1、定义:既有大小又有方向的量。
几何表示法:用有向线段表示
字母表示法: 用小写字母表示,或者用表示向量的 有向线段的起点和终点字母表示。 相等向量:长度相等且方向相同的向量
B
A
D
2、平面向量的加法、减法与数乘运算
b a
向量加法的三角形法则
b a
向量减法的三角形法则
b a
向量加法的平行四边形法则
a k a (k>0) k a (k<0)
(a) ()a 其中、是实数。
类似于平面向量,为了研究的方便起见,我们规定: 零向量、单位向量、相等向量、相反向量、平行
向量、共面向量等概念。(你认为应该怎样规定?)
定义:表示空间向量的有向线段所在直线互相平行或 重合,则称这些向量叫共线向量.(或平行向量)
思考⑴:对空间任意两个向量 a 与 b ,如果 a b ,那 么 a 与 b 有什么关系?反过来呢? 类似于平面,对于空间任意两个
的夹角都为90度,
F3
它们的合力的大小
为多少N?
F1
这需要进一步来认识空间中的向量
空间向量的有关概念: 空间向量:在空间中,具有大小和方向的量.
常用 a 、b 、c ……等小写字母来表示.
1.向量 a 的大小叫做向量的长度或模,记为 a .
2.可用一条有向线段 AB 来表示向量,向量 AB
的模又记为 AB 就是线段 AB 的长度.
数乘分配律
k(a b) ka+kb
C
a+b
B
b
O
A
OB OA AB
a CA OA OC
空间向量的加减法
k a (k>0)
空间向量的数乘