支持向量机(SVM)算法推导及其分类的算法实现
- 格式:doc
- 大小:374.50 KB
- 文档页数:15
支持向量机(SVM )原理及应用一、SVM 的产生与发展自1995年Vapnik(瓦普尼克)在统计学习理论的基础上提出SVM 作为模式识别的新方法之后,SVM 一直倍受关注。
同年,Vapnik 和Cortes 提出软间隔(soft margin)SVM ,通过引进松弛变量i ξ度量数据i x 的误分类(分类出现错误时i ξ大于0),同时在目标函数中增加一个分量用来惩罚非零松弛变量(即代价函数),SVM 的寻优过程即是大的分隔间距和小的误差补偿之间的平衡过程;1996年,Vapnik 等人又提出支持向量回归 (Support Vector Regression ,SVR)的方法用于解决拟合问题。
SVR 同SVM 的出发点都是寻找最优超平面(注:一维空间为点;二维空间为线;三维空间为面;高维空间为超平面。
),但SVR 的目的不是找到两种数据的分割平面,而是找到能准确预测数据分布的平面,两者最终都转换为最优化问题的求解;1998年,Weston 等人根据SVM 原理提出了用于解决多类分类的SVM 方法(Multi-Class Support Vector Machines ,Multi-SVM),通过将多类分类转化成二类分类,将SVM 应用于多分类问题的判断:此外,在SVM 算法的基本框架下,研究者针对不同的方面提出了很多相关的改进算法。
例如,Suykens 提出的最小二乘支持向量机 (Least Square Support Vector Machine ,LS —SVM)算法,Joachims 等人提出的SVM-1ight ,张学工提出的中心支持向量机 (Central Support Vector Machine ,CSVM),Scholkoph 和Smola 基于二次规划提出的v-SVM 等。
此后,台湾大学林智仁(Lin Chih-Jen)教授等对SVM 的典型应用进行总结,并设计开发出较为完善的SVM 工具包,也就是LIBSVM(A Library for Support Vector Machines)。
svm算法公式SVM算法公式支持向量机(Support Vector Machine,简称SVM)是一种常用的机器学习算法,被广泛应用于分类和回归问题的解决中。
它的核心思想是通过找到一个最优超平面来划分不同类别的数据点,从而实现分类的目标。
SVM算法的公式可以用如下方式表达:1. 数据准备假设我们有一个包含N个样本的训练集D={(x1, y1), (x2, y2), ... , (xN, yN)},其中xi表示第i个样本的特征向量,yi表示第i个样本的类别标签。
特征向量xi具有n个维度,即xi=(x1i, x2i, ... , xni)。
2. 寻找最优超平面SVM的目标是找到一个最优超平面,使得该超平面能够最大化样本点到该超平面的间隔,并且能够正确地将不同类别的样本点分开。
最优超平面可以用如下公式表示:w·x + b = 0其中,w表示超平面的法向量,b表示超平面的截距。
w·x表示w 和x的内积。
根据这个公式,我们可以将样本点分为两类:w·x + b > 0的样本点属于一类,w·x + b < 0的样本点属于另一类。
3. 线性可分情况如果训练集D是线性可分的,即存在一个超平面完全能够将两类样本点分开,那么我们可以通过一个优化问题来求解最优超平面。
优化问题可以用如下公式表示:min 1/2 ||w||^2s.t. yi(w·xi + b) ≥ 1, i=1,2,...,N其中,||w||表示向量w的范数,yi表示第i个样本点的类别标签。
这个优化问题的目标是最小化w的范数,同时满足所有样本点的分类约束条件。
4. 线性不可分情况如果训练集D不是线性可分的,那么我们可以通过引入松弛变量(xi, ξi)来解决这个问题。
松弛变量可以将样本点分类约束条件放宽,使得一些样本点可以位于超平面的错误一侧。
此时,优化问题可以用如下公式表示:min 1/2 ||w||^2 + C Σξis.t. yi(w·xi + b) ≥ 1 - ξi, i=1,2,...,Nξi ≥ 0, i=1,2,...,N其中,C是一个正则化参数,用来平衡最小化w的范数和最小化松弛变量的重要性。
支持向量机的基本原理
支持向量机(Support Vector Machine, SVM)是一种二分类模型,其基本原理是找到一个最优的超平面来进行数据的划分。
其基本思想是将样本空间映射到高维特征空间,找到一个超平面使得正负样本之间的间隔最大化,从而实现分类。
具体来说,SVM的基本原理包括以下几个步骤:
1. 寻找最优超平面:将样本空间映射到高维特征空间,使得样本在特征空间中线性可分。
然后寻找一个超平面来最大化两个不同类别样本的间隔(也称为“分类间隔”)。
2. 构建优化问题:SVM通过解决一个凸二次规划问题来求解最优超平面。
该优化问题的目标是最大化分类间隔,同时限制样本的分类正确性。
3. 核函数技巧:在实际应用中,数据通常是非线性可分的。
通过引入核函数的技巧,可以将非线性问题转化为高维或无限维的线性问题。
常用的核函数有线性核、多项式核、高斯核等。
4. 寻找支持向量:在求解优化问题时,只有一部分样本点对于最优超平面的确定起到决定性作用,这些样本点被称为“支持向量”。
支持向量决定了超平面的位置。
5. 分类决策函数:在得到最优超平面后,可以通过计算样本点到超平面的距离来进行分类。
对于新的样本点,根据其距离超平面的远近来判断其所属类别。
支持向量机的基本原理可以简单概括为在高维特征空间中找到一个最优超平面,使得样本的分类间隔最大化。
通过引入核函数的技巧,SVM也可以处理非线性可分的问题。
支持向量机具有理论基础牢固、分类效果好等优点,在实际应用中得到了广泛的应用。
使用支持向量机进行文本分类任务支持向量机(Support Vector Machine,SVM)是一种常用的机器学习算法,广泛应用于文本分类任务。
本文将介绍SVM的基本原理,以及如何使用SVM进行文本分类。
一、支持向量机的基本原理支持向量机是一种二分类模型,其基本原理是找到一个超平面,将不同类别的样本分开。
在二维空间中,这个超平面就是一条直线;在多维空间中,这个超平面就是一个超平面。
支持向量机的目标是找到一个最优的超平面,使得离该超平面最近的样本点到该超平面的距离最大化。
具体来说,SVM通过将样本映射到高维特征空间,将低维线性不可分的问题转化为高维线性可分的问题。
然后,通过求解约束最优化问题,找到一个最优的超平面。
在这个过程中,只有一部分样本点被称为支持向量,它们离超平面最近。
二、文本分类任务文本分类是将文本按照一定的标准划分到不同的类别中。
在实际应用中,文本分类任务非常常见,如情感分析、垃圾邮件识别等。
文本分类任务的关键是将文本表示成机器学习算法可以处理的形式。
常用的文本表示方法有词袋模型(Bag-of-Words)和词向量(Word Embedding)。
词袋模型将文本看作是一个词的集合,忽略了词序和语法结构。
词向量则将每个词映射到一个实数向量,可以保留一定的语义信息。
三、使用支持向量机进行文本分类在使用支持向量机进行文本分类时,首先需要将文本表示成机器学习算法可以处理的形式。
常见的方法是使用词袋模型或词向量。
1. 词袋模型词袋模型将文本表示为一个固定长度的向量,向量中的每个维度表示一个词的出现频率或权重。
可以使用TF-IDF等方法对词的重要性进行加权。
2. 词向量词向量将每个词映射到一个实数向量。
常见的词向量模型有Word2Vec和GloVe等。
词向量可以保留一定的语义信息,更适合表示文本的语义特征。
在将文本表示成机器学习算法可以处理的形式后,可以使用支持向量机进行分类。
具体步骤如下:1. 划分训练集和测试集将标记好类别的文本数据集划分为训练集和测试集,通常采用交叉验证的方法。
支持向量机算法的原理支持向量机(Support Vector Machine,SVM)是一种广泛应用于分类和回归问题的机器学习算法。
它的原理基于统计学习理论中的结构风险最小化原则,通过寻找一个最优的超平面来实现数据的分类。
在SVM中,数据被看作是高维空间中的点,每个点都有一个与之对应的特征向量。
这些特征向量的维度取决于特征的数量。
SVM的目标是找到一个超平面,使得其能够尽可能地将不同类别的数据点分隔开。
超平面是一个d维空间中的d-1维子空间,其中d为特征向量的维度。
在二维空间中,超平面即为一条直线,可以完全将两类数据点分开。
在更高维的空间中,超平面可以是一个曲面或者是一个超平面的组合。
为了找到最优的超平面,SVM引入了支持向量的概念。
支持向量是离超平面最近的数据点,它们决定了超平面的位置和方向。
通过最大化支持向量到超平面的距离,SVM能够找到一个最优的超平面,使得分类误差最小化。
SVM的核心思想是将低维空间中的数据映射到高维空间中,使得原本线性不可分的数据变得线性可分。
这一映射是通过核函数实现的。
核函数能够计算两个数据点在高维空间中的内积,从而避免了显式地进行高维空间的计算。
常用的核函数有线性核、多项式核和高斯核等。
SVM的训练过程可以简化为一个凸优化问题。
通过最小化结构风险函数,SVM能够找到一个最优的超平面,使得分类误差最小化。
结构风险函数由经验风险项和正则化项组成。
经验风险项衡量了分类器在训练集上的错误率,正则化项则防止过拟合。
SVM的优点是具有较好的泛化性能和较强的鲁棒性。
由于最大化支持向量到超平面的距离,SVM对异常值不敏感,能够有效地处理噪声数据。
此外,SVM还可以通过引入松弛变量来处理非线性可分的问题。
然而,SVM也存在一些限制。
首先,SVM对于大规模数据集的训练时间较长,且对内存消耗较大。
其次,选择合适的核函数和参数是一个挑战性的问题,不同的核函数和参数可能会导致不同的分类结果。
支持向量机计算例子支持向量机(Support Vector Machine,SVM)是一种常用的机器学习算法,主要用于分类和回归问题。
它的基本思想是找到一个最优的超平面,将不同类别的样本分开。
在这篇文章中,我将通过列举一些支持向量机的计算例子来介绍它的基本原理和应用。
1. 二分类问题:假设我们有一组二维的数据点,其中一些点属于正类,另一些点属于负类。
通过支持向量机算法,我们可以找到一个最优的超平面,将这两个类别的数据点分开。
具体地,我们可以通过求解一个凸优化问题来找到这个最优超平面。
2. 多分类问题:支持向量机也可以用于多分类问题。
一种常见的方法是通过一对多(One-vs-All)的方式将多分类问题转化为多个二分类问题。
对于每个类别,我们训练一个支持向量机模型,然后根据模型的预测结果来确定样本的类别。
3. 核函数的应用:支持向量机可以通过引入核函数来处理非线性分类问题。
核函数可以将输入空间中的样本映射到一个高维的特征空间,从而使得原本线性不可分的问题变得线性可分。
常用的核函数包括线性核、多项式核和高斯核等。
4. 超参数的选择:在支持向量机算法中,有一些超参数需要我们手动选择,例如正则化参数C和核函数的参数。
为了选择合适的超参数,我们可以使用交叉验证的方法,在训练集上进行多次训练和验证,选择在验证集上表现最好的超参数。
5. 支持向量的概念:在支持向量机中,支持向量是离超平面最近的那些训练样本点。
这些支持向量决定了超平面的位置和形状,它们在分类决策中起到了重要的作用。
支持向量机算法的训练过程就是为了找到这些支持向量。
6. 软间隔分类:如果训练数据中存在一些异常点或噪声,那么我们可能无法找到一个完全分开两个类别的超平面。
此时,我们可以允许一定程度的错误分类,这就是软间隔分类。
通过引入松弛变量,我们可以在最小化分类误差和最大化间隔之间取得一个平衡。
7. 大规模数据集的处理:对于大规模的数据集,直接使用支持向量机算法可能会导致计算复杂度过高的问题。
svm算法核心公式SVM算法核心公式支持向量机(Support Vector Machine,SVM)是一种常用的机器学习算法,其核心公式是该算法的基础和关键。
本文将详细介绍SVM算法的核心公式及其应用。
SVM算法的核心公式可以表示为以下形式:f(x) = sign(wx + b)其中,f(x)表示预测结果的符号,x表示输入样本的特征向量,w表示权重向量,b表示偏置项。
该公式表示通过计算特征向量与权重向量的内积,再加上偏置项,得到预测结果的符号。
SVM算法的核心思想是找到一个超平面,将不同类别的样本分隔开来,使得同一类别的样本尽可能靠近该超平面。
而核心公式则是实现这一思想的数学表达。
在SVM算法中,权重向量w和偏置项b是需要通过训练得到的。
训练过程中,SVM算法会根据训练样本的特征和标签,调整权重向量和偏置项,使得核心公式能够正确地预测样本的类别。
SVM算法的核心公式有以下几个重要特点:1. 非线性可分问题:SVM算法可以通过使用核函数将样本映射到高维空间中,从而解决非线性可分问题。
核函数可以将低维特征空间中的样本映射到高维特征空间,使得在高维空间中存在一个线性超平面能够将不同类别的样本分隔开来。
2. 最大间隔:SVM算法的目标是找到一个最大间隔的超平面,使得不同类别的样本点离超平面的距离最大化。
最大间隔的超平面能够更好地区分不同类别的样本,具有更好的泛化能力。
3. 支持向量:在SVM算法中,离超平面最近的一些样本点被称为支持向量。
这些支持向量对于确定超平面的位置和方向起到关键作用。
SVM算法的训练过程主要是确定支持向量和相应的权重。
SVM算法的核心公式在实际应用中具有广泛的应用。
例如,SVM 算法可以用于图像分类、文本分类、手写数字识别等问题。
通过合理选择核函数和调整超参数,SVM算法可以取得较好的分类效果。
总结起来,SVM算法的核心公式是该算法的基础和关键,它通过计算特征向量与权重向量的内积,再加上偏置项,得到预测结果的符号。
支持向量机算法推导及其分类的算法实现摘要:本文从线性分类问题开始逐步的叙述支持向量机思想的形成,并提供相应的推导过程。
简述核函数的概念,以及kernel在SVM算法中的核心地位。
介绍松弛变量引入的SVM算法原因,提出软间隔线性分类法。
概括SVM分别在一对一和一对多分类问题中应用。
基于SVM在一对多问题中的不足,提出SVM 的改进版本DAG SVM。
Abstract:This article begins with a linear classification problem, Gradually discuss formation of SVM, and their derivation. Description the concept of kernel function, and the core position in SVM algorithm. Describes the reasons for the introduction of slack variables, and propose soft-margin linear classification. Summary the application of SVM in one-to-one and one-to-many linear classification. Based on SVM shortage in one-to-many problems, an improved version which called DAG SVM was put forward.关键字:SVM、线性分类、核函数、松弛变量、DAG SVM1. SVM的简介支持向量机(Support Vector Machine)是Cortes和Vapnik于1995年首先提出的,它在解决小样本、非线性及高维模式识别中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中。
支持向量机方法是建立在统计学习理论的VC 维理论和结构风险最小原理基础上的,根据有限的样本信息在模型的复杂性(即对特定训练样本的学习精度,Accuracy)和学习能力(即无错误地识别任意样本的能力)之间寻求最佳折衷,以期获得最好的推广能力。
对于SVM的基本特点,小样本,并不是样本的绝对数量少,而是与问题的复杂度比起来,SVM算法要求的样本数是相对比较少的。
非线性,是指SVM擅长处理样本数据线性不可分的情况,主要通过松弛变量和核函数实现,是SVM 的精髓。
高维模式识别是指样本维数很高,通过SVM建立的分类器却很简洁,只包含落在边界上的支持向量。
2. 线性分类器及其求解线性分类器,是最简单也很有效的分类器形式。
在一个线性分类器中,可以看到SVM 形成的思路,并接触很多SVM 的核心概念。
用一个二维空间里仅有两类样本的分类问题来举例。
如图1所示图1 两类样本分类C1和C2是要区分的两个类别,在二维平面中它们的样本如图1所示。
中间的直线就是一个分类函数,它可以将两类样本完全分开。
一般的,如果一个线性函数能够将样本完全正确的分开,就称这些数据是线性可分的,否则称为非线性可分的。
很容易看出来,图1中间那条分界线并不是唯一的,旋转一下,只要不把两类数据分错,仍然可以达到分类的效果,稍微平移一下,也可以。
对同一个问题存在多个分类函数的时候,哪一个函数更好呢?必须要先找一个指标来量化“好”的程度,通常使用分类间隔来衡量。
设平面中的直线方程为:(x)wx b g =+ (1) 设i x 是一个有某一对象抽取出的n 维向量,i y 为分类标记,则可以定义点到某一超平面的间隔:(w b)i i y x δ=+(2) 用||||w w 和||||b w 替代(2)式中的w 和b 得: 1|(x )|||||i i g w δ= (3)将(3)式得到的间隔称为几何间隔,几何间隔所表示的正是点到超平面的欧氏距离,以上是单个点到某个超平面的距离定义,同样可以定义一个点的集合(就是一组样本)到某个超平面的距离为此集合中离超平面最近的点的距离。
图2更加直观的展示出了几何间隔的含义。
图2 分割超平面图2中,H 是分类面,H1和H2是平行于H ,且过离H 最近的两类样本的直线,H1与H ,H2与H 之间的距离就是几何间隔。
几何间隔与样本的误分次数间存在关系:22()R δ≤误差分数其中的δ是样本集合到分类面的间隔,max ||x ||,i 1,...,n i R ==,即R 是所有样本中向量长度最长的值。
从上式可以看出,误分次数的上界由几何间隔决定。
因此选择几何间隔来作为评价一个解优劣的指标,几何间隔越大的解,它的误差上界越小。
因此最大化几何间隔成了我们训练阶段的目标。
从(3)式可知,几何间隔与||w||是成反比的,因此最大化几何间隔与最小化||w||等价。
通常不是固定||w||的大小而寻求最大几何间隔,而是固定间隔(例如固定为1),寻找最小的||w||。
此时变成一个最优化问题,若想寻找一个小||w||,就可以用下面的式子表示:min ||||w但实际上对于这个目标,常常使用另一个完全等价的目标函数来代替,如下:21min ||||2w如果直接来解这个求最小值问题,很容易看出当||w||=0的时候就得到了目标函数的最小值。
反映在图2中,就是1H 与2H 两条直线间的距离无限大,这个时候,所有的样本点都位于1H 和2H 中间,而我们原本的意图是,1H 右侧的被分为正类,2H 左侧的被分为负类,位于两类中间的样本则拒绝分类。
这样,所有样本点都进入了无法分类的灰色地带。
造成这种结果的原因是在描述问题的时候只考虑了目标,而没有加入约束条件,于是可以添加约束条件:[()b]1(i 1,2,...,n)i i y w x ⋅+≥=(n 是总的样本数)于是可以将两类分类转化成数学形式,如下:21min ||||2[()b]-10(i 1,2,...,n)i i w y w x ⎧⎪⎨⎪⋅+≥=⎩ (4)在这个问题中,自变量就是w ,而目标函数是w 的二次函数,所有的约束条件都是w 的线性函数,这种规划问题就是二次规划(Quadratic Programming ,QP ),由于它的可行域是一个凸集,因此它是一个凸二次规划。
样本确定了w ,用数学的语言描述,就是w 可以表示为样本的某种组合: 1122n n w x x x ααα=++⋯+(5) 式子中的i α是拉格朗日乘子,而i x 是样本点,也是向量,n 就是总样本点的个数。
为了方便描述,以下开始严格区别数字与向量的乘积和向量间的乘积,我会用i i x α表示数字和向量的乘积,而用,i j x x <>表示向量,i j x x 的内积。
因此(1)式严格的形式应该是:(x),b g w x =<>+ (6)w 不仅跟样本点的位置有关,还跟样本的类别有关。
因此用下面这个式子表示w :121122n n n w x x y x y y ααα=++⋯+ (7)其中的i y 就是第i 个样本的标签,它等于1或者-1。
其实以上式子的拉格朗日乘子12,,,n ααα⋯中,只有很少的一部分不等于0,这部分不等于0的拉格朗日乘子后面所乘的样本点,其实都落在1H 和2H 上,也正是这部分样本唯一的确定了分类函数。
这部分可以确定分类的样本点,就叫做支持向量。
因此原来的g(x)表达式可以写为:1(x),b(),n i i i i g w x y x x bα==<>+=<>+∑, (8)其中,1()n i i i i w y x α==∑上式可以变形为:1(x),n i i i i g y x x bα==<>+∑ (9)此时消去了上式中的w ,问题从求w 变成了求α。
这样就简化了原问题的求解,以这样的形式描述问题以后,优化问题少了很大一部分不等式约束。
接下来看看 SVM 在线性分类器上所做的重大改进——核函数。
3. SVM 中的核函数根据模式识别理论,低维空间线性不可分的模式通过非线性映射到高维特征空间则可能实现线性可分,但是如果直接采用这种技术在高维空间进行分类或回归,则存在确定非线性映射函数的形式和参数、特征空间维数等问题,而最大的障碍则是在高维特征空间运算时存在的“维数灾难”。
采用核函数技术可以有效地解决这样问题。
如图3所示,当分类问题在低纬空间无法用线性分类方法解决时,可以通过φ将低纬空间的数据映射到高纬特征空间中,从而达到线性可分的目的。
图3 低纬度向高纬度空间映射从低纬度向高纬度转化关键在于寻在一个φ函数,但对目前没有一个系统的方法。
对映射过程推导如下:1212123123222211221122222211121222211222(,),(,)(,,),(,,)(2,),(2,)2()(,)(,)T T T T T T TTT T TTT T T T T x x x x z z z z z z x x x x x x x x x x x x x x x x x x x x x x K x x φφ<>=<>=<>=++=+=<>= (10)从上式可以得出,我们只关心高维空间里内积的值,而核函数就是接受低空间的输入,并计算出在高纬空间的内积值。
(,)T K x x ,就是我们要找的核函数。
如图4图4 在映射过程中的核函数于是上式,可以表示为1(x)(,)n i i i i g y K x x bα==+∑。
尽管给的问题是线性不可分的,但凡是要求内积的时候我们就选定的核函数来算。
这样求出来的α再和你选定的核函数一组合,就可以得到线性分类器。
但是任然存在以下两个问题:1.既然有很多的核函数,针对具体问题该怎么选择?2.如果使用核函数向高维空间映射后,问题仍然是线性不可分的,那怎么办?第一个问题:对核函数的选择,现在还缺乏指导原则!各种实验的观察结果的确表明,某些问题用某些核函数效果很好,用另一些就很差,但是一般来讲,径向基核函数是不会出太大偏差的一种,首选。
对第二个问题的解决则引出了SVM 中的另一个概念:松弛变量。
4. SVM 中的松弛变量假设有另一个训练集,只比原先这个训练集多了一个样本,映射到高维空间以后,也就多了一个样本点,但是这个样本的位置是这样的,如图5:图5 新增加了一个样本后分类的结果就是图中黄色那个点,它是方形的,因而它是负类的一个样本,这单独的一个样本,使得原本线性可分的问题变成了线性不可分的。
这样类似的问题(仅有少数点线性不可分)叫做“近似线性可分”的问题。
对于人类思维,在大量的样本基础上,可能会认为图5中的黄点是错误的,是噪声,会自动的剔除掉。