SVM-算法实现
- 格式:ppt
- 大小:3.65 MB
- 文档页数:66
spark算法实现——svm⽀持向量机svm是⼀种分类算法,⼀般先分为两类,再向多类推⼴⼀⽣⼆,⼆⽣三,三⽣。
⼤致可分为:线性可分⽀持向量机硬间隔最⼤化hard margin maximization硬间隔⽀持向量机线性⽀持向量机软间隔最⼤化soft margin maximization软间隔⽀持向量机⾮线性⽀持向量机核函数kernel function基本概念:分割超平⾯设C和D为两不相交的凸集,则存在超平⾯P,P可以将C和D分离。
线性可分⽀持向量机SVM从线性可分情况下的最优分类⾯发展⽽来。
最优分类⾯就是要求分类线不但能将两类正确分开(训练错误率为0),且使分类间隔最⼤ 给定线性可分训练数据集,通过间隔最⼤化得到的分离超平⾯为相应的分类决策函数该决策函数称为线性可分⽀持向量机。
φ(x)是某个确定的特征空间转换函数,它的作⽤是将x映射到(更⾼的)维度。
线性⽀持向量机分类线能将两类分开(训练错误率⼤于0,存在个别样本点分错),且使分类间隔最⼤⾮线性⽀持向量机存在⾮线性分割超平⾯,讲样本分开sparkmllib代码实现package mllibimport org.apache.spark.mllib.classification.{SVMModel, SVMWithSGD}import beledPointimport org.apache.spark.mllib.util.MLUtilsimport org.apache.spark.rdd.RDDimport org.apache.spark.sql.SQLContextimport org.apache.spark.{SparkContext, SparkConf}//⼆分类object SVMwithSGD {def main(args: Array[String]) {val conf = new SparkConf().setAppName("test").setMaster("local")val sc = new SparkContext(conf)val sql = new SQLContext(sc);val data: RDD[LabeledPoint] = MLUtils.loadLibSVMFile(sc, "svm.txt")val splits = data.randomSplit(Array(0.6, 0.4), seed = 11L)val training = splits(0).cache()val test = splits(1)// data.foreach( x => println(x.toString()))// data.foreach( x => println(bel))data.foreach( x => println(x.features))val numIterations = 100val model: SVMModel = SVMWithSGD.train(training, numIterations)model.clearThreshold()//为了模型拿到评分不是处理过之后的分类结果val scoreAndLabels: RDD[(Double, Double)] = test.map { point => // ⼤于0 ⼩于0 两类val score = model.predict(point.features)(score, bel)}scoreAndLabels.foreach(println)}}评分>0表⽰样本点在分割⾯之上,<0表⽰在分割⾯之下。
SVM的原理和代码实现SVM(Support Vector Machine,支持向量机)是一种常用的机器学习算法,用于二分类和回归问题。
SVM的核心思想是找到一个最优的超平面,将不同类别的数据样本分开。
这个超平面由支持向量(样本)确定,使得支持向量到超平面的距离最大化。
本文将介绍SVM的原理及其代码实现。
一、SVM原理:1.线性可分情况:对于线性可分的数据集,SVM的目标是找到一个超平面,使得所有正例样本都位于超平面的一侧,负例样本都位于另一侧。
超平面的方程可以表示为:w^T*x+b=0,其中w是一个向量,表示法向量,b是偏置。
2.间隔最大化:SVM的关键是最大化两个不同类别样本之间的几何间隔。
间隔是沿着超平面的宽度,因此离分类超平面最近的实例点,即两个最靠近超平面的支持向量(x1和x2),满足w^T*x1+b=1和w^T*x2+b=-1、它们满足w^T*(x1-x2)=2/(,w,)。
因此,SVM的优化问题转化为求解最大化2/(,w,)的最小化问题。
也就是求解以下优化问题:minimize ,w,^2/2,其中y_i*(w^T*x_i + b) >= 13.引入松弛变量:当数据不是完全线性可分时,引入松弛变量xi,使得一些样本可以处于错误的一侧。
此时优化问题转化为:minimize ,w,^2/2 + C*Σξ_i,其中y_i*(w^T*x_i + b) >= 1 - ξ_i,ξ_i >= 0。
C是一个超参数,用于控制错误样本的惩罚程度。
当C越大,对错误样本的惩罚越重;C越小,则对错误样本的惩罚越轻。
4.对偶问题:为了方便求解SVM的优化问题,引入拉格朗日乘子,将SVM的原始问题转化为对偶问题。
通过求解对偶问题,可以得到最优解。
对偶问题如下:maximize Σα_i - 1/2*ΣΣ α_i*α_j*y_i*y_j*x_i*x_j,其中Σα_i*y_i = 0,0 <= α_i <= C。
⽀持向量机(SVM)算法的matlab的实现⽀持向量机(SVM)的matlab的实现⽀持向量机是⼀种分类算法之中的⼀个,matlab中也有对应的函数来对其进⾏求解;以下贴⼀个⼩例⼦。
这个例⼦来源于我们实际的项⽬。
clc;clear;N=10;%以下的数据是我们实际项⽬中的训练例⼦(例⼦中有8个属性)correctData=[0,0.2,0.8,0,0,0,2,2];errorData_ReversePharse=[1,0.8,0.2,1,0,0,2,2];errorData_CountLoss=[0.2,0.4,0.6,0.2,0,0,1,1];errorData_X=[0.5,0.5,0.5,1,1,0,0,0];errorData_Lower=[0.2,0,1,0.2,0,0,0,0];errorData_Local_X=[0.2,0.2,0.8,0.4,0.4,0,0,0];errorData_Z=[0.53,0.55,0.45,1,0,1,0,0];errorData_High=[0.8,1,0,0.8,0,0,0,0];errorData_CountBefore=[0.4,0.2,0.8,0.4,0,0,2,2];errorData_Local_X1=[0.3,0.3,0.7,0.4,0.2,0,1,0];sampleData=[correctData;errorData_ReversePharse;errorData_CountLoss;errorData_X;errorData_Lower;errorData_Local_X;errorData_Z;errorData_High;errorData_CountBefore;errorData_Local_X1];%训练例⼦type1=1;%正确的波形的类别,即我们的第⼀组波形是正确的波形,类别号⽤ 1 表⽰type2=-ones(1,N-2);%不对的波形的类别,即第2~10组波形都是有故障的波形。
SVM算法推导及其分类的算法实现SVM(Support Vector Machine)是一种常用的监督学习算法,被广泛应用于二分类和多分类问题中。
它的基本原理是找到一个超平面,将不同类别的数据分开。
这篇文章将介绍SVM算法的推导及其分类的算法实现。
一、推导1.数据预处理:将数据进行标准化或归一化处理,使不同特征之间具有相同的重要性。
2.确定超平面:SVM算法的目标是找到一个超平面,能够将不同类别的数据完全分开。
超平面可以表示为w*x+b=0的形式,其中w是法向量,b是偏置项。
3.确定分类边界:SVM算法中存在两个平行的超平面,它们与训练数据中的支持向量间隔相等。
这两个平面被称为分类边界。
4.样本分类:根据数据点到超平面的位置,确定其所属类别。
点在超平面之下表示负类数据,点在超平面之上表示正类数据。
5.寻找最优超平面:SVM算法的目标是寻找一个最优超平面,使分类误差最小。
通常使用最大间隔法来确定最优超平面。
6.引入松弛变量:考虑到有时数据无法完全线性分开,SVM算法允许一定程度上的分类错误。
通过引入松弛变量,可以允许部分数据点落在错误的一侧。
7.目标函数确定:根据以上步骤,可以得到SVM的目标函数,即在最大间隔的同时,使得分类误差最小。
8.优化求解:使用优化算法来求解目标函数,例如使用拉格朗日对偶问题等方法。
二、算法实现下面是SVM算法的基本实现步骤:1.数据预处理:将原始数据进行标准化或者归一化处理,使得不同特征之间的取值范围一致。
2.确定超平面:假设训练数据是线性可分的,通过训练数据找到一个超平面,将不同类别的数据完全分开。
3.最大间隔法:选择两个平行的超平面,使其与训练数据中的支持向量间隔最大。
4.构建目标函数:根据最大间隔法,构建目标函数,同时引入松弛变量。
5.目标函数求解:使用优化算法,求解目标函数,例如使用拉格朗日对偶问题等方法。
6.分类边界:根据超平面和支持向量,确定分类边界。
7.样本分类:根据数据点到超平面的位置,确定其所属类别。
SVM算法原理及其Matlab应用SVM(Support Vector Machine)是一种常用的机器学习算法,广泛应用于分类和回归问题。
本文将详细介绍SVM算法的原理,并讨论其在Matlab中的应用。
一、SVM算法原理SVM算法的核心思想是找到一个最优的超平面,将不同类别的样本分开。
具体来说,SVM通过最大化间隔来寻找这个超平面,使得离超平面最近的样本点到超平面的距离最大化。
这些离超平面最近的样本点被称为支持向量,它们决定了超平面的位置和方向。
SVM算法的数学模型可以表示为以下优化问题:minimize: 1/2 * ||w||^2 + C * Σξsubject to: yi(w·xi + b) ≥ 1 - ξi, ξi ≥ 0其中,w是超平面的法向量,b是超平面的偏置项,xi是样本特征向量,yi是样本的类别标签,ξi是松弛变量,C是正则化参数。
二、SVM在Matlab中的应用Matlab是一种功能强大的科学计算软件,提供了丰富的机器学习工具箱,其中包括了SVM算法的实现。
1. 数据准备首先,我们需要准备训练数据。
训练数据应包括样本的特征向量和对应的类别标签。
可以使用Matlab中的数据导入功能,将数据从外部文件导入到Matlab工作环境中。
2. 模型训练接下来,我们可以使用Matlab中的svmtrain函数来训练SVM模型。
该函数的输入参数包括训练数据、正则化参数C和核函数类型等。
通过调整这些参数,可以得到不同的模型效果。
3. 模型评估训练完成后,我们可以使用svmclassify函数来对新的样本进行分类预测。
该函数的输入参数包括待分类的样本特征向量和训练得到的SVM模型。
函数将返回预测的类别标签。
4. 结果可视化为了更直观地观察分类结果,可以使用Matlab中的scatter函数将样本点绘制在二维平面上,并使用不同的颜色表示不同的类别。
5. 参数调优SVM算法中的正则化参数C和核函数类型等参数对模型的性能有重要影响。
SVM——详细讲解SMO算法优化两个变量以及变量的选择支持向量机(SVM)是一种二分类模型,它在分类超平面的构建过程中,通过优化二次规划问题求解得到最优的超平面。
而序列最小最优化(Sequential Minimal Optimization,SMO)算法则是一种用于求解SVM 二次规划问题的简化算法。
在SVM中,分类超平面可以表示为w*x+b=0,其中w为法向量,b为截距,x为输入样本。
SVM的目标是找到具有最大边界的超平面,使得训练样本与超平面的距离最大化。
优化SVM的问题可以转化为求解以下二次规划问题:\begin{align*}\min\limits_{\alpha} & \quad \frac{1}{2}\sum_{i=1}^{N}{\sum_{j=1}^{N}{\alpha_i \alpha_j y_i y_j K(x_i, x_j)}} - \sum_{i=1}^{N}{\alpha_i}\\s.t. & \quad \sum_{i=1}^{N}{\alpha_i y_i} = 0 \\& \quad 0 \leq \alpha_i \leq C, \quad i = 1, 2, ..., N\end{align*}\]其中,N是训练样本数量,C是惩罚参数,K(x_i,x_j)是核函数。
SMO算法通过迭代优化变量alpha_i和alpha_j,来逐渐优化整个二次规划问题。
SMO算法的核心步骤有两个:选择变量和优化变量。
1.变量的选择:在每次迭代中,SMO算法通过两个嵌套循环选择优化变量alpha_i和alpha_j。
首先,外层循环选择第一个变量alpha_i,通过遍历所有训练样本点,选择违反KKT条件的样本点。
KKT条件是SVM最优解必须满足的条件,对于正样本来说,条件是alpha_i=0,对于负样本来说,条件是alpha_i=C。
如果选择到了违反KKT条件的alpha_i,就进入内层循环。
⼿把⼿教你实现SVM算法(⼀)什么是机器学习(Machine Learning)机器学习是研究计算机怎样模拟或实现⼈类的学习⾏为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善⾃⾝的性能。
它是⼈⼯智能的核⼼,是使计算机具有智能的根本途径,其应⽤遍及⼈⼯智能的各个领域。
机器学习的⼤致分类:1)分类(模式识别):要求系统依据已知的分类知识对输⼊的未知模式(该模式的描述)作分析,以确定输⼊模式的类属,例如⼿写识别(识别是不是这个数)。
2)问题求解:要求对于给定的⽬标状态,寻找⼀个将当前状态转换为⽬标状态的动作序列。
SVM⼀般是⽤来分类的(⼀般先分为两类,再向多类推⼴⼀⽣⼆,⼆⽣三,三⽣万物哈)问题的描述向量表⽰:假设⼀个样本有n个变量(特征):Ⅹ= (X1,X2,…,Xn)T样本表⽰⽅法:SVM线性分类器SVM从线性可分情况下的最优分类⾯发展⽽来。
最优分类⾯就是要求分类线不但能将两类正确分开(训练错误率为0),且使分类间隔最⼤。
SVM考虑寻找⼀个满⾜分类要求的超平⾯,并且使训练集中的点距离分类⾯尽可能的远,也就是寻找⼀个分类⾯使它两侧的空⽩区域(margin)最⼤。
过两类样本中离分类⾯最近的点且平⾏于最优分类⾯的超平⾯上H1,H2的训练样本就叫做⽀持向量。
图例:问题描述:假定训练数据:可以被分为⼀个超平⾯:进⾏归⼀化:此时分类间隔等于:即使得:最⼤间隔最⼤等价于使最⼩下⾯这两张图可以看⼀下,有个感性的认识。
那个好?看下⾯这张图:下⾯我们要开始优化上⾯的式⼦,因为推导要⽤到拉格朗⽇定理和KKT条件,所以我们先了解⼀下相关知识。
在求取有约束条件的优化问题时,拉格朗⽇乘⼦法(Lagrange Multiplier) 和KKT条件是⾮常重要的两个求取⽅法,对于等式约束的优化问题,可以应⽤拉格朗⽇乘⼦法去求取最优值;如果含有不等式约束,可以应⽤KKT条件去求取。
当然,这两个⽅法求得的结果只是必要条件,只有当是凸函数的情况下,才能保证是充分必要条件。