图4-28-l 所示,芯和包层是同轴圆柱体,包层有一定厚度。
芯的折射率为1n ,包层的折射率为2n ,为了限制光只在光纤芯区传输,必须满足21n n >的条件。
为了保护光纤,通常还将光纤制成单芯或多芯的光缆,用保护套包裹光纤。
在光缆中还要加入抗张力的钢丝或强力塑料芯,以提高其抗张力强度。
图4-28-1 光纤基本结构光纤通信是光纤应用的一个重要领域。
在通信网中采用光纤的优点是光纤具有极大的传输信息的能力。
因为通信容量与载波的工作频率有关,光波频率可达1014Hz ,比通常无线电通信用的微波频率高104~105倍,所以其通信容量比微波要高104~105倍。
另外,光纤还可以使通信双方完全电隔离,这可以使通信设备的雷电保护接地网的设计和安装十分简单。
图4-28-2是一个光纤通信系统示意图。
在发射端直接把信号调制到光波上,将电信号变换为光信号,然后将已调制的光波送入光缆中传输,在接收端将光信号还原成电信号。
整个过程与一般无线电通信过程十分相似。
在光纤与发射机、光纤与接受机之间装有耦合器,当传输距离较长时,还需用连接器把两根光纤连接起来。