第八章晶体内部结构的微观对称和空间群2015
- 格式:ppt
- 大小:4.09 MB
- 文档页数:65
晶体的微观对称操作首先,晶体的微观对称操作可以分为平移、旋转、镜面反射和反演等几种基本操作。
平移操作是指将晶体中的每个原子或离子沿着某个方向移动相同的距离。
旋转操作是指将晶体中的每个原子或离子绕着某个轴旋转一定的角度。
镜面反射操作是指将晶体中的每个原子或离子关于一个平面进行镜面对称。
反演操作是指将晶体中的每个原子或离子关于一个点进行对称。
其次,晶体的微观对称操作可以用对称元素来描述。
对称元素包括平移矢量、旋转轴和镜面反射面等。
平移矢量描述了晶体中的平移操作,它可以用一个矢量来表示。
旋转轴描述了晶体中的旋转操作,它可以用一个轴线和一个旋转角度来表示。
镜面反射面描述了晶体中的镜面反射操作,它可以用一个平面来表示。
这些对称元素可以组合形成晶体的对称群。
此外,晶体的微观对称操作还可以用空间群来描述。
空间群是指晶体中所有微观对称操作的集合。
空间群包括平移操作和点群操作。
平移操作是指晶体中的平移矢量,它描述了晶体中的周期性重复。
点群操作是指晶体中的旋转操作、镜面反射操作和反演操作,它们描述了晶体中的局部对称性质。
最后,晶体的微观对称操作对晶体的物理性质和化学性质都有重要影响。
对称操作可以决定晶体的晶体系统、晶胞参数和晶体结构。
晶体的对称性决定了晶体的光学性质、电学性质和磁学性质等。
晶体的微观对称操作也对晶体的生长、相变和缺陷行为等有重要影响。
综上所述,晶体的微观对称操作是描述晶体内部对称性质和晶体结构变化的重要概念。
它可以通过对称元素、空间群和物理性质等多个角度来理解和描述。
晶体的微观对称操作对于理解晶体的性质和应用具有重要意义。
晶体的对称性与空间群3.1 晶格与非晶态物质不同,晶体中分子、离子或原子团在空间按照一定的规律排列而形成的固体物质。
也就是说,在晶体内部,分子、离子或原子团在三维空间以某种结构基元(structural motif)(即重复单位)的形式周期性的排列。
只要知道其中最简单的结构基元,以及他们在空间平移(translation)的向量长度与方向,就可以得到原子或者分子在晶体中的排部的情况。
结构基元可以是一个或者多个原子(离子),也可以是一个或者多个原子(离子),也可以是一个或者多个分子,每个结构基元的化学组成及原子的空间排列完全相同。
如果将结构基元抽象为一个点,晶体中分子或原子的排列就可以看成点阵(lattice)。
也就是说,晶体的结构=结构基元+点阵。
单晶体都属于三维点阵,为了直观,这里采用简化的二维点阵来说明。
图 3.1(a)显示[Cu2(ophen)2]分子[1]在晶胞中二维平面上的排列,其中每个结构基元一个[Cu2(ophen)2]分子,可以抽象为一个点阵点,从而形成一个点阵,如图3.1(b)所示。
显然,每个点阵点按在空间排列而成的平面,点阵的单位向量平移,就与另一个点阵点(即分子)完全重叠。
可以用三个互相不平行的单位向量a, b 和c描述点阵点在空间的平移,通过这个向量的操作,可以得到整个点阵。
点阵中任意点可以用向量r表示。
r=n1a+n2b+n3c(3.1)其中n1, n2和n3为整数。
点阵是抽象的数学概念,其原点可以任意选定。
需要指出的是,晶体学上的坐标系均采用右手定则,即食指代表x轴,中指代表y轴,大拇指代表z轴。
3.1.1晶胞参数晶体的空间点阵可以选择三个互相不平行的单位向量a,b和c,用它们可以画出一个六面体单位,称为点阵单位。
相应地,按照晶体结构的周期性所划分的六面体单位就叫晶胞(cell).三个单位向量的长度a,b和c以及它们之间的夹角α,β,γ就叫晶胞参数(unit cell parameters)其中,α是b和c的夹角,β是a和c的夹角,γ是a和b的夹角(图3.2)。