模拟与数字滤波器映射
- 格式:pdf
- 大小:832.41 KB
- 文档页数:13
实验四 IIR 数字滤波器的设计及网络结构一、实验目的1.了解IIR 数字滤波器的网络结构。
2.掌握模拟滤波器、IIR 数字滤波器的设计原理和步骤。
3.学习编写数字滤波器的设计程序的方法。
二、实验内容数字滤波器:是数字信号处理技术的重要内容。
它的主要功能是对数字信号进行处理,保留数字信号中的有用成分,去除信号中的无用成分。
1.数字滤波器的分类滤波器的种类很多,分类方法也不同。
(1)按处理的信号划分:模拟滤波器、数字滤波器 (2)按频域特性划分;低通、高通、带通、带阻。
(3)按时域特性划分:FIR 、IIR2.IIR 数字滤波器的传递函数及特点数字滤波器是具有一定传输特性的数字信号处理装置。
它的输入和输出均为离散的数字信号,借助数字器件或一定的数值计算方法,对输入信号进行处理,改变输入信号的波形或频谱,达到保留信号中有用成分去除无用成分的目的。
如果加上A/D 、D/A 转换,则可以用于处理模拟信号。
设IIR 滤波器的输入序列为x(n),则IIR 滤波器的输入序列x(n)与输出序列y(n)之间的关系可以用下面的方程式表示:1()()()M Ni j i j y n b x n i a y n j ===-+-∑∑(5-1)其中,j a 和i b 是滤波器的系数,其中j a 中至少有一个非零。
与之相对应的差分方程为:10111....()()()1....MM NN b b z b z Y z H Z X z a z a z ----++==++ (5-2)由传递函数可以发现无限长单位冲激响应滤波器有如下特点: (1) 单位冲激响应h(n)是无限长的。
(2) 系统传递函数H(z)在有限z 平面上有极点存在。
(3) 结构上存在着输出到输入的反馈,也就是结构上是递归型的。
3.IIR 滤波器的结构IIR 滤波器包括直接型、级联型和并联型三种结构:① 直接型:优点是简单、直观。
但由于系数bm 、a k 与零、极点对应关系不明显,一个bm 或a k 的改变会影响H(z)所有零点或极点的分布,所以一方面,bm 、a k 对滤波器性能的控制关系不直接,调整困难;另一方面,零、极点分布对系数变化的灵敏度高,对有限字长效应敏感,易引起不稳定现象和较大误差。
模拟信号与数字信号之间的转换
模拟信号与数字信号之间的转换是通过模数转换(ADC)和数模转换(DAC)来实现的。
模拟信号转换成数字信号,首先通过ADC将模拟信号进行采样,即将连续的模拟信号按照一定的频率进行离散化,得到一系列的模拟采样值。
然后将模拟采样值通过量化处理,转换成对应的数字信号,即根据一定的量化规则,将模拟采样值映射到一系列离散的数字量级上。
数字信号转换成模拟信号,首先通过DAC将数字信号进行反量化,即将数字信号的离散量级映射回模拟信号的值。
然后通过重构滤波器将反量化后的数字信号进行平滑处理,得到模拟信号。
最后,通过模拟电路对模拟信号进行放大、滤波等处理,使之符合要求。
需要注意的是,模拟信号转换成数字信号和数字信号转换成模拟信号都会引入一定的误差,即量化误差和重构误差。
因此,在进行模拟信号与数字信号之间的转换时,要选择合适的采样频率、量化精度和重构滤波器等参数,以保证转换的精度和准确性。
数字滤波器设计通信与电子信息当中,在对信号作分析与处理时,常会用到有用信号叠加无用噪声的问题。
这些噪声信号有的是与信号同时产生的,有的是在传输过程中混入的,在接收的信号中,必须消除或减弱噪声干扰,这是信号处理中十分重要的问题。
根据有用信号与噪声的不同特性,消除或减弱噪声,提取有用信号的过程就称为滤波。
滤波器的种类很多,实现方法也多种多样,本章利用Matlab来进行数字滤波器的设计。
数字滤波器是一离散时间系统,它对输入序列x(n)进行加工处理后,输出序列y(n),并使y(n)的频谱与x(n)的频谱相比发生某种变化。
由DSP理论得知,无限长冲激响应(IIR)需要递归模型来实现,有限长冲激响应(FIR)滤波器可以采用递归的方式也可采用非递归的方式实现。
本章把FIR 与IIR滤波器分别用Matlab进行分析与设计。
数字滤波器的结构参看《数字信号处理》一书。
数字滤波器的设计一般经过三个步骤:1(给出所需滤波器的技术指标。
2(设计一个H(Z),使其逼近所需要的技术指标。
3(实现所设计的H(Z)。
4.1 IIR数字滤波器设计设计IIR数字滤波器的任务就是寻求一个因果、物理可实现的系统函数H(z),jω使它的频响H(e)满足所希望得到的低通频域指标,即通带衰减A、阻带衰减A、 pr通带截频ω、阻带截频ω。
而其它形式的滤波器由低通的变化得到。
pr采用间接法设计IIR数字滤波器就是按给定的指标,先设计一个模拟滤波器,进而通过模拟域与数字域的变换,求得物理可实现的数字滤波器。
从模拟滤波器变换到数字滤波器常用的有:脉冲响应不变法和双线性变换法。
IIR滤波器的设计过程如下,,,数字频域指标模拟频域指标设计模拟滤波器H(S) 设计数字滤波器H(z) 1. 模拟滤波器简介模拟滤波器的设计方法已经发展得十分成熟,常用的高性能模拟低通滤波器有巴特沃斯型、切比雪夫型和椭圆型,而高通、带通、带阻滤波器则可以通过对低通进行频率变换来求得。
1. 请推导出三阶巴特沃思低通滤波器的系统函数,设1/c rad s Ω=。
解:幅度平方函数是:2261()()1A H j Ω=Ω=+Ω令: 22s Ω=- ,则有:61()()1a a H s H s s-=- 各极点满足121[]261,26k j k s ek π-+==所得出的6个 k s 为:15==j es 2321321jes j +-==π12-==πj e s 2321343jes j --==π2321354j es j -==π2321316j es j +==π15==j e s 2321321je s j +-==π12-==πj e s 2321343je s j --==π2321354j es j -==π2321316j es j +==π122))()(()(233210+++=---=s s s k s s s s s s k s H a 1221)(23+++==s s s s H a 代入s=0时, ,可得,故:1=)s (H a 10=k2. 设计一个满足下列指标的模拟Butterworth 低通滤波器,要求通带的截止频率6,p f kHz =,通带最大衰减3,p A dB =,阻带截止频率12,s f kHz =,阻带的最小衰减25s A dB =,求出滤波器的系统函数。
解: 2,2s s p p f f ππΩ=Ω=0.10.1101lg 101N 2lg()s pA A s p⎛⎫- ⎪-⎝⎭≥ΩΩ=4.15取N=5,查表得H(p)为:221()(0.6181)( 1.6181)(1)H p p p p p p =+++++ 因为3,p A dB =所以c p Ω=Ω[]52222()()0.618 1.618cs p c c c c c c H s H p s s s s s =Ω=Ω=⎡⎤⎡⎤+Ω-Ω+Ω-Ω+Ω⎣⎦⎣⎦3. 设计一个模拟切比雪夫低通滤波器,要求通带的截止频率 f p =3kHz ,通带衰减要不大于0.2dB ,阻带截止频率 f s = 12kHz ,阻带衰减不小于 50dB 。
数字信号处理期末试卷一、填空题:(每空1分,共18分)1、数字频率ω是模拟频率Ω对采样频率s f 的归一化,其值是 连续 (连续还是离散?)。
2、双边序列z 变换的收敛域形状为 圆环或空集 。
3、某序列的DFT 表达式为∑-==10)()(N n kn M W n x k X ,由此可以看出,该序列时域的长度为 N ,变换后数字频域上相邻两个频率样点之间的间隔是Mπ2 。
4、线性时不变系统离散时间因果系统的系统函数为252)1(8)(22++--=z z z z z H ,则系统的极点为 2,2121-=-=z z ;系统的稳定性为 不稳定 。
系统单位冲激响应)(n h 的初值4)0(=h ;终值)(∞h 不存在 。
5、如果序列)(n x 是一长度为64点的有限长序列)630(≤≤n ,序列)(n h 是一长度为128点的有限长序列)1270(≤≤n ,记)()()(n h n x n y *=(线性卷积),则)(n y 为 64+128-1=191点 点的序列,如果采用基FFT 2算法以快速卷积的方式实现线性卷积,则FFT 的点数至少为 256 点。
6、用冲激响应不变法将一模拟滤波器映射为数字滤波器时,模拟频率Ω与数字频率ω之间的映射变换关系为Tω=Ω。
用双线性变换法将一模拟滤波器映射为数字滤波器时,模拟频率Ω与数字频率ω之间的映射变换关系为)2tan(2ωT =Ω或)2arctan(2T Ω=ω。
7、当线性相位FIR 数字滤波器满足偶对称条件时,其单位冲激响应)(n h 满足的条件为)1()(n N h n h --= ,此时对应系统的频率响应)()()(ωϕωωj j e H e H =,则其对应的相位函数为ωωϕ21)(--=N 。
8、请写出三种常用低通原型模拟滤波器 巴特沃什滤波器 、 切比雪夫滤波器 、 椭圆滤波器 。
二、判断题(每题2分,共10分)1、模拟信号也可以与数字信号一样在计算机上进行数字信号处理,只要加一道采样的工序就可以了。
数字信号处理期末试题和答案解析WORD 格式整理专业知识分享数字信号处理卷⼀⼀、填空题(每空1分, 共10分)1.序列()sin(3/5)x n n π=的周期为。
2.线性时不变系统的性质有律、律、律。
3.对4()()x n R n =的Z 变换为,其收敛域为。
4.抽样序列的Z 变换与离散傅⾥叶变换DFT 的关系为。
5.序列x(n)=(1,-2,0,3;n=0,1,2,3), 圆周左移2位得到的序列为。
6.设LTI 系统输⼊为x(n) ,系统单位序列响应为h(n),则系统零状态输出y(n)= 。
7.因果序列x(n),在Z →∞时,X(Z)= 。
⼆、单项选择题(每题2分, 共20分)1.δ(n)的Z 变换是()A.1 B.δ(ω) C.2πδ(ω) D.2π2.序列x 1(n )的长度为4,序列x 2(n )的长度为3,则它们线性卷积的长度是()A. 3 B. 4 C. 6 D. 73.LTI 系统,输⼊x (n )时,输出y (n );输⼊为3x (n-2),输出为() A. y (n-2) B.3y (n-2) C.3y (n ) D.y (n )4.下⾯描述中最适合离散傅⽴叶变换DFT 的是()A.时域为离散序列,频域为连续信号B.时域为离散周期序列,频域也为离散周期序列C.时域为离散⽆限长序列,频域为连续周期信号D.时域为离散有限长序列,频域也为离散有限长序列5.若⼀模拟信号为带限,且对其抽样满⾜奈奎斯特条件,理想条件下将抽样信号通过即可完全不失真恢复原信号()A.理想低通滤波器 B.理想⾼通滤波器 C.理想带通滤波器 D.理想带阻滤波器 6.下列哪⼀个系统是因果系统()A.y(n)=x (n+2) B. y(n)= cos(n+1)x (n) C. y(n)=x (2n) D.y(n)=x (- n) 7.⼀个线性时不变离散系统稳定的充要条件是其系统函数的收敛域包括()A. 实轴B.原点C.单位圆D.虚轴8.已知序列Z 变换的收敛域为|z |>2,则该序列为()A.有限长序列 B.⽆限长序列 C.反因果序列 D.因果序列9.若序列的长度为M ,要能够由频域抽样信号X(k)恢复原序列,⽽不发⽣时域混叠现象,则频域抽样点数N 需满⾜的条件是 ( )A.N≥MB.N≤MC.N≤2MD.N≥2M10.设因果稳定的LTI系统的单位抽样响应h(n),在n<0时,h(n)= ( ) A.0 B.∞ C. -∞ D.1三、判断题(每题1分, 共10分)1.序列的傅⽴叶变换是频率ω的周期函数,周期是2π。
一、填空、选择、判断:1. 一线性时不变系统,输入为 x (n )时,输出为y (n ) ;则输入为2x (n )时,输出为 2y(n) ;输入为x (n-3)时,输出为 y(n-3) 。
2. 线性时不变系统离散时间因果系统的系统函数为252)1(8)(22++--=z z z z z H ,则系统的极点为 2,2121-=-=z z ;系统的稳定性为 不稳定 。
3.4. 对模拟信号(一维信号,是时间的函数)进行采样后,就是 时域离散信 信号,再进行幅度量化后就是 数字 信号。
5. 单位脉冲响应不变法缺点 频谱混迭 ,适合____低通带通 滤波器设计,但不适合高通带阻 滤波器设计。
6. 请写出三种常用低通原型模拟滤波器特沃什滤波器、切比雪夫滤波器 、 椭圆滤波器。
7. FIR 数字滤波器的单位取样响应为 h(n), 0≤n≤N -1, 则其系统函数 H(z)的极点在 z=0 是 N-1 阶的。
8. 对于N 点(N =2L )的按时间抽取的基2FFT 算法,共需要作 2/NlbN 次复数乘和 _NlbN 次复数加。
9. 从奈奎斯特采样定理得出,要使实信号采样后能够不失真还原,采样频率fs 与信号最高频率f max 关系为:fs>=2f max 。
10. 已知一个长度为N 的序列x(n),它的离散时间傅立叶变换为X (e jw ),它的N 点离散傅立叶变换X (K )是关于X(e jw )的 N 点等间隔 采样 。
11. 有限长序列x(n)的8点DFT 为X (K ),则X (K )=()70()nk N n X k x n W ==∑。
12. 用脉冲响应不变法进行IIR 数字滤波器的设计,它的主要缺点是频谱的 交叠 所产生的现象。
13. 若数字滤波器的单位脉冲响应h (n )是奇对称的,长度为N ,则它的对称中心是 (N-1)/2 。
14. 用窗函数法设计FIR 数字滤波器时,加矩形窗比加三角窗时,所设计出的滤波器的过渡带比较 窄 ,阻带衰减比较 小 。
一、填空、选择、判断:1. 一线性时不变系统,输入为 x (n )时,输出为y (n ) ;则输入为2x (n )时,输出为 2y(n) ;输入为x (n-3)时,输出为 y(n-3) 。
2. 线性时不变系统离散时间因果系统的系统函数为252)1(8)(22++--=z z z z z H ,则系统的极点为 2,2121-=-=z z ;系统的稳定性为 不稳定 。
3.4. 对模拟信号(一维信号,是时间的函数)进行采样后,就是 时域离散信 信号,再进行幅度量化后就是 数字 信号。
5. 单位脉冲响应不变法缺点 频谱混迭 ,适合____低通带通 滤波器设计,但不适合高通带阻 滤波器设计。
6. 请写出三种常用低通原型模拟滤波器特沃什滤波器、切比雪夫滤波器 、 椭圆滤波器。
7. FIR 数字滤波器的单位取样响应为 h(n), 0≤n≤N -1, 则其系统函数 H(z)的极点在 z=0 是 N-1 阶的。
8. 对于N 点(N =2L )的按时间抽取的基2FFT 算法,共需要作 2/NlbN 次复数乘和 _NlbN 次复数加。
9. 从奈奎斯特采样定理得出,要使实信号采样后能够不失真还原,采样频率fs 与信号最高频率f max 关系为:fs>=2f max 。
10. 已知一个长度为N 的序列x(n),它的离散时间傅立叶变换为X (e jw ),它的N 点离散傅立叶变换X (K )是关于X(e jw )的 N 点等间隔 采样 。
11. 有限长序列x(n)的8点DFT 为X (K ),则X (K )=()70()nk N n X k x n W ==∑。
12. 用脉冲响应不变法进行IIR 数字滤波器的设计,它的主要缺点是频谱的 交叠 所产生的现象。
13. 若数字滤波器的单位脉冲响应h (n )是奇对称的,长度为N ,则它的对称中心是 (N-1)/2 。
14. 用窗函数法设计FIR 数字滤波器时,加矩形窗比加三角窗时,所设计出的滤波器的过渡带比较 窄 ,阻带衰减比较 小 。
、单项选择题1. 序列 x(n)=Re(e jn 皿)+1 m (e jn 皿),周期为()。
n A. 18B. 72C. 18 nD. 362. 设C 为Z 变换X(z)收敛域内的一条包围原点的闭曲线, F(z)=X(z)z n-1,用留数法求X(z)的反变换时()。
5、人(n)二R ,0(n) , X 2(n)二R 7(n),用DFT 计算二者的线性卷积,为使计算量尽可能的少,应使 DFT 的长度N 满足 _______________ A. N 16 B. N =16C. N :166. 设系统的单位抽样响应为 h(n)= S (n)+2 S (n-1)+5 S (n-2),其频率响应为( j 3 j « j2 3 j5 3j 3-j 3-j2 3A. H(e j )=e j +e j +e jB. H(e j)=1+2e j+5e jj 3 -j 3-j2 3 -j5 3j 3 1 -j 3 1 -j2 3 C. H(e j)=e j +e j+e jD. H(e j)=1+ —e j +—e j257.设序列 x(n)=2 S (n+1)+ S(n)- S (n-1),贝U X(e j 3)| 3=0 的值为()。
A. 1B. 2C. 4D. 1/28. 设有限长序列为 x(n), N 1< n W N 2,当N K 0,N 2>0 , Z 变换的收敛域为( )。
A. 0<|z|< gB. |z|>0C. |z|<gD. |z|W89.在对连续信号均匀采样时,要从离散采样值不失真恢复原信号,则采样角频率 Qs 与信号最高截止频率 Qc 应满足关系() A. Q s>2 Q c B. Q s> Q c C. Q s< Q cD. | Q s<2 Qc10.下列系统(其中y(n)为输出序列,x(n)为输入序列)中哪个属于线性系统?( )A.y( n)=y( n-1)x(n)B.y( n)=x( n) /x( n+1)C.y( n)=x( n)+1D.y( n)=x (n )-x( n-1)11.已知某序列Z 变换的收敛域为5>|z|>3,则该序列为()A. 只能用F(z)在C 内的全部极点B. 只能用F(z)在C 外的全部极点C.必须用收敛域内的全部极点3.有限长序列h(n)(0 < n W N-1)关于D.用F(z)在C 内的全部极点或C 外的全部极点N - 1-一1偶对称的条件是2)。
在Matlab中实现模拟和数字信号的系统建模背景介绍:模拟信号是连续的,可以采用各种函数来表示;而数字信号是离散的,由一系列采样值组成。
系统建模是指对信号传输系统进行数学描述,以便分析和设计该系统。
在Matlab中,我们可以利用其丰富的工具箱和函数来实现对模拟和数字信号的系统建模。
一、模拟信号的系统建模1. 信号的采样与量化在模拟信号的系统建模中,我们首先需要对信号进行采样与量化。
采样是指在一定时间间隔内对信号进行抽样,形成离散的序列。
而量化则是将每个采样值映射到一个离散的量化水平。
在Matlab中,我们可以使用“sample”函数来进行信号的采样,使用“quantize”函数来进行信号的量化。
2. 信号处理一旦信号被采样和量化,我们可以对其进行各种信号处理操作,如滤波、卷积、相关等。
这些操作可以帮助我们提取信号中的特征并进行进一步的分析。
在Matlab中,我们可以使用信号处理工具箱中的函数来实现各种信号处理操作,如“filter”函数用于滤波,以及“conv”函数用于卷积操作。
3. 系统建模在模拟信号的系统建模中,我们通常会用线性差分方程(LDE)来描述信号和系统之间的关系。
LDE由差分方程和初始条件组成,其中差分方程描述了信号与系统之间的动态行为,初始条件则表示在系统稳定之前的初始状态。
在Matlab中,我们可以使用差分方程来表示系统,使用“lsim”函数来模拟系统的响应。
二、数字信号的系统建模1. 采样和重构在数字信号的系统建模中,我们同样需要进行信号的采样操作。
但不同于模拟信号的采样,数字信号的采样是在一定时间间隔内将模拟信号的采样值量化为数字序列。
重构则是将数字序列还原为模拟信号。
在Matlab中,我们可以使用“sample”函数来进行信号的采样,使用“interp”函数来进行信号的重构。
2. 信号处理与模拟信号一样,数字信号也可以进行各种信号处理操作,如滤波、卷积、相关等。
这些操作可以帮助我们提取信号中的特征并进行进一步的分析。