初三数学专题复习题
- 格式:pdf
- 大小:2.91 MB
- 文档页数:16
初三数学复习题带答案1. 已知一个二次函数的图像开口向上,且经过点(1,0)和(-1,0),求该二次函数的解析式。
解析:由于二次函数图像开口向上,我们可以设二次函数的解析式为y=ax^2+bx+c。
因为图像经过点(1,0)和(-1,0),所以这两个点满足函数解析式,即:\[ a(1)^2+b(1)+c=0 \]\[ a(-1)^2+b(-1)+c=0 \]解得b=0,c=-a。
又因为图像开口向上,所以a>0。
因此,二次函数的解析式为y=ax^2-a。
答案:y=ax^2-a(a>0)2. 计算下列有理数的混合运算:\(\frac{1}{2} - \frac{1}{3} +\frac{5}{6}\)。
解析:首先找到这三个分数的最小公倍数,即6,然后将每个分数转换为相同的分母:\[ \frac{1}{2} = \frac{3}{6} \]\[ \frac{1}{3} = \frac{2}{6} \]\[ \frac{5}{6} \]接下来,将这些分数相加减:\[ \frac{3}{6} - \frac{2}{6} + \frac{5}{6} = \frac{3-2+5}{6} = \frac{6}{6} = 1 \]答案:13. 一个长方体的长、宽、高分别为3cm、4cm和5cm,求其体积。
解析:长方体的体积可以通过长、宽、高的乘积来计算,即:\[ V = 长 \times 宽 \times 高 \]将给定的尺寸代入公式中:\[ V = 3cm \times 4cm \times 5cm = 60cm^3 \]答案:60cm^34. 已知一个圆的半径为5cm,求其周长和面积。
解析:圆的周长公式为C=2πr,面积公式为A=πr^2。
将半径r=5cm 代入公式中:周长:\[ C = 2 \times \pi \times 5cm = 10\pi cm \]面积:\[ A = \pi \times (5cm)^2 = 25\pi cm^2 \]答案:周长为10π cm,面积为25π cm^25. 一个等腰三角形的底边长为6cm,两腰长为5cm,求其周长。
初中数学经典试题一、选择题:1、图 ( 二) 中有四条互相不平行的直线L1、L2、L3、L4所截出的七个角。
关于这七个角的度数关系,下列何者正确( )A.2=4+7B.3=1+6C.1+ 4+ 6=180D.2+ 3+ 5=360答案: C.2、在平行四边形ABCD中, AB= 6, AD= 8,∠ B 是锐角,将△ ACD沿对角线 AC折叠,点D落在△ ABC所在平面内的点 E 处。
如果 AE过 BC的中点,则平行四边形ABCD的面积等于()A、48B、10 6C、127D、24 2BOCFDA答案: C.3、如图,⊙ O中弦 AB、 CD相交于点F, AB= 10,AF= 2。
若 CF∶ DF= 1∶ 4,则 CF的长等于()A、2B、2C、3D、22答案: B.4、如图:△ ABP与△ CDP是两个全等的等边三角形,且PA⊥PD。
有下列四个结论:①∠PBC =150;② AD∥BC;③直线 PC与 AB垂直;④四边形ABCD是轴对称图形。
其中正确结论的个数为()A DPB第10题图CA 、 1B、 2C、 3D、 4答案: D.C5、如图,在等腰Rt△ABC中,∠ C=90o ,AC=8,F 是 AB边上的E中点,点 D、E 分别在 AC、 BC 边上运动,且保持 AD=CE,连接DDE、 DF、 EF。
在此运动变化的过程中,下列结论:A F B① △DFE是等腰直角三角形;②四边形 CDFE不可能为正方形;③ DE 长度的最小值为 4;④四边形 CDFE的面积保持不变;⑤△ CDE 面积的最大值为 8。
其中正确的结论是()A.①②③B.①④⑤C.①③④ D .③④⑤答案: B.二、填空题:6、已知0x1.(1) 若x 2 y 6 ,则y的最小值是;(2). 若x2y2 3 , xy1,则x y =.答案:( 1)-3 ;( 2)-1.7、用 m根火柴可以拼成如图 1 所示的 x 个正方形,还可以拼成如图 2 所示的 2y 个正方形,那么用含 x 的代数式表示y,得 y= _____________ .图1图2答案: y=3x-1.552218、已知m- 5m- 1= 0,则 2m- 5m+m2=.A D 答案: 28.9、 ____________________ 范围内的有理数经过四舍五入得到的近似数.N M答案:大于或等于且小于 .10、如图:正方形 ABCD中,过点 D 作 DP交 AC于点 M、交AB于点 N,交 CB的延长线于点 P,若 MN= 1, PN= 3,P B C第19题图则 DM的长为.答案: 2.11、在平面直角坐标系xOy 中,直线 y x 3 与两坐标轴围成一个△AOB。
初三数学总复习:填空题精选150题(附参考答案)1.-8的绝对值是8.2.若∠α=35°,则∠α的补角为55°。
3.若分式(x-1)/(x-3)有意义,则实数x的取值范围是x≠3.4.若分式5/(x+3)有意义,则x的取值范围是x≠-3.5.二次根式的自变量x的取值范围是x≥0.6.若在实数范围内有意义,则x的取值范围是x≥1.7.在函数y=x中,自变量x的取值范围是(-∞,+∞)。
8.函数y=x-1的自变量x的取值范围是(-∞,+∞)。
9.函数y=x+3的自变量x的取值范围是(-∞,+∞)。
10.若二次根式√(x-1)有意义,则x的取值范围是x≥1.11.函数y=(x-1)/x中,自变量x的取值范围是x≠0.12.若x-y-3和x-2y+9互为相反数,则x+y的值为-6.13.已知点P(-2,1),则点P关于x轴对称的点的坐标是(-2,-1)。
14.地球与月球的平均距离大约km,用科学计数法表示这个距离为3.84×10^5 km。
15.长城是我国第一批成功入选世界文化遗产的古迹之一,它的总长经过“四舍五入”精确到十万位的近似数约为xxxxxxx 米,将xxxxxxx用科学记数法表示为6.7×10^6 m。
16.目前,世界上能制造出的最小晶体管的长度只有0.xxxxxxxxm,将0.xxxxxxxx用科学记数法表示为4×10^-8 m。
17.在人体血液中,红细胞的直径约为7.7×10^-4 cm,7.7×10^-4用小数表示为0. cm。
18.已知圆锥的底面直径为6,母线长为4,则它的侧面积等于12π。
19.一个多边形每个外角都是36°,则这个多边形的边数是10.20.已知菱形的两条对角线分别为2cm,3cm,则它的面积是3 cm^2.21.若点P(x,y)是平面直角坐标系xOy中第四象限内的一点,且满足2x-y=4,x+y=m,则m的取值范围是m>0.22.真命题的有①对顶角相等;②同位角相等;③全等三角形对应边相等;④菱形的对角线相等,即命题①、②、③、④都是真命题。
1.32的倒数是( ). A .32 B .23 C .32- D .23-2.据报道,2010年苏州市政府有关部门将在市区完成130万平方米老住宅小区综合整治工作.130万(即1 300 000)这个数用科学记数法可表示为( ).A .1.3×104B .1.3×105C .1.3×106D .1.3×1073.记n S =n a a a +++ 21,令12n n S S S T n+++=,称n T 为1a ,2a ,……,n a 这列数的“理想数”。
已知1a ,2a ,……,500a 的“理想数”为2004,那么8,1a ,2a ,……,500a 的“理想数”为 ( ). A .2004 B .2006 C .2008 D .20104.某汽车维修公司的维修点环形分布如图。
公司在年初分配给A 、B 、C 、D 四个维修点某种配件各50件。
在使用前发现需将A 、B 、C 、D 四个维修点的这批配件分别调整为40、45、54、61件,但调整只能在相邻维修点之间进行。
那么要完成上述调整,最少的调动件次(n 件配件从一个维修点调整到相邻维修点的调动件次为n )为 ( ).A .15B .16C .17D .185.在2,1,0,1-这四个数中,既不是正数也不是负数的是…………………………( )A )1- B )0 C )1 D )26. 2010年一季度,全国城镇新增就业人数为289万人,用科学记数法表示289万正确的是( )A )2.89×107.B )2.89×106 .C )2.89×105.D )2.89×104.7.下面两个多位数1248624……、6248624……,都是按照如下方法得到的:将第一位数字乘以2,若积为一位数,将其写在第2位上,若积为两位数,则将其个位数字写在第2位。
对第2位数字再进行如上操作得到第3位数字……,后面的每一位数字都是由前一位数字进行如上操作得到的。
初三数学复习题及答案初三数学复习题及答案数学作为一门基础学科,对于学生来说是必不可少的一门课程。
而对于初三学生来说,数学的学习更是至关重要,因为它不仅是高中数学的基础,还是高考中的一门必考科目。
为了帮助初三学生复习数学知识,下面将给出一些常见的数学复习题及其答案。
一、整式的加减法题目:计算下列整式的和或差,并化简结果。
1. 3x + 4y - 2x + 5y2. 7a^2 - 3b^2 + 2a^2 + 4b^23. 5x^3 + 2x^2 - 3x^3 + 4x^2答案:1. 3x + 4y - 2x + 5y = x + 9y2. 7a^2 - 3b^2 + 2a^2 + 4b^2 = 9a^2 + b^23. 5x^3 + 2x^2 - 3x^3 + 4x^2 = 2x^3 + 6x^2二、方程与不等式题目:解下列方程或不等式。
1. 2x + 5 = 152. 3(x + 4) = 213. 2x - 3 < 7答案:1. 2x + 5 = 152x = 10x = 52. 3(x + 4) = 213x + 12 = 213x = 9x = 33. 2x - 3 < 72x < 10x < 5三、平面图形的性质题目:判断下列命题的真假,并给出理由。
1. 一个凸四边形的内角和是360度。
2. 一个等腰三角形的底角是锐角。
3. 一个直角三角形的斜边是最长的边。
答案:1. 正确。
凸四边形的内角和是360度,这是由欧拉公式得出的。
2. 错误。
一个等腰三角形的底角可以是锐角、直角或钝角,取决于等腰三角形的顶角大小。
3. 正确。
在直角三角形中,斜边是最长的边,根据勾股定理可知。
四、函数与图像题目:给出下列函数的定义域、值域以及图像。
1. f(x) = 2x + 32. g(x) = x^2 - 43. h(x) = √(x + 2)答案:1. 函数f(x)的定义域是所有实数,值域也是所有实数。
初三数学综合复习题一、选择题1. 已知直角三角形的斜边长为5cm,一个锐角的角度为30°,求此三角形的周长。
A. 10cmB. 15cmC. 20cmD. 25cm2. 若正方形的周长等于矩形的周长的一半,且正方形的边长为6cm,则矩形的长是多少?A. 3cmB. 6cmC. 9cmD. 12cm3. 若已知一个角的补角是60°,则这个角的大小是多少?A. 30°B. 60°C. 90°D. 120°二、填空题1. 一辆汽车以每小时60km的速度行驶,若行驶2小时,则汽车行驶的距离为__________km。
2. 一个多边形有6个顶点,其中一个内角是120°,其他内角是90°,那么这个多边形的边数是__________。
3. 一个水桶中装有25升的水,每小时流出5升的水,水桶中的水会在__________小时内流干。
三、解答题1. 一个三角形的两边分别为8cm和12cm,夹角的度数为60°,求此三角形的面积。
2. 一间教室的长和宽比是5:3,若教室的面积是120平方米,求教室的长和宽各是多少米。
3. 一本书原价150元,现在打8折出售,求打折后的价格。
四、应用题1. 小明从家到学校骑自行车需要15分钟,如果小明骑电动车到学校只需10分钟,那么他骑电动车比骑自行车快了多少分钟?2. 一辆汽车以每小时50km的速度行驶,已知汽车行驶的时间为4小时,求汽车行驶的距离。
3. 甲乙两人进行比赛,甲比乙跑得快8分钟,乙总共花了40分钟完成比赛,求甲完成比赛所用的时间。
以上是初三数学综合复习题的一部分,希望能对你的数学复习有所帮助。
祝你取得好成绩!。
初三数学26题复习题一、选择题1. 若二次方程 \( ax^2 + bx + c = 0 \) 的判别式 \( \Delta =b^2 - 4ac \) 等于0,那么该方程:A. 无实数解B. 有两个实数解C. 有一个实数解D. 无法确定2. 函数 \( y = 2x + 3 \) 与 \( y = -x + 5 \) 的交点坐标是:A. (-1, 2)B. (2, 7)C. (4, 11)D. (1, 5)二、填空题1. 已知点A(-3, 4)和点B(1, -2),线段AB的中点坐标是________。
2. 一个圆的半径为5,圆心到直线的距离为3,那么这条直线与圆的位置关系是__________。
三、解答题1. 解方程组:\[\begin{cases}x + y = 5 \\2x - y = 1\end{cases}\]2. 已知三角形ABC的三边长分别为a, b, c,且满足 \( a^2 + b^2 = c^2 \),求证三角形ABC是直角三角形。
3. 某工厂生产一种产品,其成本函数为 \( C(x) = 100 + 20x \),收入函数为 \( R(x) = 60x - x^2 \)。
求该工厂生产多少件产品时,利润最大。
四、应用题1. 某班级有40名学生,其中30名男生和10名女生。
如果随机选择一名学生,求这名学生是男生的概率。
2. 一个长方体的长、宽、高分别是10cm、8cm和6cm,求这个长方体的体积和表面积。
结束语通过这些复习题的练习,可以帮助同学们巩固初三数学的重要知识点,提高解题技巧和应用能力。
希望同学们能够认真复习,为即将到来的考试做好充分的准备。
九年级数学复习题各个科目都有自己的学习方法,但其实都是万变不离其中的,基本离不开背、记,练,数学作为最烧脑的科目之一,也是一样的。
下面是作者给大家整理的一些九年级数学复习的学习资料,期望对大家有所帮助。
初三数学知识点分类复习题【实弹射击】1、(08广东省)将两块大小一样含30°角的直角三角板,叠放在一起,使得它们的斜边AB重合,直角边不重合,已知AB=8,BC=AD=4,AC与BD相交于点E,连结CD.(1)填空:如图a,AC= ,BD= ;四边形ABCD是梯形.(2)请写出图a中所有的类似三角形(不含全等三角形).图10(3)如图b,若以AB所在直线为轴,过点A垂直于AB的直线为轴建立如图10的平面直角坐标系,保持ΔABD不动,将ΔABC向轴的正方向平移到ΔFGH的位置,FH与BD相交于点P,设AF=t,ΔFBP面积为S,求S与t之间的函数关系式,并写出t的取值值范畴.图a2、(09广东省) 正方形ABCD边长为4,M、N分别是BC、CD上的两个动点,当M点在BC上运动时,保持AM和MN垂直,(1)证明:Rt△ABM ∽Rt△MCN;(2)设BM=x,梯形ABCN的面积为y,求y与x之间的函数关系式;当M点运动到什么位置时,四边形ABCN的面积,并求出面积;(3)当M点运动到什么位置时Rt△ABM ∽Rt△AMN,求此时x的值.3、(10广东省)如图(1),(2)所示,矩形ABCD的边长AB=6,BC=4,点F在DC上,DF=2。
动点M、N分别从点D、B同时动身,沿射线DA、线段BA向点A 的方向运动(点M可运动到DA的延长线上),当动点N运动到点A时,M、N两点同时停止运动。
连接FM、FN,当F、N、M不在同一直线时,可得△FMN,过△FMN三边的中点作△PQW。
设动点M、N的速度都是1个单位/秒,M、N运动的时间为x秒。
试解答下列问题:(1)说明△FMN∽△QWP;(2)设0≤x≤4(即M从D到A运动的时间段)。