-条件概率示范教案
- 格式:doc
- 大小:316.50 KB
- 文档页数:12
《条件概率》教案一、我们的目标定位:(1)理解条件概率的定义(2)掌握条件概率的计算方法(3)能解决条件概率相应一些的问题二、重点难点:【教学重点】:1.条件概率的计算方法。
2.条件概率的应用。
【教学难点】:条件概率的应用三、我们一起来研究(一)课题引入小游戏:摸球3个兵乓球,2个白色的,1个黄色的,现分别由三名同学无放回地抽取一个,摸到黄色的就中奖。
1、请问最后一名同学中奖的概率是否比第一位小?2、如果已经知道第一名同学没中奖,那么最后一名摸球同学的中奖的概率是多少?(二)新课探究1、条件概率的定义:一般的设A,B为两个事件,且P(A)>0,P(B|A)为在事件A发生的条件下,事件B发生的________.其中P(B|A)读作___________________P(A|B)的含义是什么?2、条件概率的性质:(1)有界性:______________________(2)可加性:______________________3、条件概率的计算合作探究:根据上面摸奖的例子,想一想怎样求条件概率?你能否得到求条件概率的公式?请合作解决(1)利用古典概型计算()P(B|A)=_________________ 关键:_____________________(2)利用公式计算()P(B|A)= _________________ 关键:_____________________4、概率P(B|A)与P(AB)的区别与联系(三)应用与探索【例1】在5道题中有3道理科题和2道文科题。
如果不放回地依次抽取2道题,求:(1)第1次抽到理科题的概率;(2)第1次和第2次都抽到理科题的概率;(3)在第1次抽到理科题的条件下,第2次抽到理科题的概率。
求解条件概率的一般步骤:【巩固练习1】(1)掷两颗骰子,求“已知第一颗为6点,则掷出点数之和不小于9”的概率(2)掷两颗骰子,求“已知掷出点数之和不小于9,则第一颗掷出6点”的概率【巩固练习2】甲乙两地都位于长江下游,根据一百多年的气象记录,知道甲乙两地一年中雨天所占的比例分别为20%和18%,两地同时下雨的比例为12%,问:(1)乙地为雨天时甲地也为雨天的概率是多少?(2)甲地为雨天时乙地也为雨天的概率是多少?【例2】大脑细胞中的NPTN基因变异会导致天才的出现,平度一中连年取得高考佳绩引起了科学家的注意,现从我校含有5名NPTN基因变异的20名同学中任意选择两位,其中一人经测定为NPTN基因变异,求此二人都是NPTN基因变异的概率一、基本知识上:二、思想方法上:1、课后第54页练习,习题A 组2、3、42.50件产品中有3件次品,不放回的抽取两次,每次抽取一件,已知第一次抽出的是次品,第二次抽出的也是次品的概率是( ) A.503 B.12256 C. 256 D. 4923.教室里有3名男同学和5名女同学,从中随机依次走出两名同学,如第一次走出的是一名女同学,则第二次走出的是一名男同学的概率为___________.第二次走出的仍是一名女同学的概率为_____________.4.一个家庭中有两个孩子,假定生男、生女是等可能的,已知这个家庭中有一个孩子是女孩,问这时另一个孩子是男孩的概率是__________.5.一张储蓄卡的密码共有6位数字,每位数字都可从0~9中任选一个,某人在银行自动提款机上取钱时,忘记了密码的最后一位数字,求(1)任意按最后一位数字,不超过2次就按对的概率;(2)如果他记得密码的最后一位是偶数,不超过2次就按对的概率。
2.2.1条件概率(特色班)【学情分析】:教学对象是高二理科学生,已经掌握了求随机事件发生概率的方法。
条件概率的概念在概率理论中占有十分重要的地位,本节书只是简单介绍条件概率的初等定义,为了使学生便于理解,采用了简单事例为载体,通过逐步探究,引导学生体会条件概率的思想。
【教学目标】:1、知识与技能了解条件概率的概念、公式、性质,并能运用它们计算事件的概率。
2、过程与方法提高学生推理论证、抽象概括能力,培养学生对数学概念的理解能力和应用能力。
3、情感、态度与价值观通过本节的学习,体会数学来源于实践,发现数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。
【教学重点】:条件概率定义的理解【教学难点】:1.理解条件概率的概念2.概率计算公式的应用【教学突破点】:用具体简单事例引入条件概率的概念,提高学生对条件概率的学习兴趣,使学生紧跟老师思维顺利完成本节课的学习。
【教法、学法设计】:运用启发式、探究式的教学方法.1.在一个盒子中有大小一样的20个球,其中10个红球,10个白球。
求第1个人摸出1个红球,紧接着第2个人摸出1个白球的概率.答案:10 192.抛掷两颗均匀的骰子,已知第一颗骰子掷出6点,问:掷出点数之和大于等于10的概率。
答案:1 23. 抛掷两颗均匀的骰子,已知点数不同,求至少有一个是6点的概率?答案:1 34.根据历年气象资料统计,某地四月份刮东风的概率是415,既刮东风又下雨的概率是730,已知某地四月份刮东风的条件下,问下雨的概率:答案:7 85.在50件产品中有一等品45件,非一等品5件,在此5件中,二等品2件、废品3件,现从这50件产品中任意抽取一件(每件被抽到是等可能的),问抽到的是废品的概率为多少?己知抽到非一等品,问是废品的概率是多少?答案:0.06、0.66.一批零件共100个,次品率为10%,从中任取一个零件,取出后不放回去,再从余下的部分中任取一个零件,求“第一次取得次品且第二次取得正品”的概率.答案:1 117. 设100 件产品中有70 件一等品,25 件二等品,规定一、二等品为合格品.从中任取1 件,求(1) 取得一等品的概率;(2) 已知取得的是合格品,求它是一等品的概率.答案:(1)710(2)14198.从一副扑克牌(52张)中任意抽取一张,求:(1)这张牌是红桃的概率是多少?(2)这张牌是人头像(J,Q,K)的概率是多少?(3)在这张牌是红桃的条件下,有人头像的概率是多少?答案:(1)14;(2)313;(3)3139.某种动物由出生活到20岁的概率为0.8,活到25岁的概率为0.4,问现年20岁的这种动物活到25岁的概率是多少?答案为0.510. 甲、乙两班共有70名同学,其中女同学40名.设甲班有30名同学,而女生15名,问在碰到甲班同学时,正好碰到一名女同学的概率?(答案为0.5)11. 从1—100个整数中,任取一数,已知取出的—数是不大于50的数,求它是2或3的倍数的概率.(答案为23/50)12. 袋中10个球.8红2白,现从袋中任取两次.每次取1球作不放回抽样,求下列事件的概率.1) 两次都取得红球;(答案:28/45)2) 两次中一次取得红球,另一次取得白球(答案:16/45)3) 至少有一次取得白球;(答案:17/45)。
高中数学教案_条件概率一、教学目标:1、了解条件概率的概念和公式。
2、掌握简单的条件概率计算方法。
二、教学重点:2、通过练习,能够熟练的进行条件概率的计算,能够应用条件概率计算实际问题。
1、掌握能够应用条件概率计算实际问题。
2、分析实际问题时要确定条件。
四、学法指导:通过练习辅助学习。
五、教学方法:1、课堂讲解法。
3、练习法。
六、教学过程:条件概率是指在已知事件B发生的情况下,事件A发生的概率,在记作P(A/B)。
它表示的是在B发生的条件下,A发生的可能性大小。
(1)乘法公式P(A∩B)=P(A/B)×P(B)其中,P(A∩B)表示A与B的交集的概率,P(A/B)表示B发生的条件下,A发生的概率,P(B)表示B发生的概率。
(2)全概率公式设S为样本空间,E1,E2,E3,………En为互不相交的有限个事件,且它们构成了一个完备事件组,即E1∪E2∪E3∪……En=S,且P(Ei)≠0(i=1,2,…n),则对于任一事件A,有P(A)=P(A/E1)P(E1)+P(A/E2)P(E2)+…+P(A/En)P(En)(3)贝叶斯公式例1:有五件产品,其中两件有缺陷。
从这五件产品中随机抽两件检验,已知第一次检验的产品没有缺陷,求第二次检验的产品也没有缺陷的概率。
解:设事件A为第一件产品无缺陷,事件B为第二件产品无缺陷,则所求概率为P(B/A)。
根据条件概率公式有由于第一次检验产品无缺陷,因此共有4种情况,即AB、AC、AD、AE。
而AB满足第二次检验产品无缺陷,因此P(A∩B)=1/4,P(A)=3/4,故P(B/A)=1/3。
例2:已知一种疾病患病率为0.01,一种检查疾病的方法的准确率是90%,若检查结果显示疾病有,求实际患病的概率。
由题可知,P(A)=0.01,P(B/A)=0.9,P(B/∁A)=0.01,P(∁A)=0.99,代入公式中可得P(B)=0.9×0.01+0.01×0.99=0.019七、作业:1、小球堆问题:有一堆共10个小球,其中有些白的,有些黑的,每次从中随机取出一个小球进行观察,观察后将小球放回原堆中,现已知连续两次取出的小球的颜色均相同,求第三次取出白色小球的概率。
2. 2二项分布及其应用(第一课时)一、学习目标:1、了解条件概率概念2、掌握求限制条件下事情发生的概率的两种方法3、灵活运用两种方法解题二、教学重难点1,理解条件概率概念2,解决条件概率问题3,掌握并能灵活运用两种求条件概率的方法三、学习过程1、复习引入:探究: 三张奖券中只有一张能中奖,现分别由三名同学无放回地抽取,问最后一名同学抽到中奖奖券的概率是否比前两名同学小.思路:若抽到中奖奖券用“Y ”表示,没有抽到用“1X ,2X ”,表示,那么三名同学的抽奖结果共有六种可能:1X 2X Y,Y X X 12,1X Y 2X ,12YX X ,Y 1X 2X ,12X YX .用 B 表示事件“最后一名同学抽到中奖奖券” , 则 B 仅包含两个基本事件Y X X 21和Y X X 12.由古典概型计算公式可知,最后一名同学抽到中奖奖券的概率为3162)(==B P .思考:如果已经知道第一名同学没有抽到中奖奖券,那么最后一名同学抽到奖券的概率又是多少?因为已知第一名同学没有抽到中奖奖券,所以可能出现的基本事件只有Y X X 21,Y X X 12和1221,YX X YX X .而“最后一名同学抽到中奖奖券”包含的基本事件仍是Y X X Y X X 1221,.由古典概型计算公式可知.最后一名同学抽到中奖奖券的概率为12,假设A 表示事件“第一名同学没有抽到中奖奖券”.那就可以把第一名同学没有抽到中奖券时最后一名同学抽到中奖券记为P (B|A ),读作:事件A 发生的条件下事件B 发生的概率已知第一名同学的抽奖结果为什么会影响最后一名同学抽到中奖奖券的概率呢?在这个问题中,知道第一名同学没有抽到中奖奖券,等价于知道事件 A 一定会发生,导致可能出现的基本事件必然在事件 A 中,从而影响事件 B 发生的概率,P ( B|A )等不等于P ( B ) ?思考:对于上面的事件A 和事件B ,P ( B|A )与它们的概率有什么关系呢? 用Ω表示三名同学可能抽取的结果全体,则它由三个基本事件组成,即Ω={122112211221,,,,,X YX X YX YX X YX X Y X X Y X X }.既然已知事件A 必然发生,那么只需在A={12211221,,,YX X YX X Y X X Y X X }的范围内考虑问题,即只有4个基本事件12211221,,,YX X YX X Y X X Y X X .在事件 A 发生的情况下事件B 发生,等价于在事件A 中:事件 A 和事件 B 同时发生,即事件A 中, AB 发生.而事件 AB 中仅含一个基本事件Y X X 21,Y X X 12因此(|)P B A =12=()()n AB n A . 【n (AB )=n (A )*n (B )】 其中n ( A )和 n ( AB )分别表示事件 A 和事件 AB 所包含的基本事件个数.另一方面,根据古典概型的计算公式,()()(),()()()n AB n A P AB P A n n ==ΩΩ 其中 n (Ω)表示Ω中包含的基本事件个数.所以,(|)P B A =)()()()()()()(A P AB P n n AB n A n AB n =ΩΩ=. 因此,可以通过事件A 和事件AB 的概率来表示P (B| A ) .条件概率1.定义设A 和B 为两个事件,P(A )>0,那么,在“A 已发生”的条件下,B 发生的条件概率(conditional probability ).(|)P B A 读作A 发生的条件下 B 发生的概率.(|)P B A 定义为()(|)()P AB P B A P A =. 由这个定义可知,对任意两个事件A 、B ,若()0P B >,则有()(|)()P AB P B A P A =⋅.并称上式微概率的乘法公式.2.条件概率的性质:①:任何事件的条件概率都在0和1之间即:1)|(0≤≤A B P②:如果B 和C 是两个互斥事件,则)|()|()|(A C P A B P A C B P +=小结:关于求条件概率,我们有两种方法,在可以列出或者求出总事件数和所求事件数的情况下,用古典概型公式求解会比较简单。
条件概率教案教案标题:条件概率教学目标:1. 理解条件概率的概念及其在实际生活中的应用。
2. 掌握条件概率的计算方法。
3. 能够运用条件概率解决实际问题。
教学准备:1. PowerPoint演示文稿。
2. 板书工具及白板。
3. 学生练习题集。
教学过程:引入活动:1. 引导学生回顾概率的基本概念,并与实际生活中的例子联系起来。
2. 提出问题:当我们已知某个事件A已经发生时,另一个事件B发生的概率会受到影响吗?知识讲解:1. 解释条件概率的概念:条件概率是指在某个事件已经发生的前提下,另一个事件发生的概率。
2. 介绍条件概率的计算公式:P(B|A) = P(A∩B) / P(A),其中P(A∩B)表示事件A 和事件B同时发生的概率,P(A)表示事件A发生的概率。
3. 通过实际例子演示如何计算条件概率。
示例练习:1. 提供一些练习题,让学生通过计算条件概率来解决实际问题。
2. 引导学生思考如何应用条件概率解决实际生活中的问题,例如天气预报、医学诊断等。
讨论与总结:1. 引导学生讨论他们在解决练习题过程中的思路和方法。
2. 总结条件概率的重要性及其在实际生活中的应用。
3. 鼓励学生提出问题和疑惑,并进行解答和讨论。
作业布置:1. 布置一些练习题,要求学生运用条件概率解决问题。
2. 鼓励学生在日常生活中观察和思考条件概率的应用场景,并记录下来。
教学延伸:1. 鼓励学生进一步研究条件概率的相关知识,如贝叶斯定理等。
2. 推荐相关阅读材料或在线资源,以加深学生对条件概率的理解。
评估方式:1. 教师观察学生在课堂讨论和练习中的表现。
2. 学生提交的作业练习。
教学资源:1. PowerPoint演示文稿。
2. 板书内容的照片或复印件。
3. 学生练习题集。
教学反思:1. 教师应根据学生的理解情况和学习进度,适时调整教学内容和节奏。
2. 教师应鼓励学生积极参与讨论和思考,提高他们的问题解决能力和创造力。
2.2.1 条件概率教学设计一. 教学目标(一)知识与技能:掌握条件概率的定义、判断、及求解方法。
(二)过程与方法:通过知识的探索让学生体会数学来源于生活,采用分析、归纳、总结为主的方法,以培养学生自学能力。
(三)情感态度与价值观:通过生活中的实例让学生体会数学知识的重要性,培养学生思维的灵活性和知识的迁移能力,让学生养成善于观察,分析总结的良好习惯。
二 . 教学重点、难点教学重点:条件概率的定义、公式的推导及计算;为了让学生能够区分一般概率和条件概率的区别,在教学时应特别注意条件概率的定义的引入;但能否解决问题,并解决学生知其然,不知其所以然的情况,还在于对公式的理解,所以本节课的重点是让学生理解公式的推导及应用。
教学难点:条件概率的判断与计算;在理解的基础上能运用自如才是教学的真正目的,所以在教学中选择适当的练习题让学生理解究竟什么是条件概率及条件概率该如何解决。
三 . 学情分析(一)学生已有知识基础或学习起点这是一节新授课,本班学生对数学科特别是概率内容的学习有很高的热情,本班学生具备较好的逻辑思维能力,并能够用已学的定理和概念解决一些常见问题,但分析问题的能力有待提高。
(二)学生已有生活经验和学习该内容的经验学生通过小学、初中的学习,具备了基本的逻辑思维能力,同时在以前的数学学习中学生已经经历了合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。
(三)学生的思维水平以及学习风格受以前传统教学方式的影响,学生的思维仍停留在就题论题上,还没有形成一套完整的思维体系去解决一类问题甚至没有形成一种解决问题的思维方法,因此思路不开阔,缺少发散思维和逻辑思维能力。
学习风格上还保留着被动接受的习惯,缺乏主动思考和探索的精神。
(四)学生学习该内容可能的困难在学习中,学生可能对对条件概率的判断和计算上会有些困难,但相比较计算上困难会更大一些,因为通过本节课的学习,我们掌握了两种解决条件概率的方法,分别是公式法和缩减基本事件空间的方法,能不能运用的好可能是学生在学习中遇到的困难。
一、问题情境1.情境:抛掷一枚质地均匀的硬币两次.(1)两次都是正面向上的概率是多少?(2)在已知有一次出现正面向上的条件下,两次都是正面向上的概率是多少?(3)在第一次出现正面向上的条件下,第二次出现正面向上的概率是多少?2.问题:上述几个问题有什么区别?它们之间有什么关系?二、学生活动两次抛掷硬币,试验结果的基本事件组成集合S={正正,正反,反正,反反},其中两次都是正面向上的事件记为A,则A={正正},故PA=14.将两次试验中有一次正面向上的事件记为B,则B={正正,正反,反正 },那么,在B发生的条件下,A发生的概率为13.这说明,在事件B发生的条件下,事件A发生的概率产生了变化.三、建构数学1.若有两个事件A和B,在已知事件B发生的条件下考虑事件A发生的概率,则称此概率为B已发生的条件下A的条件概率,记作PA│B.注在“│”之后的部分表示条件,区分PA│B与PB│A.比如,若记事件“两次中有一次正面向上”为B,事件“两次都是正面向上”为A,则PA│B就表示“已知两次试验中有一次正面向上的条件下,两次都是正面向上的概率”.思考若事件A与B互斥,则PA│B等于多少?在上面的问题中,PB=34,PAB=14,PA│B=13,我们发现PA│B=13=1434=()()P ABP B.注意事件AB表示事件A和事件B同时发生.2.PA│B与PAB的区别:PA│B是在事件B发生的条件下,事件A发生的概率,PAB表示事件A和事件B同时发生的概率,无附加条件.3.一般地,若PB>0,则在事件B已发生的条件下A发生的条件概率是PA│B,PA│B=() ()P ABP B.反过来可以用条件概率表示事件AB发生的概率,即有乘法公式:若PB≠0,则PAB=PA│B PB,同样有:若PA ≠0,则PAB =PB │A PA .4.条件概率的性质:任何事件的条件概率都在0和1之间,即0≤PA │B ≤1.必然事件的条件概率为1,不可能事件的条件概率为0.(1)甲乙两市位于长江下游,根据一百多年的记录知道,一年中雨天的比例,甲为2021乙为18%,两市同时下雨的天数占12%.求:① 乙市下雨时甲市也下雨的概率;② 甲市下雨时乙市也下雨的概率.(2)课本第58页练习第1,2题.五、要点归纳与方法小结本节课学习了以下内容:1.条件概率公式:PA │B =()()P AB P B , 若PB ≠0,则PAB =PA │B PB ;若PA ≠0,则PAB =PB │A PA ;2.条件概率的性质:0≤PA │B ≤1.2.3.1 条件概率(理科)作业1、下面几种是条件概率的是A .甲、乙二人投篮命中率分别为06, 07,各投篮一次都投中的概率B 甲、乙二人投篮命中率分别为06, 07,在甲投中的条件下乙投篮一次命中的概率C 有10件产品其中3件次品,抽2件产品进行检验,恰好抽到一件次品的概率D 小明上学路上要过四个路口,每个路口遇到红灯的概率都是52,则小明在一次上学中遇到红灯的概率2、已知53)(,103)(==A P AB P ,则)(A B P 等于 3、在10个球中有6个红球和4白球(各不相同)不放回地依次摸出2个球,在第一次摸出红球的条件下,第二次也摸到红球的概率为4、从一副不含大小王的52张扑克牌中不放回地抽取2次,每次抽1张,已知第一次抽到A 求第2次也抽到A 的概率5、把一枚硬币任意抛掷两次,事件B 为“第一次出现反面”,事件A 为“第二次出现正面”则)(B A P =6、100件产品中有5件次品,不放回地抽取两次,每次抽1件,已知第一次抽出的是次品则第二次抽出正品的概率为7、某个家庭中有2个小孩,假定生男生女是等可能的,已知其中1个是女孩,则另一个小孩是男孩的概率为8、在大小均匀的5个鸡蛋中3个红皮鸡蛋,2个白皮鸡蛋,每次取一个,有放回地取两次则已知第一次取到红皮鸡蛋的条件下,第二次取到红皮鸡蛋的概率为9、从一批含有10件合格品,3件不合格品的产品中随机地逐个抽取,抽出后的产品不放回,设X 表示直到取得合格品时的抽取次数,试求:(1)直到第2次才取得合格品时的概率P(X=2);(2)直到第3次才取得合格品时的概率P(X=3)。
高中数学条件概率教案
一、教学目标:
1. 了解条件概率的概念;
2. 掌握条件概率的基本计算方法;
3. 能够应用条件概率解决实际问题。
二、教学重难点:
1. 条件概率的定义及性质;
2. 基于条件概率的计算方法;
3. 实际问题的分析和解决。
三、教学内容:
1. 条件概率的概念及性质介绍;
2. 条件概率的计算方法;
3. 实际问题的讨论和解决。
四、教学过程:
1. 导入环节:
通过一个简单的实例引入条件概率的概念,让学生了解条件概率是指在已知一些信息的基础上,对事件发生的可能性进行预测的方法。
2. 理论讲解:
介绍条件概率的定义及性质,并讲解条件概率的计算方法,包括加法法则、乘法法则等。
3. 分组练习:
将学生分成小组,让他们通过一些实际问题进行讨论和计算,培养学生的思维和解决问题的能力。
4. 总结归纳:
让学生总结本节课的知识点,强化对条件概率的理解和运用。
五、作业布置:
布置练习题目,巩固学生对条件概率的理解和应用能力。
六、教学评价:
通过课堂练习和作业的评审,评价学生对条件概率的掌握情况,及时纠正学生的错误认识和方法。
七、教学反思:
反思教学过程中存在的问题和不足,及时调整教学方法,提高教学效果。
以上是一份高中数学条件概率教案的范本,可根据实际教学情况进行灵活调整和完善。
祝您的教学工作顺利!。
《条件概率》教学设计课时2全概率公式一、本节内容分析本节主要在必修课程概率的基础上,通过研究简单事件求复杂事件的概率,主要内容为条件概率和概率的乘法公式.条件概率的概念在概率理论中占有十分重要的地位,教科书只是简单介绍条件概率的初等定义.为了便于学生理解,教材以简单事例为载体,逐步通过探究,引导学生体会条件概率的思想.全概率公式是概率论中一个基本而重要的公式,其基本思想是利用一组两两互斥的事件,将一个复杂事件表示为两两互斥事件的和事件,再由概率的加法公式和乘法公式求这个复杂事件的概率,它为计算某些事件的概率提供了有力的工具.在本节,教材创设不同的情境,让学生先直观认识条件概率的意义,通过列举试验的样本空间,发现条件概率的本质是在缩小的样本空间上的概率,然后从特殊到一般,抽象出条件概率的定义.同样地,通过具体实例,提炼出求复杂事件概率的基本思路,将其一般化得到全概率公式.利用全概率公式计算概率,体现了分解与综合、化难为易的转化思想.本节包含的核心知识和体现的核心素养如下:二、学情整体分析学生具有一定的分析问题和解决问题的能力,逻辑思维能力也初步形成,并且对概率有了一些基础的认识,对一些简单的概率模型(古典概型、条件概率)已经有所了解.但由于年龄的原因,思维尽管活跃、敏捷,但缺乏冷静、深刻.在学习中,学生可能对条件概率的判断和计算,会有些困难,但相比较,计算上困难会更大一些.全概率公式的思想是用简单事件的运算表示复杂事件,利用概率的性质及概率公式简化概率的计算,这种思想方法具有一般性,贝叶斯公式虽然本质上是求条件概率,但隐含着深刻的数学思想,它反映了试验之后对各种“原因”发生可能性大小的新认识.学生还可能存在混淆两个事件相互独立与两个事件互斥的概念,并由此引发概率公式运用错误.学情补充:____________________________________________________________________ _________________________________________________________________________________ 三、教学活动准备【任务专题设计】 1.条件概率 2.全概率公式 【教学目标设计】1.结合古典概型,了解条件概率与概率的乘法公式,了解条件概率与独立性的关系,熟悉条件概率的性质,能计算简单随机事件的条件概率.2.结合古典概型,理解全概率公式的概念,达到数学抽象素养.会利用全概率公式计算概率. 3.了解贝叶斯公式. 【教学策略设计】由于学生自我归纳能力较差,又习惯于就题论题,因此适合提问引导启发式授课方式和归类对比的学习方法.讲解的时候,应做到适当启发、设问,引发学生对问题的思考,引导学生找到解题思路,并且点拨学生进行对比归类,提高学生对问题的分析、归纳、总结的能力.【教学方法建议】情境教学法、问题教学法,还有__________________________________________________ 【教学重点难点】重点 1.条件概率的概念及计算,概率的乘法公式及应用.2.理解全概率公式的概念,认识全概率公式是用简单事件的运算表示复杂事件,会转化和化归、化繁为简的思想.3.会用全概率公式解决一些实际问题.4.了解贝叶斯公式及其应用.难点 1.对条件概率中“条件”的正确理解,条件概率与无条件概率的比较.2.由具体实例抽象推导全概率公式的过程.3.运用全概率公式求概率.4.贝叶斯公式的理解和应用.【教学材料准备】1.常规材料:多媒体课件、________________________________________________2.其他材料:_____________________________________________________________四、教学活动设计教学导入师:在计算较复杂事件概率时,我们首先把一个复杂事件表示为一些简单事件的运算结果,然后利用概率的加法公式和乘法公式求其概率.我们还想知道,在这样的计算概率的过程中,还有什么规律和方法我们尚未发现,我们能总结出多少计算概率的好方法呢?让我们先从求一个复杂随机事件的概率开始吧!教学精讲探究1 全概率公式【情景设置】探究全概率公式从有a个红球和b个蓝球的袋子中,每次随机摸出1个球,摸出的球不再放回.显然,第1次摸到红球的概率为aa b.那么第2次摸到红球的概率是多少?如何计算这个概率呢?【以学论教】对教学活动整个过程的学习情况进行追踪,根据学生实际学习情况和课堂效果总结出教学过程中的方法和策略的成功之处和不足之处.【先由学生独立思考,侧重直观感知概率的值,并通过师生互动进行交流】 师:因为抽签具有公平性,所以第2次摸到红球的概率也应该是aa b+.对于这个结果,学生可能会产生疑惑,因为第2次摸球的结果受第1次摸球结果的影响.【教师指出数学上有许多问题与直觉相悖,不能仅凭感觉来作判断,而要进行严格的数学证明】师:你能证明第2次摸到红球的概率是aa b+吗?你是怎样证明的? 【先由学生自主论证,交流学习结果.教师进行点评,再给出严格的证明】师:用i R 表示事件“第i 次摸到红球”,i B 表示事件“第i 次摸到蓝球”(1,2)i =.我们就可以用图形来表示事件之间的关系,如图所示,事件2R 可按第1次可能摸球的结果(红球或蓝球)表示为两个互斥事件的并,即21212R R R B R =.利用概率的加法公式和乘法公式,得()()()()()()()21212121121||P R P R R P B R P R P R R P B P R B =+=+=111a a b a aa b a b a b a b a b-⨯+⨯=++-++-+.【设活动 深探究】教师先给出具体的问题情境,在学生根据实际情况并充分讨论的基础上展示结果,教师再总结引导.【教师总结以上证明过程采用的方法,即按照某种标准,将一个复杂事件表示为两个互斥事件的并,再由概率的加法公式和概率的乘法公式求得这个复杂事件的概率】师:以上的证明蕴含着怎样的思想?将以上的问题一般化,你能得到什么结果呢? 【要点知识】全概率公式一般地,设12,,,n A A A 是一组两两互斥的事件,12n A A A =Ω,且()0,1,2,3,,i P A i n >=,则对任意的事件B ⊆Ω,有()P B =()()1|niii P A P B A =∑.【概括理解能力】由具体实例,通过数学抽象得出一般性的数学结论,是培养学生数学抽象素养的重要途径.按照对于特殊情形的全概率公式的证明,我们能证明这个公式,虽然我们没有证明全概率公式,这并不妨碍我们用全概率公式求概率.通过这个过程,提升学生概括理解能力.师:以上这个公式称为全概率公式,它是计算概率的最基本的公式之一.如何利用全概率公式解决问题呢?请看下面的例题.【典型例题】利用全概率公式求概率例1 某学校有,A B 两家餐厅,王同学第1天午餐时随机地选择一家餐厅用餐.如果第1天去A 餐厅,那么第2天去A 餐厅的概率为0.6;如果第1天去B 餐厅,那么第2天去A 餐厅的概率为0.8.计算王同学第2天去A 餐厅用餐的概率.【教师提示学生运用全概率公式计算概率.可视学生的反应,对问题作如下分析】 师:第2天去哪家餐厅用餐的概率受第1天在哪家餐厅用餐的影响,可根据第1天可能去的餐厅,将样本空间表示为“第1天去A 餐厅用餐”和“第1天去B 餐厅用餐”两个互斥事件的并,利用全概率公式求解.【学生完整地写出解题过程,师生进行交流.然后教师进行点评,给出规范的解题步骤】 师解:借助树状图(如图所示)第一步,用符号表示随机事件:设1A =“第1天去A 餐厅用餐”,1B =“第1天去B 餐厅用餐”,2A =“第2天去A 餐厅用餐”.第二步,划分样本空间:11A B Ω=,且1A 与1B 互斥.第三步,分别计算概率:()()()()1121210.5,|0.6,|0.8P A P B P A A P A B ====. 第四步,由全概率公式求出概率:()()()()()2121121||0.7P A P A P A A P B P A B =+=. 即王同学第2天去A 餐厅的概率为0.7. 【深度学 重推理】由具体实例,通过数学抽象得出一般性的数学结论.在学习了全概率公式的基础上,通过层层引导设问,深化对全概率公式的理解,为引出贝叶斯公式做准备. 探究2 贝叶斯公式师:下面我们一起探究这样的例题. 【典型例题】探究贝叶斯公式例2 有3台车床加工同一型号的零件,第1台加工的次品率为6%,第2,3台加工的次品率均为5%,加工出来的零件混放在一起.若第1,2,3台车床加工的零件数分别占总数的25%,30%,45%.(1)任取一个零件,计算它是次品的概率,(2)如果取到的零件是次品,计算它是第(1,2,3)i i =台车床加工的概率.【教师首先要求学生用集合语言表示例2中的事件.用简单事件的运算结果表示所要求概率的事件.接着让学生自主解决问题,同学之间可以进行讨论制订解决问题的方案】【深度学习】通过例题进一步强化应用全概率公式计算概率的方法与步骤,通过问题(2)中的条件概率的计算,为引出贝叶斯公式作准备.师分析:取到的零件来自3台车床都有可能,如果设B =“任取一个零件为次品”,i A =“零件为第i 台车床加工”(1,2,3)i =,那么可将事件B 表示为3个两两互斥的事件的并(如图),利用全概率公式可以计算出事件B 的概率.师解:第一步,用符号表示随机事件:设B =“任取一个零件为次品”,i A =“零件为第i 台车床加工”(1,2,3)i =.第二步,划分样本空间:123A A A Ω=,且123,,A A A 两两互斥.第三步,分别计算概率:()()()()12310.25,0.3,0.45,|P A P A P A P B A ====()()230.06,|0.05,|0.05P B A P B A ==.第四步,由全概率公式求出概率:()()()()()()112233()|||0.250.060.3P B P A P B A P A P B A P A P B A =++=⨯+0.050.450.050.0525⨯+⨯=.师:对于问题(2),“如果取到的零件是次品,计算它是第(1,2,3)i i =台车床加工的概率”,就是计算在B 发生的条件下,事件i A 发生的概率,即求()|i P A B .因此根据条件概率,得()()()()1111|0.250.062|()()0.05257P A B P A P B A P A B P B P B ⨯====.类似地,可得()()2323|,|77P A B P A B ==.【以学定教】贝叶斯公式为选学内容,由师生共同结合实例进行学习.通过以学定教来达到学习的目的. 师:在上面的例题解答中,概率()(),|i i P A P A B 的实际意义是什么?你能梳理出解决问题(2)过程中的关键等式吗?【由于贝叶斯公式属于选学内容,学生在理解上会存在一定的困难.教师可以在学生先行思考的基础上,进行讲解】【概括理解能力】深入理解全概率公式的适用题型和解题步骤,结合条件概率,概括理解贝叶斯公式. 师:()i P A 是试验之前就已知的概率,它是第i 台车床加工的零件所占的比例,称为先验概率.当已知抽到的零件是次品(B 发生),()|i P A B 是这件次品来自第i 台车床加工的可能性大小,通常称为后验概率.如果对加工的次品,要求操作员承担相应的责任,那么223,,777就分别是第1,2,3台车床操作员应承担的份额.【教师引导学生梳理出解决问题(2)过程中的关键性等式】 生:()()()()||,1,2,3()()i i i i P A B P A P B A P A B i P B P B ===.①追问:仿照全概率公式的一般化,你能写出①式的一般形式吗?请你尝试做一做.【由学生先仿照全概率公式的一般化过程,尝试用符号化表示问题,然后教师指导学生根据例2,写出贝叶斯公式的一般形式】【要点知识】贝叶斯公式设12,,,n A A A 是一组两两互斥的事件,12n A A A =Ω,且()0,i P A i >=1,2,,n ,则对任意的事件,()0B P B ⊆Ω>,有()()()()()1||,1,2,,.|i i i nkkk P A P B A P A B i n P A P B A ===∑【分析计算能力】主要考查学生对全概率公式和贝叶斯公式的理解和应用,能根据题目情境正确分析应用哪个公式,注意计算准确.师:这个公式是由英国数学家贝叶斯首先发现的,称为贝叶斯公式,它用来描述两个条件概率之间的关系.贝叶斯公式在统计学中有着广泛的应用.下面请看例题.【典型例题】贝叶斯公式的应用例3 在数字通信中,信号是由数字0和1组成的序列.由于随机因素的干扰,发送的信号0或1有可能被错误地接收为1或0.已知发送信号0时,接收为0和1的概率分别为0.9和0.1;发送信号1时,接收为1和0的概率分别为0.95和0.05.假设发送信号0和1是等可能的.(1)分别求接收的信号为0和1的概率;(2)已知接收的信号为0,求发送的信号是1的概率.【教师首先要求学生用集合语言表示例3中的事件,用简单事件的运算结果表示所要求概率的事件,并根据题意将样本空间表示成两两互斥的事件的并集.在此基础上,要求学生灵活选用条件概率、概率的乘法公式、全概率公式、贝叶斯公式来解决问题】【简单问题解决能力】通过具体实例,让学生明白贝叶斯公式的含义,并总结出用贝叶斯公式解决相关概率问题的方法,提升简单问题解决能力.师分析:设A =“发送信号为0”,B =“接收信号为0”,则A =“发送信号为1”,B =“接收信号为1”.我们可以用图形表示事件之间的关系,如图所示.问题(1)就是求()P B 和()P B .生解:设A =“发送的信号为0”,B =“接收到的信号为0”,则A =“发送的信号为1”,B =“接收到的信号为1”,由题意得()()0.5,(|)0.9,(|)0.1,(|)0.05,P A P A P B A P B A P B A =====(|)0.95P B A =.(1)()()(|)()(|)0.50.90.50.050.475P B P A P B A P A P B A =+=⨯+⨯=,()1()10.4750.525P B P B =-=-=.(2)()()(|)0.50.051(|)()()0.47519P AB P A P B A P A B P B P B ⨯====. 师:下面我们对全概率公式的应用进行一下巩固训练.【巩固练习】全概率公式的应用设某工厂有两个车间生产同型号家用电器,第一车间的次品率为0.15,第二车间的次品率为0.12,两个车间的成品都混合堆放在一个仓库.假设第一、二车间生产的成品比例为2:3,今有一客户从成品仓库中随机提一台产品,则该产品合格的概率为______.【以学定教】借助具体实例,让学生经历贝叶斯公式的一般化过程,在此过程中提升学生的数学抽象核心素养,使学生认识到事物之间都存在广泛的联系.【学生积极思考,独立完成,教师巡视指导】生解:设B =“从仓库中随机提出的一台是合格品”,i A =“提出的一台是第i 车间生产的”,1,2i =.由题意()()()()121223,,|0.85,|0.8855P A P A P B A P B A ====,由全概率公式()()()()112223()||0.850.880.86855P B P A P B A P A P B A =+=⨯+⨯=.【设计意图】通过具体实例,巩固全概率公式和贝叶斯公式,加强对它们的应用. 师:这节课,我们就上到这里,我们一起归纳总结一下. 【课堂小结】全概率公式条件概率()(|)()P AB P B A P A =概率的乘法公式()()(|)P AB P A P B A =全概率公式()()()()()()1122()|||n n P B P A P B A P A P B A P A P B A =+++=()()1|niii P A P B A =∑贝叶斯公式()()()()()1||,1,2,,|i i i nkkk P A P B A P A B i n P A P B A ===∑.教学评价学完本节课,我们应该理解条件概率、全概率的概念,会求简单的条件概率、全概率问题,理解条件概率、全概率的性质,并能够利用性质解决较为综合性的实际问题.【设计意图】能够在熟悉的数学问题情境中直接应用数学知识进行列式、计算解决问题,锻练分析计算能力.通过问题组梳理全概率公式的基本思想和解题的步骤,有助于学生把握数学思想方法,提升他们的数学核心素养. 应用所学知识,完成下面各题:1.一个盒子中有6只白球、4只黑球,从中不放回地每次任取1只,连取2次,第2次取到白球的概率为( )A.25B.35C.12D.13 解析:设A =“第1次取到白球”,B =“第2次取到白球”.因为B ABAB =且AB 与AB 互斥,所以()()()()(|)()(|)P B P AB P AB P A P B A P A P B A =+=+=654631091095⨯+⨯=. 答案:B2.根据以往的临床记录,某种诊断癌症的试验具有如下的效果:若以A 表示事件“试验反应为阳性”,以C 表示事件“被诊断者患有癌症”,则有(|)0.95,(|)P A C P A C ==0.95.现在对自然人群进行普查,设被试验的人患有癌症的概率为0.005,即()P C =0.005,试求(|)P C A .解析:因为(|)0.95P A C =,所以(|)1(|)0.05P A C P A C =-=.因为()0.005P C =,所以()0.995P C =.所以(|)()0.950.00519(|)(|)()(|)()0.950.0050.050.995218P A C P C P C A P A C P C P A C P C ⨯===+⨯+⨯. 【简单问题解决能力】教学评价中的两个习题分别应用到全概率公式和贝叶斯公式,可以让学生对本节课的掌握情况进行及时的自我评价,通过练习提升学生的简单问题解决能力.教学反思条件概率的概念在概率理论中占有十分重要的地位,为了便于学生理解,教材以简单事例为载体,通过逐步探究,引导学生体会条件概率的思想.通过本节课的学习,我们掌握了两种解决条件概率的方法,分别是定义法和缩小样本空间的方法,能不能运用好可能是学生在学习中主要困难.全概率公式是概率论中一个基本而重要的公式,在本节课中,通过创设不同的情境,通过列举试验的样本点,从特殊到一般,提炼出求复杂事件概率的基本思路,将其一般化得到全概率公式.贝叶斯公式本质上还是条件概率,通过本节课的学习,可以增强学生思维的严谨性和思考问题的多角度性.另外,就全概率公式和贝叶斯公式的应用这一部分知识来说,题目涉及的试验过程一般较为繁琐,所以对两个公式的深刻理解,以及理清题意,灵活利用公式求解也是一个需要克服的难关.【以学论教】对教学活动整个过程的学习情况进行追踪,根据学生实际学习情况和课堂效果总结出通过引导和启发学生体会条件概率的思想、创设不同情境从特殊到一般归纳总结全概率公式,并了解贝叶斯公式的实质.由于学生对相互独立事件与互斥事件的概念易发生混淆,教师在教学过程当中应帮助学生理解.。
-条件概率示范教案2.2.1 条件概率(1)教材分析本节内容是数学选修2-3 第二章随机变量及其分布第二节二项分布及其应用的起始课,是对概率知识的拓展,为了导出二项分布需要条件概率和事件的独立性的概念,条件概率是比较难理解的概念,教材利用“抽奖”这一典型案例,以无放回抽取奖券的方式,通过两个思考比较抽奖前和在第一名同学没有中奖的条件下,最后一名同学的中奖概率,引出条件概率的概念,给出了两种计算条件概率的方法,给出了条件概率的两个性质.本课题的重点是条件概率的概念,难点是件概率计算公式的应用.通过探究条件概率的概念的由来过程,可以很好地培养归纳、推理,学生分析问题、解决问题的能力,要求学生有意识地运用特殊与一般思想,在解决新问题的过程中,又要自觉的运用化归与转化思想,体现解决数学问题的一般思路与方法.课时分配本节内容用1课时的时间完成,主要讲解条件概率概念、性质及计算公式,并利用公式解决简单的概率问题. 教学目标重点: 条件概率的概念.难点:条件概率计算公式的应用.知识点:条件概率.能力点:探寻条件概率的概念、公式的思路,归纳、推理、有特殊到一般的数学思想的运用.教育点:经历由特殊到一般的研究数学问题的过程,体会探究的乐趣,激发学生的学习热情.自主探究点:如何理解条件概率的内涵.考试点:求解决具体问题中的条件概率.易错易混点:利用公式时()n A 易计算错.拓展点:有放回.抽球时(|)P B A 与()P B 的关系教具准备 多媒体课件和三角板课堂模式 学案导学一、引入新课在生活中我们有些问题不好解决时经常采用抽签的办法,抽签有先后,对每个人公平吗?探究: 三张奖券中只有一张能中奖,现分别由三名同学无放回地抽取,问最后一名同学抽到中奖奖券的概率是否比前两名同学小.【师生活动】师:如果三张奖卷分别用12,,X X Y 表示,其中Y 表示那张中奖奖券,那么三名同学的抽奖结果共有几种可能?能列举出来吗?生:有六种可能:121221211221,,,,,X X Y X YX X X Y X YX YX X YX X .师:用 B 表示事件“最后一名同学抽到中奖奖券” , 则 B包含几个基本事件?生:包含两个基本事件:1221,X X Y X X Y .师:如何计算事件B 的概率?生:由古典概型计算公式可知,最后一名同学抽到中奖奖券的概率为1()3P B 师:每个同学抽到的概率一样吗? 生:每个同学抽到的概率一样,都是13请同学们思考下面问题思考:如果已经知道第一名同学没抽到中奖奖券,那么最后一名同学抽到中奖奖券的概率又是多少?【师生活动】师:因为已知第一名同学没有抽到中奖奖券,所以可能出现的基本事件是什么?生:可能出现的基本事件有12122121,,,,X X Y X YX X X Y X YX师:“最后一名同学抽到中奖奖券”包含的基本事件是什么?生:“最后一名同学抽到中奖奖券”包含的基本事件是1221,X X Y X X Y ,师:由古典概率计算公式可知,最后一名同学抽到中奖奖券的概率是24,即12. 若用A 表示事件“第一名同学没有抽到中奖奖券”则将“已知第一名同学没有抽到中奖奖券的条件下,最后一名同学抽到中奖奖券” 的概率记为(|)P B A .请同学们考虑:已知第一名同学的抽奖结果为什么会影响最后一名同学抽到中奖奖券的概率呢?在这个问题中,知道第一名同学没有抽到中奖奖券,等价于知道事件A 一定会发生,导致可能出现的基本事件必然在事件A 中,从而影响事件B 发生的概率,使得(|)()P B A P B ≠我们这节课就来研究在事件A 发生的条件下,事件B 发生的条件概率:(|)P B A【设计意图】 通过学生身边的抽签问题引入两个事件的概率的求法,学生感到亲切,激发了学生主动探究的学习兴趣.通过学生自己的计算发现不同,进而引出本节课的课题.二、探究新知对于刚才的问题请同学们回顾并思考:(1)求概率时均用了什么概率公式?(2)事件A 的发生使得样本空间前后有何变化?(3)事件A 的发生使得事件B 有何变化(4)对于上面的事件A 和事件B ,(|)P B A 与它们的概率有什关系呢?用Ω表示三名同学可能抽取的结果全体,则它由六个基本事件组成,即121221211221{,,,,,}X X Y X YX X X Y X YX YX X YX X Ω=既然已知事件A 必然发生,那么只需在12122121{,,,}A X X Y X YX X X Y X YX =的范围内考虑问题,即只有四个基本事件12122121,,,X X Y X YX X X Y X YX ,在事件A 发生的情况下,事件B 发生等价于事件A 和事件B 同时发生.而事件AB 中含有1221,X X Y X X Y 两个基本事件,因此 2()(|)4()n AB P B A n A ==,其中()n A 和()n AB 分别表示事件A 和事件AB 所包含的基本事件个数.另一方面,根据古典概型的计算概率的公式可知,()()(),(),()()n AB n A P AB P A n n ==ΩΩ其中()n Ω表示Ω中包含的基本事件个数,所以()()()()(|)()()()()n AB n AB P AB n P B A n A n A P A n Ω===Ω因此,可以通过事件A 和事件AB 的概率来表示(|)P B A .条件概率定义一般地,设A ,B 为两个事件,且()0P A >,称()(|)()P AB P B A P A =为在事件A 发生的条件下,事件B 发生的条件概率, (|)P B A 读作A 发生的条件下B 发生的概率.条件概率性质:1、0(|)1P B A ≤≤.2、如果B 和C 是两个互斥事件,则(|)(|)(|)P B C A P B A P C A =+.[设计意图] 给学生充分的思考,展示公式的发现过程, 通过学生计算发现共性,进而归纳出概念、公式, 培养学生归纳、概括、提出数学问题的能力(一般性探究).激发学生主动学习兴趣,体现学生的主体地位.三、理解新知(1) ()(|)()P AB P B A P A =(2).()(|)()nAB P B A n A = (3) 条件概率的性质[设计意图]梳理、回顾条件概率的定义、公式、性质,为下面例题的教学,作必要的准备.四、运用新知例1 在5道题中有3道理科题和2道文科题。
如果不放回地依次抽取2道题,求:(1)第1次抽到理科题的概率;(2)第1次和第2次都抽到理科题的概率;(3)在第1次抽到理科题的条件下,第2次抽到理科题的概率。
解:设第1次抽到理科题为事件A ,第2次抽到理科题为事件B ,则第1次和第2次都抽到理科题为事件AB.(1)从5道题中不放回地依次抽取2道的事件数为 ()n Ω=2520A =.根据分步乘法计数原理,1134()12n A A A=⨯=.于是 ()123()()205n A P A n ===Ω. (2)因为 23()6n AB A==,所以 ()63()()2010n AB P AB n ===Ω.(3)解法 1 :由( 1 ) ( 2 )可得,在“第 1 次抽到理科题的条件下,第 2 次抽到理科题”的概率3()110(|)3()25P AB P B A P A ===.解法2 :因为()6n AB =, ()12n A = ,所以()61(|)()122P AB P B A P A ===小结:条件概率的计算方法有两种:(1):利用定义计算,先分别计算(),()P AB P A ,然后代入公式:()(|)()P AB P B A P A =(2):利用缩小样本空间计算,即将原来的样本空间Ω缩小为已知的事件A ,原来的事件B 缩小为事件AB ,利用古典概型计算概率: ()(|)()nAB P B A n A =练习:54P 1, 2例2 一张储蓄卡的密码共有6位数字,每位数字都可以从0~9中任选一个.某人在银行自动提款机上取钱时,忘记了密码的最后一位数字.求:(1)任意按最后一位数字,不超过2次就按对的概率.(2)如果他记得密码的最后一位是偶数,不超过2次就按对的概率.解:设第i 次按对密码为事件i A (1,2)i = ,则112()A A A A =表示不超过2次就按对密码”.(1)因为事件1A 与事件12A A 互斥,由概率的加法公式得1121911()()()101095P A P A P A A ⨯=+=+=⨯.(2)用B 表示最后一位按偶数的事件,则112(|)(|)(|)P A B P A B P A A B =+14125545⨯=+=⨯. 注意:利用公式(|)(|)(|)P BC A P B A P C A =+可以使求有些条件概率较为简洁,但应注意公式的前提:“B 和C 是两个互斥事件”. 练习.掷两颗均匀骰子,已知第一颗掷出6点, 问“掷出点数之和不小于10”的概率是多少?小结:求条件概率的步骤:(1) 用字母表示有关的事件.(2) 求(),()P AB P A 或(),()n AB n A(3) 利用条件概率的公式求概率, ()()(|)()()P AB n AB P B A P A n A ==[设计意图]通过两个例题的教学强化条件概率的概念及两种计算方法,体现了条件概率的性质在解题中的应用,配以几道练习让学生不仅听得明白,还要会自己做!有利于学生全面而系统地掌握条件概率的相关知识.五、课堂小结教师提问:本节课我们学习了哪些知识,涉及到哪些数学思想方法?学生作答:1.知识:(1)条件概率的定义(2)条件概率的性质(3)条件概率的计算方法2.思想:类比、归纳、推理、数形结合的思想、由特殊到一般的思想.教师总结:条件概率的概念在概率理论中占有十分重要的地位,这节课我们只是简单的介绍了条件概率的定义、性质,常见的两种计算方法.同学们要注意体会、理解条件概率的深刻内涵,注意条件概率与事件的概率的区别、联系.[设计意图] 让学生梳理每节课的知识方法,体现学生的主体地位,教会学生归纳、总结的学习方法.六、布置作业1.阅读教材P51—53;2.书面作业必做题:1. P59 习题2.2 A组 22. 已知100件产品中有4件次品,无放回地从中抽取2次,每次抽取1件,求下列事件的概率:(1)两次都取到正品;(2) 第一次取到正品,第二次取到正品;(3)在第一次取到正品条件下,第二次取到正品选做题:1. 抛掷一枚质地均匀的硬币两次。
(1)两次都是正面的概率是多少?(2)在已知第一次出现正面向上的条件下,两次都是正面向上的概率是多少?2. 考虑恰有两个小孩的家庭,已知这个家庭有一个是男孩,问这时另一个小孩是女孩的概率是多少?(假定生男生女为等可能).3.课外思考条件概率与事件的概率有什么区别、联系?[设计意图]设计作业1,2,是引导学生先复习,再作业,培养学生良好的学习习惯.书面作业的布置,是为了让学生能够运用条件概率的定义、性质,解决简单的概率问题;课外思考的安排,是让学生理解新旧知识之间的联系,从而让学生深刻地体会到条件概率的内涵,培养学生用整体的观点看问题.七、教后反思1.本教案的亮点是新课引入,利用“抽奖”这一典型案例,以无放回抽取奖券的方式,通过两个思考比较抽奖前和在第一名同学没有中奖的条件下,最后一名同学的中奖概率,引出条件概率的概念,易激发学生的兴趣,易于接受条件概率的概念,较好的突破了教学中的难点2.例题教学中两种方法较好的回归了条件概率的概念,学生接受的较好,但有些学生在计算()P A 时易出现错误.八、板书设计 2.2.1 条件概率1.条件概率定义:()(|)()P AB P B A P A 2.条件概率的性质 3.条件概率的求法4.求条件概率的步骤例1.例2.。