五年级上册组合图形
- 格式:doc
- 大小:41.51 KB
- 文档页数:4
小学数学五年级上册《组合图形的面积》7篇小学数学五年级上册《组合图形的面积》1组合图形面积是学生学习了长方形,正方形,平行四边形,三角形与梯形的面积计算的基础上进行教学的,是这些知识的发展,也是日常生活中经常需要解决的问题。
在教学过程中,主要让学生在操作活动中认识组合图形的形成及其特点,让学生自主解决组合图形面积计算的问题,并能运用所学知识解决日常生活中一些组合图形面积的计算问题。
在让学生动手操作,自主探究如何使组合图形转化为已学过的基本图形的过程中,首先让学生把这个图形分成我们已学过的图形,通过画辅助线表示出来,如果认为有几种分法,就分别在图形上表示出来。
接着让学生来说说自己的做法,通过投影展示学生的分法(以分割成两个长方形为例),第一,你是怎样分的(分割成两个长方形);第二,长方形的面积公式是怎样的;第三,要计算第一个长方形的面积,长是多少,宽是多少要计算第二个长方形的面积,长是多少,宽是多少在这个环节中,学生基本上都能够运用分割或添补法把组合图形转化为所学过的基本图形,但在展示学生分法时,忘记了将在巡堂时发现的个别学生的分法是由于找不到相关条件无法计算图形面积也进行展示和集体讨论为什么,这是不足的地方(如果当时在这个环节中,让学生充分展示汇报不同的分法后,教师接着引导学生总结优化出哪种分法更利于我们计算这个组合图形的面积或者哪种分法计算这个组合图形的面积更简单,然后就让学生用这种方法来计算图形的面积,可能后面的环节就不会不够时间)。
学生汇报了不同的分法后,就让学生用自己喜欢的方法去进行图形的面积计算,然后让学生汇报展示,从中小结优化出那种分割法或添补法计算这个组合图形的面积更简单。
这个环节花的时间比较多,跟前面的环节有类似,结果后面的时间很紧。
因此在今后教学中应要多注意教学环节之间的内容设计,尽量紧凑,及时发现问题和作出反馈。
小学数学五年级上册《组合图形的面积》2一分耕耘一分收获。
这次百花奖,让我感受颇深,对于本节课,《组合图形的面积》是学生学习了长方形、正方形、平行四边形,三角形和梯形的`面积计算的基础上认识学习组合图形面积的计算,这是面积知识的提升和发展。
五年级数学上册期末常考组合图形阴影面积专题1.求图中相连的三个正方形内阴影部分的面积(单位:厘米)。
解:15-6-4=5(厘米)(5+4)×5÷2=9×5÷2=22.5(cm2)2.求阴影部分的面积解:5×5+4×4=41(cm2)5×(5+4)÷2+4×4÷2+(5-4)×5÷2=5×9÷2+16÷2+5÷2=45÷2+8+2.5=22.5+8+2.5=30.5+2.5=33(cm2)41-33=8(cm2)3.计算阴影部分的面积解:26×15-(10+12)×8÷2=390-22×8÷2=390-88=302(cm2)4.求出下图阴影部分的面积解:(15+60)×20÷2-60×20÷2=75×20÷2-1200÷2=1500÷2-600=750-600=150(平方毫米)5.求下图中阴影部分的面积解:梯形的上底:12+20+12=44(厘米)(44+20)×12÷2-20×6=384-120=264(平方厘米)答:阴影部分的面积是264平方厘米。
6.求阴影部分的面积。
(单位:厘米)解:(7+16)×8÷2-16×8÷2=23×8÷2-16×8÷2=184÷2-128÷2=92-64=28(平方厘米)7.计算下面图中阴影部分的面积(1)(2)(1)解:(8+18)×6÷2﹣18×6÷2=26×6÷2﹣108÷2=78﹣54=24(平方分米)答:阴影部分的面积是24平方分米。
五年级数学(上册)《组合图形的面积》试题及答案1、求组合图形的面积(单位:厘米):梯形面积:(8+12)×8.5÷2= 85(cm²)三角形面积:212×3÷2=18(cm²)图形面积=梯形面积–三角形面积:85-18=67(cm²)2、校园里有两块花圃(如图),计算它们的面积(单位:m):长方形面积:6×(5-2)=18(m²)正方形面积:2×2=4(m²)梯形面积:(3+6)×2÷2=9(m²)图形面积=长方形面积+正方形面积-梯形面积:18+4-9=13(m²)3、下图直角梯形的面积是49平方分米,求阴影部分的面积:直角梯形的高= 49÷(6+8)×2=7(dm)直角三角形面积= 6×7÷2=21(dm²)阴影部分面积=直角三角形面积=21(dm²)4、图中梯形中空白部分是直角三角形,它的面积是45平方厘米,求阴影部分面积:直角梯形的高=直角三角形的高=9(cm)梯形面积=(5+12)×7.5÷2=67.5(cm²)阴影部分面积=梯形面积-空白部分面积:67.5-45=22.5(cm²)5、阴影部分面积是40平方米,求空白部分面积(单位:米):梯形的高=三角形的高(阴影部分三角形)=8(m)梯形面积=(6+10)×8÷2=64(m²)空白部分面积=梯形面积-阴影部分面积:64-40=24(m²)6、如图,平行四边形面积240平方厘米,求阴影部分面积:梯形的下底=平行四边形的底=20(cm)梯形面积=(15+20)×12÷2=210(cm²)阴影部分面积=平行四边形面积-梯形面积:240-210=30(cm²)7、下图ABCD是梯形,它的面积是140平方厘米,已知AB=15厘米,DC=5厘米。
五年级《组合图形的面积》教学设计4篇五年级《组合图形的面积》教学设计1【教学内容】人教版五年级上册第六单元《组合图形的面积》【教材分析】本课是五年级上册第六单元内容,是在学生学习了长方形与正方形.平行四边形.三角形与梯形的面积计算的基础上学习的,一方面可以巩固已经学过的基本图形,另一方面则能将所学的知识进行整合,注重将解决问题的思考策略渗透其中,提高学生的综合能力。
【设计理念】儿童思维发展的一般规律是从具体操作开始的,再逐步形成抽象的思维。
教学设计时,充分考虑学生原有认知水平及儿童心理发展水平,从描述组合图形入手,让学生自主探究,注重让学生在观察、操作、合作交流、比较等数学活动中,找出计算组合图形面积的多种方法,并进行优化选择。
学生在解决问题的过程中,获得数学学习方法。
在对学习过程与结果的反思中,提高解决问题的能力。
【教学目标】1.能结合生活实际认识组合图形,会把组合图形分解成学过的平面图形并计算出面积2.能运用所学知识解决生活中组合图形的实际问题。
3.自主探索,合作交流。
养成认真思考,团结协作的能力。
4.通过找一找.分一分.拼一拼,培养学生识图的能力和综合运用有关知识的能力,能合理地运用“割”.“补”等方法来计算组合图形的面积。
【教学重点】探索并掌握组合图形的面积计算方法【教学难点】理解并掌握组合图形的组合及分解方法。
【数学思想】分类、化归【教学过程】一.创设情境,引出问题教师活动学生活动及达成目标1.说一说:(1)让学生快速说出老师出示的平面图形的名字(正方形.长方形.平行四边形.三角形.梯形)。
(2)说出上面各种图形的面积计算公式及字母表达式(并适时出示多媒体)。
2.看一看:老师出示一些组合图形,让学生仔细观察,思考:这些图形跟我们刚才复习的基本图形有什么不同?(这些图形都是由几个基本图形组合而成的。
)出示生活中常见的组合图形(如房子的侧面.风筝.七巧板拼图.中队旗等),问:要想知道做一面中队旗用多少布就是求什么?3.揭示课题并板书:组合图形的'面积学生观察回答让学生在说一说,看一看的过程中充分调动多种感官参与到学习中来,在浓厚的学习氛围中感受到知识于生活,而又服务于生活,明确生活中的很多问题都和组合图形的面积有关。
五上常考题:组合图形面积1.计算下边图形的面积。
(单位:厘米)解:10×3+(10+15)×(10-3)÷2=30+25×7÷2=30+87.5=117.5(平方厘米)答:这个图形的面积是117.5平方厘米。
2.求出下面方格中图形的面积。
(小方格的边长为1cm。
)解:如图所示:把这个图形分成了两个三角形和一个梯形,它的面积是:7×2÷2+5×1÷2+(5+7)×5÷2=7×2÷2+5×1÷2+12×5÷2=14÷2+5÷2+60÷2=7+2.5+30=9.5+30=39.5(cm²)3.一张长方形纸如图折叠,求阴影面积。
解:8-3=5(厘米)5×10÷2=50÷2=25(平方厘米)10×8-25×2=80-50=30(平方厘米)4.下图是两个正方形,求阴影部分的面积。
解:6×6+4×4=36+16=52(平方厘米)6×6÷2=36÷2=18(平方厘米)4+6=10(厘米)10×4÷2=40÷2=20(平方厘米)52-18-20=34-20=14(平方厘米)5.如图,将这个图形贴满彩纸,买这些彩纸一共用去25.92元钱,这种彩纸的价格是每平方米多少元?解:2.4×1.5+2.4×1.5÷2=3.6+3.6÷2=3.6+1.8=5.4(平方米)25.92÷5.4=4.8(元)答:这种彩纸的价格是每平方米4.8元。
6.选择合适条件计算下面每个图形的面积。
(1)(2)(3)(1)解:15×8=120(平方米)(2)解:(4+7)×8÷2=11×8÷2=88÷2=44(平方分米)(3)解:12×16+20×9÷2=192+180÷2=192+90=282(平方厘米)7.计算下面图形的面积。
苏教版五年级数学上册第二单元《组合图形的面积》教案一. 教材分析苏教版五年级数学上册第二单元《组合图形的面积》是根据《义务教育数学课程标准》编写的一篇教材。
本节课主要让学生掌握组合图形的面积计算方法,培养学生解决实际问题的能力。
教材通过生活中的实际情境,让学生感受数学与生活的紧密联系,激发学生的学习兴趣。
二. 学情分析五年级的学生已经掌握了基本图形的面积计算方法,具备了一定的空间观念和逻辑思维能力。
但学生在解决组合图形面积问题时,仍有一定的困难。
因此,在教学过程中,教师需要关注学生的认知水平,引导学生通过观察、操作、思考、交流等途径,逐步掌握组合图形的面积计算方法。
三. 教学目标1.知识与技能:学生会计算组合图形的面积,并能运用所学知识解决实际问题。
2.过程与方法:学生通过观察、操作、思考、交流等途径,探索组合图形的面积计算方法,培养解决问题的能力。
3.情感态度与价值观:学生感受数学与生活的紧密联系,增强学习数学的兴趣,树立自信心。
四. 教学重难点1.重点:组合图形的面积计算方法。
2.难点:如何引导学生探索组合图形的面积计算方法,以及运用所学知识解决实际问题。
五. 教学方法1.情境教学法:通过生活中的实际情境,让学生感受数学与生活的紧密联系,激发学生的学习兴趣。
2.启发式教学法:引导学生观察、操作、思考、交流,自主探索组合图形的面积计算方法。
3.小组合作学习:培养学生团队合作精神,提高学生解决问题的能力。
六. 教学准备1.教具:组合图形模型、多媒体课件。
2.学具:练习纸、剪刀、胶水。
七. 教学过程导入(5分钟)教师通过展示生活中的组合图形,如拼图、包装等,引导学生观察、思考:这些组合图形的面积如何计算呢?从而激发学生的学习兴趣,引入新课。
呈现(10分钟)1.教师展示一组组合图形,如一个长方形内部包含一个三角形和一个梯形。
2.引导学生观察这些组合图形,并提出问题:如何计算这些组合图形的面积呢?3.学生分组讨论,分享各自的思考和见解。
五年级上册数学《组合图形的面积》教案(通用12篇)五年级上册数学《组合图形的面积》篇1教学内容:《义务教育课程标准实验教科书数学五年级上册》第92~94页。
教学目标:1.使学生结合生活实际认识组合图形,会把组合图形分解成学过的平面图形并计算出面积。
2.综合运用平面图形面积计算的知识,进一步发展学生的空间观念。
3.培养学生的认真观察、独立思考的能力。
教具准备:、图片等。
教学过程:一、展示汇报建立概念师:大家搜集了许多有关生活中的组合图形的图片,谁来给大家展示并汇报一下。
(指名回答)生1:这枝铅笔的面是由一个长方形和一个三角形组成的。
生2:这条小鱼的面是由两个三角形组成的。
……师:同桌的同学互相看一看,说一说,你们搜集的组合图形分别是由哪些图形组成的?(设计意图:根据学生已有的知识经验和生活经验,让学生在课前进行搜集生活中的组合图形的图片,学生热情高涨、兴趣盎然。
通过学生查、拼、摆、画、剪、找等活动,使学生在头脑中对组合图形产生感性认识。
)师:老师也搜集了一些生活中物品的图片,( 课件出示:房子、队旗、风筝、空心方砖、指示牌、火箭模型)这些物品的表面,都有哪些图形?谁来选一个说说。
生1:小房子的表面是由一个三角形和一个正方形组成的。
生2:风筝的面是由四个小三角形组成的。
生3:火箭模型的面是由一个梯形、一个长方形和一个三角形组成的。
……师:这几个都是组合图形,通过大家的介绍,你觉得什么样的图形是组合图形?生1:由两个或两个以上的图形组成的是组合图形。
生2:有几个平面图形组成的图形是组合图形。
……师小结:组合图形是由几个简单的图形组合而成的。
说一说,生活中有哪些地方的表面有组合图形?(学生自由回答)师:同学们认识组合图形了,那么大家还想了解有关组合图形的哪些知识?生1:我想了解组合图形的周长。
生2:我想知道组合图形的面积怎样计算。
……这节课我们重点学习组合图形的面积。
(设计意图:唤起学生学习数学的好奇心和积极的探究态度,鼓励学生自己提出问题,使学生认知活动中的智力因素和非智力因素都处于状态,形成强烈的求知欲。
.五年级上册《组合图形的面积》教案设计北师大版教学内容:北师大版五年级上册第六单元第一时《组合图形的面积》。
教材分析:《组合图形的面积》是五年级上册第六单元的第一。
本节的主要内容是探究解决“组合图形的面积”的策略。
组合图形面积是在长方形、正方形、平行四边形、三角形和梯形这五个基本图形的面积公式基础上学习的。
解题的基本理念是将组合图形转化为基本图形进行计算,对转化思想有了一定的渗透。
通过这部分的学习,有利于整合平面图形面积计算的知识,进一步发展学生的空间观念,发散学生的思维,发挥学生的自主探索、合作交流能力,最终让学生的探究活动有实效,真正在数学的学习上掌握方法和技巧。
学情分析:本班五年级有49名同学,大部分同学根据已有的生活经验,通过直观操作,对组合图形的认识不会很难。
但个别.学生分析思考能力较差,基础相对薄弱,所以应进一步提高知识的综合运用能力,加强团体合作精神是非常重要的,于是我在教学中会提高孩子解决问题的能力,进一步培养孩子的学习兴趣,针对学困生进行巡视指导。
尽可能的让每个学生都积极地参与到探究活动中来,掌握“分割法”和“添补法”两种解决问题的策略,让学生感受到解决问题的多样性。
真正让每个学生在数学方法、数学思想方面有所发展。
教学目标:知识与技能:学生剪一剪、拼一拼活动中,理解计算组合图形面积的多种方法,会计算组合图形的面积。
过程与方法:通过认真分析组合图形的特点,了解组合图形是由哪几部分构成的,小组探究运用“分割法”或者“添补法”进行分块计算。
情感态度价值观:在堂活动中体会转化思想和数学的多样性。
教学方法:运用情境教学法、合作探究法、练习法等教学方法,让学生自主探索,在具体的情境中领会转化的数学思想。
学法:学生通过自主探索、小组动手合作等学习方法,发现规律,应用规律解决问题。
教学重点和难点:重点:分析组合图形的特点,能正确计算组合图形的面难点:能根据各种组合图形的条,正确选择计算方法并解答。
组合图形面积应用1.求下面图形的面积(1)(2)(1)解:8×6+(8+12)×3÷2=48+20×3÷2=48+60÷2=48+30=78(平方米)(2)解:5.4×4.2+5.4×6÷2=22.68+32.4÷2=22.68+16.2=38.88(平方厘米)2.工厂制作一些流动红旗,式样如图,制作一面流动红旗需要多少平方厘米的布料?解:60×30-30×(60-45)÷2=60×30-30×15÷2=1800-450÷2=1800-225=1575(平方厘米)答:制作一面流动红旗需要1575平方厘米的布料。
3.友谊公园的中心有一块长方形草坪,草坪里有一条宽1米的曲折小路。
草坪的实际面积有多大?解:(12-1)×(10-1)=11×9=99(平方米)答:草坪的实际面积有99平方米。
4.李叔叔家原来有一块边长12米的正方形菜地,今年他将这块菜地进行了扩建(如图中的涂色部分)。
(1)原来这块菜地的面积是多少平方米?(2)李叔叔今年扩建了多少平方米的菜地?(1)解:12×12=144(平方米)答:原来这块菜地的面积是144平方米。
(2)解:(12+7)×(12+2)-144=19×14-144=266-144=122(平方米)答:李叔叔今年扩建了122平方米的菜地。
5.求出下面图形的面积。
(1)如图,已知梯形的面积是60米2,那么,阴影部分(三角形)的面积是多少米"?(2)求出下面组合图形的面积。
(单位:厘米)(1)解:(60×2)÷(8+12)=120÷20=6(米)8×6÷2=48÷2=24(平方米)答:阴影部分(三角形)的面积是24平方米。
五年级上册数学《组合图形的面积》教案五年级上册数学《组合图形的面积》教案(7篇)作为一名辛苦耕耘的教育工作者,时常会需要准备好教案,借助教案可以有效提升自己的教学能力。
那么写教案需要注意哪些问题呢?以下是小编精心整理的五年级上册数学《组合图形的面积》教案,欢迎阅读,希望大家能够喜欢。
五年级上册数学《组合图形的面积》教案1教学目标:知识与能力1、结合生活实际认识组合图形,初步掌握用分解发和割补法计算组合图形的面积。
2、能综合运用平面图性积计算的知识,培养分析。
综合的能力,发展学生的空间观念。
过程与方法1、通过拼一拼。
找一找的过程,体会各种图案之间的内在联系,知道生活中各种物体的组合规律。
2、培养动手操作能力,合作交流能力和空间想象能力。
情感态度与价值观通过学习,体验生活中美丽图案的组合规律,激发主动学习的兴趣,培养审美观念和热爱学习数学的思想情。
教学重难点:初步掌握组合图形面积的计算方法。
正确、灵活地把组合图形转化为所学过的基本图形,并能根据各种组合图形的条件,有效地选择计算方法。
教学准备:多媒体课件、练习题卡片。
教学过程:一、复习导入,巩固基础1、我们已经学习了哪些基本的平面图形?2、他们的面积计算公式分别是什么?(请学生说一说)3、计算下面各图形的面积。
(出示所学过的图形)师:这些单个的图形称之为简单的基本图形。
师:在我门的生活中,有许多物体的表面是由这些简单的图形组合而成的,我们称之为组合图形。
同学们,仔细观擦一下我们的教室,看一看哪些地方有组合图形。
二、阅读质疑,自主探究师:同学们,我们刚才观察了教室内的组合图形,在我们的课本上也有几副美丽的图案,我们一起来看一看。
1、同学们阅读课本。
2、同桌交流图案的组成。
3、小组和作,拼一拼,讲一讲所拼图形的组成。
4、用自己的话说一说什么是组和图形?三、合作探究1、出示例题4的图。
师:这是一间房子侧面墙的形状,它是什么图形?怎样求它的面积?先独立想一想再小组交流。
五年级上册数学教案组合图形北京版 (6)教学目标1.通过本节课的学习,学生能够运用将图形拆分的方法,组合出不同的图形。
2.理解并掌握组合图形的概念和方法。
3.培养学生观察、分析、归纳的能力,提高他们的数学思维能力。
教学重点1.组合图形的概念和方法。
2.运用将图形拆分的方法,组合出不同的图形。
教学难点1.培养学生抽象思维能力,理解和掌握组合图形的概念和方法。
2.通过练习,提高学生的组合图形的能力。
教学过程导入1.通过展示一些图形,让学生分析这些图形是如何组成的。
学习1.介绍组合图形的概念和方法,包括将不同形状的图形进行拆分和组合,形成新的图形。
2.举例介绍组合图形的方法,包括拆分、旋转、翻转等操作,让学生能够理解组合图形的本质和方式。
3.通过练习,让学生能够将拆分后的不同形状的图形进行组合,形成新的图形。
4.引导学生进行思考,探究不同组合方式的图形是否相同,如果不同,那么它们有什么不同之处,让学生能够进行归纳总结。
练习1.通过练习,让学生深入理解组合图形的概念和方法,同时提高他们的组合图形的能力。
2.让学生观察给定的图形,将其拆分为不同形状的图形,然后进行组合,形成新的图形。
3.通过练习,培养学生抽象思维能力,提高他们的观察、分析和归纳能力。
总结1.让学生对本节课的学习内容进行总结,并介绍组合图形在生活中的应用。
2.通过总结,让学生能够加深对组合图形的理解和掌握,同时提高他们的数学思维能力。
课后作业1.根据上课学习的内容,自主设计一些组合图形,进行组合练习。
2.思考组合图形在日常生活中的应用场景,写一篇短文或PPT展示。
参考资料1.北京版小学数学教材。
2.组合图形的概念和方法笔记。
五年级上册数学专项拔高1.计算下面“箭头”的面积【分析】做一条辅助线将“箭头”分为一个长方形和一个三角形两部分,然后根据长方形面积=长×宽,三角形面积=底×高÷2分别计算出两部分的面积,再将这两部分面积相加即可求出“箭头”的面积。
长方形面积:18×9=162(平方厘米)三角形面积:20×15÷2=300÷2=150(平方厘米)162+150=312(平方厘米)答:“箭头”的面积是312平方厘米。
2.计算下面组合图形的面积。
【分析】组合图形的面积=长方形的长×宽+(梯形的上底+下底)×高÷2。
解:6×4+(4+6)×5÷2=24+50÷2=24+25=493.把面积是102c²的梯形分成一个平行四边形和一个三角形,计算三角形的面积。
【分析】三角形的高=梯形的高=梯形的面积×2÷上下底的和,三角形的底=梯形的下底-梯形的上底,所以三角形的面积=底×高÷2,据此代入数值作答即可。
解:102×2÷(7+10)=204÷17=12(cm)(10-7)×12÷2=3×12÷24.计算下图的面积。
①【分析】①组合图形的面积=左边梯形的面积+右边长方形的面积;其中,梯形的面积=(上底+下底)×高÷2,长方形的面积=长×宽;解:①16-10=6(厘米)(8+14)×6÷2+10×8=22×6÷2+10×8=66+80=146(平方厘米)②【分析】②平行四边形的面积=底×高;②12×8=96(平方厘米)③【分析】③梯形的面积=(上底+下底)×高÷2。
组合图形面积应用1.求图中相连的三个正方形内阴影部分的面积(单位:厘米)。
解:15-6-4=5(厘米)(5+4)×5÷2=9×5÷2=22.5(cm2)2.一块近似平行四边形的菜地,中间有一条石子路(如图)。
这块菜地的面积多少平方米?解:20×8-8×1=160-8=152(平方米)答:这块菜地的面积152平方米。
3.本次簕杜鹃花展有许多展台供市民参观,其中一个展台把展区精心布置成一个如下图所示的图形。
这个展台占地面积一共有多少平方米?解:(4+6)×(8-5)÷2+5×4=10×3÷2+5×4=15+20=35(平方米)答:这个展台占地面积一共有35平方米。
4.赵小军在一张平行四边形的硬纸板上剪下了一个三角形(如下图),剩下图形的面积是多少平方分米?解:8×6-(8-3-2)×4÷2=48-3×4÷2=48-6=42(平方分米)答:剩下图形的面积是42平方分米。
5.某农场开辟一块新的菜地(如图),一条水渠穿过这块菜地,若每平方米菜地一年可收入12元,那么这块菜地一年可收入多少元?解:18-3=15(米)23-3=20(米)(15+20)×23÷2×12=402.5×12=4830(元)答:这块菜地一年可收入3360元。
6.学校修建了一个艺术广场(平面图如下),这个艺术广场的占地面积是多少平方米?解:(15+30)×8÷2+30×20=180+600=780(平方米)答:这个艺术广场的占地面积是780平方米。
7.如图是某种植果园基地的示意图。
(1)求这个果园的面积是多少m2?(2)如果每棵果树占地10m2,这个果园共有多少棵果树?(1)解:90×40÷2+90×50=1800+4500=6300(平方米)答:这个果园的面积是6300平方米。
五年级上册数学教案6.1《组合图形的面积》∣北师大版今天我们要学习的是北师大版五年级上册的数学教案,第六章第一节《组合图形的面积》。
一、教学内容本节课我们主要学习组合图形的面积计算。
我们会通过实际操作,理解组合图形是由基本几何图形组合而成的。
同时,我们也会学习如何将组合图形分解成基本几何图形,从而计算出组合图形的面积。
二、教学目标1. 让学生能够理解组合图形的概念,并能够将其分解为基本几何图形。
2. 让学生掌握计算组合图形面积的方法。
3. 培养学生的空间想象能力和解决问题的能力。
三、教学难点与重点重点:理解组合图形的概念,掌握计算组合图形面积的方法。
难点:如何将组合图形分解为基本几何图形,并准确计算出组合图形的面积。
四、教具与学具准备教具:黑板、粉笔、组合图形模型。
学具:纸张、剪刀、胶水、直尺、圆规。
五、教学过程1. 实践情景引入:我会展示一个组合图形,让学生观察并描述这个图形是由哪些基本几何图形组合而成的。
2. 讲解例题:我会通过一个具体的例题,讲解如何将组合图形分解为基本几何图形,并计算出组合图形的面积。
3. 随堂练习:我会给出几个组合图形,让学生自己尝试计算其面积。
4. 板书设计:我会根据讲解的例题,板书出计算组合图形面积的步骤和方法。
5. 作业设计:我会布置几个组合图形的面积计算题目,让学生回家练习。
六、作业设计答案:七、课后反思及拓展延伸同时,我也会让学生们尝试自己创造组合图形,并计算其面积,以此来提高他们的空间想象能力和解决问题的能力。
重点和难点解析在上述教案中,有几个关键的细节是需要我们重点关注的。
它们分别是:1. 实践情景引入环节中的组合图形模型展示。
2. 讲解例题环节中的例题选择和分解组合图形的过程。
3. 随堂练习环节中学生的自主练习和老师的即时指导。
4. 板书设计环节中对计算组合图形面积步骤和方法的展示。
5. 作业设计环节中作业题目的布置和答案的给出。
实践情景引入环节中的组合图形模型展示是至关重要的。
第六单元《组合图形的面积》知识点及练习目录01 组合图形的面积 (2)02 常见基本图形的面积 (3)03 面积单位 (4)04鸡兔同笼 (6)05 单元练习一 (8)06 单元练习二 (21)第六单元重点知识点01 组合图形的面积1.组合图形的意义由几个简单的图形,通过不同的方式组合而成的图形。
2.求组合图形面积的方法(1)“分割求和”法:根据图形和所给条件的关系,将图形进行合理分割,形成基本图形。
基本图形的面积和就是组合图形的面积。
(2)“添补求差”法:将图形所缺部分进行添补,组成几个基本图形。
几个基本图形的面积减去添补图形的面积就是组合图形的面积。
3.分割规则:分得越少,计算越简单。
4.不规则图形面积的估计与计算的方法(1)数格子的方法:数格子时,不满一格的可采用凑整法将几个合拼成一格或不满一格算半格。
(2)把不规则图形看成一个近似的基本图形,测量后计算出面积。
02 常见基本图形的面积1.长方形周长=(长+宽)×2 字母公式:C=(a+b)×2面积=长×宽字母公式:S=ab2.正方形周长=边长×4 字母公式:C=4a面积=边长×边长字母公式:S=a23.平行四边形平行四边形的面积=底×高字母公式:S=ah底=面积÷高高=面积÷底4.三角形三角形的面积=底×高÷2字母公式:S=ah÷2底=面积×2÷高高=面积×2÷底5.梯形梯形的面积=(上底+下底)×高÷2字母公式:S=(a+b)×h÷2上底=面积×2÷高-下底下底=面积×2÷高-上底高=面积×2÷(上底+下底)03 面积单位1.面积单位的意义(1)1平方厘米:边长为1厘米的正方形的面积为1平方厘米,写成算式:1厘米×1厘米=1平方厘米(2)平方分米:边长为1分米的正方形的面积为1平方分米,写成算式:1分米×1分米=1平方分米(3)1平方米:边长为1米的正方形的面积为1平方米,写成算式:1米×1米=1平方米(4)1公顷:边长为100米的正方形面积为1公顷,写成算式:100米×100米=10000平方米=1公顷(5)1平方千米:边长为1000米的正方形面积为1平方千米,写成算式:1000米×1000米=1000000平方米=1平方千米2.面积单位间的进率1平方千米=100公顷=1000000平方米1公顷=10000平方米1平方米=100平方分米1平方分米=100平方厘米3.面积单位在生活中的应用(1)天安门广场的面积约是40公顷,1平方千米比两个天安门广场的占地面积还要大。