人教版五年级下册数学知识点总结、梳理
- 格式:doc
- 大小:62.00 KB
- 文档页数:6
人教版五年级数学下册知识点归纳总结2的倍数:个位数是0、2、4、6、8的自然数。
3的倍数:各位数字之和是3的倍数的自然数。
5的倍数:个位数是0或5的自然数。
三、分数的认识1、分数的概念:分数是一个整体被等分成若干份,其中的一份叫做分数。
2、分数的表示方法:分数线上面的数叫分子,分数线下面的数叫分母。
分数的大小表示被等分成的份数。
3、分数的基本性质:1)分子分母相等的分数相等;2)分子相等,分母越小,分数越大;3)分母相等,分子越小,分数越小;4)分子分母都除以同一个数,分数不变。
4、分数的比较:分母相等,比较分子大小;分母不等,通分后比较分子大小。
5、分数的简化和扩展:分子分母同时除以同一个数可以简化分数;分子分母同时乘以同一个数可以扩展分数。
6、分数的加减法:通分后分子相加(减),分母不变。
7、分数的乘法:分子相乘,分母相乘。
8、分数的除法:分子乘以被除数的倒数,分母乘以除数的倒数。
1)个位上是2、4、6、8的数都是2的倍数。
2)一个数各位上的数的和是3的倍数,那么这个数就是3的倍数。
3)个位上是0或5的数是5的倍数。
4)能同时被2、3、5整除(也就是2、3、5的倍数)的最大的两位数是90,最小的三位数是120.实际上是求30的倍数。
5)如果一个数同时是2和5的倍数,那么它的个位上的数字一定是0.6)完全数:除了它本身以外所有的因数的和等于它本身的数叫做完全数。
例如6、28等。
7)自然数按能不能被2整除来分:奇数、偶数。
奇数是指不能被2整除的数,即个位上是1、3、5、7、9的数;偶数是指能被2整除的数,即个位上是0、2、4、6、8的数。
最小的奇数是1,最小的偶数是0.8)奇数加减偶数等于奇数,奇数加减奇数等于偶数,偶数加减偶数等于偶数。
9)自然数按因数的个数来分:质数、合数、1、四类。
质数(或素数)是只有1和它本身两个因数的数,合数除了1和它本身还有别的因数。
1只有1个因数。
最小的质数是2,最小的合数是4,连续的两个质数是2、3.每个合数都可以由几个质数相乘得到,质数相乘一定得合数。
人教版小学五年级数学下册知识点总结和复习要点一、数与代数分数的加法和减法概念:分数的加法和减法是指对两个或多个分数进行相加或相减的运算。
性质:同分母分数相加减,分母不变,分子相加减;异分母分数相加减,先通分,然后按照同分母分数相加减的法则进行计算。
特点:分数的加减运算需要注意分子、分母的变化。
举例:2/3 + 1/3 = 3/3 = 1;5/6 - 1/6 = 4/6 = 2/3。
分数的乘法和除法概念:分数的乘法和除法是指两个或多个分数进行相乘或相除的运算。
性质:分数乘整数,分母不变,分子乘整数;分数乘分数,用分子乘分子,用分母乘分母;分数除以一个数等于乘以这个数的倒数。
特点:分数的乘除法运算需要理解乘法与倒数的概念。
举例:2/3 × 4 = 8/3;3/4 ÷ 2 = 3/4 ×1/2 = 3/8。
因数与倍数概念:因数与倍数是整数之间的一种关系,一个整数能被另一个整数整除,则后者是前者的因数,前者是后者的倍数。
性质:一个数的因数的个数是有限的,最小的因数是1,最大的因数是它本身;一个数的倍数的个数是无限的。
特点:理解因数和倍数的概念对于解决与整除相关的问题至关重要。
举例:12的因数有1、2、3、4、6、12;12的倍数有12、24、36、48等。
二、空间与几何长方体和正方体的认识概念:长方体是由六个长方形围成的立体图形;正方体是六个面都是正方形的特殊长方体。
性质:长方体有6个面,12条棱,8个顶点;正方体有6个面,12条棱,8个顶点,且所有面都是正方形。
特点:长方体和正方体是常见的立体图形,具有特定的形状和性质。
举例:日常生活中的纸箱、书本等可以近似看作长方体;骰子是典型的正方体。
长方体和正方体的表面积概念:长方体和正方体的表面积是指它们所有面的面积之和。
性质:长方体的表面积= 2 ×(长×宽+ 长×高+ 宽×高);正方体的表面积= 6 ×边长^2。
;4知识点易错点汇总★知识点归纳一、轴对称1、定义:把一个图形沿着某一条直线对折,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴。
折叠后重合的点是对应点,叫做对称点。
2、性质:对称点到对称轴的距离相等。
3、轴对称图形:指具有特殊形状的一个图形,它可以有一条或多条对称轴。
二、旋转1、定义:把一个图形绕某一点(或轴)转动一定的角度的图形变换叫做旋转。
2、旋转三要素:旋转点(旋转中心)、旋转方向、旋转角度钟表中指针运动的方向为顺时针方向,与钟表中指针的运动方向相反的方向为逆时针方向。
3、性质:图形绕着某一点旋转一定的度数,图形的对应点、对应线段都旋转了相应的度数,对应点到旋转点的距离相等,对应的线段和对应的角度相等。
图形旋转后,形状、大小都没有发生变化,只有位置变了。
4、旋转90°的方法(1)找出原图行的关键点或关键线段;(2)借助三角板或量角器作原图行关键点或线段与旋转中心所在线段的垂线(3)在所垂线上量出或数出与原线段相等的长度(即找到原图关键点的对应点);(4)顺次连接所找到的对应点,即可得到原图形旋转90°后的图形。
5、时钟上包含12大格,60小格,时钟上相邻两数字间即为一大格,一大格为30°;每一大格又平均分为了五个小格,一小格为6°三、平移1、定义:指在一个平面内,将一个图形上的所有点都按照某个方向做相同距离的移动,这样的图形运动叫做图形的平移运动,简称平移。
2、性质:平移不改变图形的形状和大小。
3、图形平移的步骤:(1)确定原图形位置、平移的方向、平移的距离。
(2)找出原图形的各关键点。
(3)根据题目要求将各个点依次平移,找出各个点的对应点。
(4)顺次连接平移后的各点。
◆习题:1、图形的变换包括:、、。
其中只是改变原图形位置的变换是、。
2、如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这样的图形就叫()图形,那条直线就是()。
人教版小学五年级(下册)数学知识点总结大全一、图形的变换1、轴对称图形:把一个图形沿着某一条直线对折,两边能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴。
2、成轴对称图形的特征和性质:①对称点到对称轴的距离相等;②对称点的连线与对称轴垂直;③对称轴两边的图形大小形状完全相同。
3、物体旋转时应抓住三点:①旋转中心;②旋转方向;③旋转角度。
旋转只改变物体的位置,不改变物体的形状、大小。
二、因数与倍数1、因数和倍数:如果整数a能被b整除,那么a就是b的倍数,b就是a 的因数。
2、一个数的因数的求法:一个数的因数的个数是有限的,最小的是1,最大的是它本身,方法是成对地按顺序找。
3、一个数的倍数的求法:一个数的倍数的个数是无限的,最小的是它本身,没有最大的,方法时依次乘以自然数。
4、2、5、3的倍数的特征:个位上是0、2、4、6、8的数,都是2的倍数。
个位上是0或5的数,是5的倍数。
一个数各位上的数的和是3的倍数,这个数就是3的倍数。
5、偶数与奇数:是2倍数的数叫做偶数(0也是偶数),不是2的倍数的数叫做奇数。
6、质数和和合数:一个数,如果只有1和它本身两个因数的数叫做质数(或素数),最小的质数是2。
一个数,如果除了1和它本身还有别的因数的数叫做合数,最小的合数是4。
三、长方体和正方体1、长方体和正方体的特征:长方体有6个面,每个面都是长方形(特殊的有一组对面是正方形),相对的面完全相同;有12条棱,相对的棱平行且相等;有8个顶点。
正方形有6个面,每个面都是正方形,所有的面都完全相同;有12条棱,所有的棱都相等;有8个顶点。
2、长、宽、高:相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。
3、长方体的棱长总和=(长+宽+高)×4正方体的棱长总和=棱长×124、表面积:长方体或正方体6个面的总面积叫做它的表面积。
5、长方体的表面积=(长×宽+长×高+宽×高)×2S=(ab+ah+bh)×2正方体的表面积=棱长×棱长×6用字母表示:S=6、表面积单位:平方厘米、平方分米、平方米相邻单位的进率为1007、体积:物体所占空间的大小叫做物体的体积。
最全面人教版数学五年级下册知识点归纳总结五年级下册数学内容涵盖了面积、容积、数的认识和计算、时间、图形的认识和运用等多个方面的内容。
以下是对人教版数学五年级下册的知识点进行归纳总结:一、面积1. 长方形的面积计算公式:面积 = 长 ×宽2. 正方形的面积计算公式:面积 = 边长 ×边长3. 三角形的面积计算公式:面积 = 底边长 ×高 ÷ 24. 平行四边形的面积计算公式:面积 = 底边长 ×高5. 长方体的表面积计算公式:表面积 = 2 ×长 ×宽 + 2 ×长 ×高 + 2 ×宽 ×高二、容积1. 直接用长宽高相乘得到的数字,就是长方体的容积(即体积)。
2. 立方体的容积计算公式:容积 = 边长 ×边长 ×边长三、数的认识和计算1. 整数:包括正整数、负整数和零。
2. 加法和减法:掌握多位数的加减法计算方法,注意进位和借位。
3. 乘法:会进行大位数的乘法计算,理解乘法的意义。
4. 除法:会进行大位数的除法计算,理解除法的意义。
5. 分数:能够简单的进行分数的加减运算,理解分数的大小比较。
6. 小数:能够进行小数的四则运算。
7. 千分数:能够进行千分数的简单计算,理解千分数的大小比较。
8. 序数词:知道如何用序数词表示年份或名次。
四、时间1. 分钟和小时:能够用时钟读出准确的时间。
2. 日历:能够根据日历进行简单的日期计算。
3. 时间的计算:能够计算时间间隔,如计算一天之前或之后的日期。
五、图形的认识和运用1. 二维图形:熟悉正方形、长方形、三角形、平行四边形、菱形、圆形等基本的图形,并了解它们的性质。
2. 三维图形:熟悉长方体、正方体、圆柱体、圆锥体、球体等基本的立体图形,并了解它们的性质。
3. 坐标系:能够在二维坐标系中表示点的位置,并进行简单的坐标计算。
总结:人教版数学五年级下册的知识点非常广泛,涉及了面积、容积、数的认识和计算、时间、图形的认识和运用等多个方面。
人教版五年级数学下册各单元知识点总结班级:姓名:第一单元:观察物体1.由大小相同的小正方体组成的立体图形,从同一个方向观察,看到的图形可能相同也可能不同。
因此,同一个立体图形可以有多种摆法。
2.从同一个方向观察物体,最多只能看到三个面。
因此,几何视图一般是根据三个方向观察到的形状进行绘制。
3.根据两个方向观察到的形状,可以确定所用小正方体的个数。
但是,根据三个方向观察到的形状摆小正方体的结果只有一种。
第二单元:因数和倍数1.在整数除法中,如果商是整数而没有余数,我们就说被除数是除数的倍数,除数是被除数的因数。
因数和倍数是相互依存的,不能单独存在。
2.注意:为了方便,在研究因数和倍数时,我们所说的数指的是自然数(一般不包括0)。
3.找因数的方法有两种:乘法和除法。
找倍数的方法是逐次乘自然数。
4.一个数的最小因数是1,最大因数是它本身。
一个数的最小倍数是它本身,但没有最大的倍数。
一个数的因数个数是有限的,而倍数个数是无限的。
一个数的最大因数和最小倍数相等,都是它本身。
1是所有非自然数的因数,也是任一自然数(除0外)的最小因数。
一个数的因数至少有1个,这个数是1.一个数的因数都小于等于它本身,而倍数都大于等于它本身。
5.因数≤它本身,倍数≥它本身,最大的因数=最小的倍数=它本身。
一个数的倍数一定比它的因数大这种说法是错误的。
一个数越大,它的因数个数就越多,一个数越小,它的因数个数就越少,这种说法也是错误的。
6.2的倍数特征:个位上是2、4、6、8的数都是2的倍数。
自然数中,是2的倍数的数叫做偶数,不是2的倍数的数叫奇数。
7.5的倍数特征:个位上是0或5的数,都是5的倍数。
8.3的倍数特征:一个数各位上的数的和是3的倍数,这个数就是3的倍数。
个位上是3、6、9的数都是3的倍数,但个位上是其他数的数不一定是3的倍数。
9.2和5的倍数特征:个位上是0的数既是2的倍数,也是5的倍数。
(就是10的倍数)。
10.2和3的倍数特征:个位上是2、4、6、8,且各个数位上的数字的和是3的倍数,这个数既是2的倍数,也是3的倍数。
人教版五年级数学下册全册知识点总结
本文档旨在对人教版五年级数学下册的全册知识点进行总结,
并提供简明扼要的介绍,以方便学生复和查阅。
Unit 1: 数与数的运算
- 数的认识:整数、自然数、负数、零等基本概念。
- 认识整数的绝对值。
- 整数之间的比较与排序。
- 负数与正数之间的关系。
Unit 2: 分数的认识与认识
- 分数的初步认识:分子、分母、真分数、假分数等基本概念。
- 分数的读法和大小的比较。
- 分数的相等关系。
- 分数的加减法。
Unit 3: 认识平面图形
- 点、线、面的基本概念。
- 认识多边形,如三角形、四边形等。
- 利用直尺和圆规画出简单的几何图形。
- 计算图形的周长。
Unit 4: 长度、质量和容量
- 认识长度的基本单位和换算关系。
- 认识质量的基本单位和换算关系。
- 认识容量的基本单位和换算关系。
- 运用知识解决实际问题。
Unit 5: 数据的处理
- 了解调查、收集数据的方法。
- 运用统计图表展示数据。
- 分析数据:最大值、最小值、众数、等概念。
- 数据的整理和解读。
以上是人教版五年级数学下册的知识点总结。
希望本文档对您的研究和复有所帮助。
人教版五年级下册数学知识点总结+习题练习(分模块)第一部分知识梳理一、因数和倍数1、如果ab=c(a、b、c都是不为0的整数),那么我们就说a 和b是c的因数,c是a和b的倍数。
因数和倍数是相互依存的。
例如:38=24,3和8是24的因数,24是3和8的倍数。
2、一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。
3、一个数的倍数的个数是无限的,其中最小的倍数是它本身,没有最大的倍数。
4、一个非零的自然数,既是它本身的倍数,又是它本身的因数。
5、找因数的方法:(1)列乘法算式:例如:要写出18的所有因数,方法如下:118=1829=1836=18所以,18的因数有:1、2、3、6、9、18共6个。
(2)列除法算式:例如:要写出24的所有因数,方法如下:241=24242=12243=8244=6245=4、8(因为4、8不是整数,所以5和4、8不是24的因数)所以,24的因数有:1、2、3、4、6、8、12、24共8个。
6、找倍数的方法:用这个数分别乘1、2、3、4、5…直到所乘的积接近所规定的限制范围为止,所乘得的积就是这个数的倍数。
例如:写出30以内4的倍数。
41=442=843=1244=1645=2046=2447=28 所以,30以内4的倍数有:4、8、12、16、20、24、28。
二、2、5、3的倍数的特征1、个位上是0、2、4、6、8的数都是2的倍数。
2、个位上是0或5的数都是5的倍数。
3、一个数各个数位上的数相加的和是3的倍数,这个数就是3的倍数。
4、同时是2、5的倍数的数末尾必须是0。
最小的两位数是10,最大的两位数是90。
同时是2、5、3的倍数的数末尾必须是0,而且各个数位上的数相加的和是3的倍数。
最小的两位数是30,最大的两位数是90。
三、奇数和偶数1、自然数中,是2的倍数的数叫做偶数,偶数也叫双数。
如:0、2、4、6、8、10、12、14、16…都是偶数。
魏云涛数学知识要点复习(五下)一图形的变换图形变换的基本方式是平移、对称和旋转。
1、轴对称: 如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴。
(1)学过的轴对称平面图形:长(正)方形、圆形、等腰三角形、等边三角形、等腰梯形……等腰三角形有1条对称轴,等边三角形有3条对称轴,长方形有2条对称轴,正方形有4条对称轴,等腰梯形有1条对称轴,任意梯形和平行四边形不是轴对称图形。
(2)圆有无数条对称轴。
(3)对称点到对称轴的距离相等。
2、旋转:在平面内,一个图形绕着一个顶点旋转一定的角度得到另一个图形的变化较做旋转,定点O叫做旋转中心,旋转的角度叫做旋转角,原图形上的一点旋转后成为的另一点成为对应点。
(1)生活中的旋转:电风扇、车轮、纸风车(2)旋转要明确绕点,角度和方向。
(3)长方形绕中点旋转180度与原来重合,正方形绕中点旋转90度与原来重合。
等边三角形绕中点旋转120度与原来重合。
旋转的性质:(1)图形的旋转是图形上的每一点在平面上绕某个固定点旋转固定角度的位置移动;(2)其中对应点到旋转中心的距离相等;(3)旋转前后图形的大小和形状没有改变;(4)两组对应点非别与旋转中心的连线所成的角相等,都等于旋转角;(5)旋转中心是唯一不动的点。
3、对称和旋转的画法:旋转要注意:顺时针、逆时针、度数二因数和倍数1、整除:被除数、除数和商都是自然数,并且没有余数。
2、因数、倍数:大数能被小数整除时,大数是小数的倍数,小数是大数的因数。
例:12是6的倍数,6是12的因数。
一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。
一个数的倍数的个数是无限的,最小的倍数是它本身。
2、3、5的倍数特征个位上是0,2,4,6,8的数都是2的倍数。
一个数各位上的数的和是3的倍数,这个数就是3的倍数。
(证明)个位上是0或5的数,是5的倍数。
能同时被2、3、5整除(也就是2、3、5的倍数)的最大的两位数是90,最小的三位数是120。