二次函数一般式的图像和性质
- 格式:docx
- 大小:88.81 KB
- 文档页数:6
二次函数的图象与性质知识要点概述1、二次函数的定义:如果y=ax2+bx+c(a、b、c为常数,a≠0),那么y叫x的二次函数.2、二次函数的图象:二次函数y=ax2+bx+c的图象是一条抛物线.3、二次函数的解析式有下列三种形式:(1)一般式:y=ax2+bx+c(a≠0);(2)顶点式:y=a(x-h)2+k(a≠0);)(x-x2) (a≠0),这里x1,x2是抛物线与x轴两个交点的横坐标.(3)交点式:y=a(x-x1确定二次函数的解析式一般要三个独立条件,灵活地选用不同方法求出二次函数的解析式是解与二次函数相关问题的关键.4、抛物线y=ax2+bx+c中系数a、b、c的几何意义抛物线y=ax2+bx+c的对称轴是,顶点坐标是,其中a的符号决定抛物线的开口方向.a>0,抛物线开口向上,a<0,抛物线开口向下;a,b同号时,对称轴在y轴的左边;a,b异号时,对称轴在y轴的右边;c确定抛物线与y轴的交点(0,c)在x轴上方还是下方.5、抛物线顶点式y=a(x-h)2+k(a≠0)的特点(1)a>0,开口向上;a<0,开口向下;(2)x=h为抛物线对称轴;(3)顶点坐标为(h,k).依顶点式,可以很快地求出二次函数的最值.当a>0时,函数在x=h处取最小值y=k;当a<0时,函数在x=h处取最大值y=k.6、抛物线y=a(x-h)2+k与y=ax2的联系与区别抛物线y=a(x-h)2+k与y=ax2的形状相同,位置不同.前者是后者通过“平移”而得到.要想弄清抛物线的平移情况,首先将解析式化为顶点式.7、抛物线y=ax2+bx+c与x轴的两个交点为A、B,且方程ax2+bx+c=0的两根为x1,x2,则有A(x1,0),B(x2,0).典型剖析例1、已知二次函数y=ax2+bx+c的图象如图所示.下列结论:①a+b+c<0;②a-b+c>0;③abc>0;④b=2a.其中正确结论的个数是()A.4B.3C.2D.1解:选A.令x=1及由图象知a+b+c<0,①正确;令x=-1及由图象a-b+c>0,②正确;由对称轴知,④正确;由④知a、b同号且抛物线与y轴的交点在x轴上方,即c>0,故③正确.所以选A.例2、二次函数y=x2+(a-b)x+b的图象如图所示.那么化简的结果是____________.解:原式=-1.∵图象与y轴交点在x轴上方,∴b>0.又∵图象的对称轴在y轴右边且二次项系数为1,一次项系数为a-b,例3、已知抛物线y=x2-(2m+4)x+m2-10与x轴交于A、B两点,C是抛物线的顶点.(1)用配方法求顶点C的坐标(用含m的代数式表示);(2)若AB的长为,求抛物线的解析式.解:(1)∵y=x2-(2m+4)x+m2-10=[x-(m+2)] 2-4m-14,∴顶点C的坐标为(m+2,-4m-14).(2)∵A、B是抛物线y=x2-(2m+4)x+m2-10与x轴的交点且|AB|=,化简整理得:16m=-48,∴m=-3.当m=-3时,抛物线y=x2+2x-1与x轴有交点且AB=,符合题意.故所求抛物线的解析式为y=x2+2x-1.例4、如果抛物线y=-x2+2(m-1)x+m+1与x轴交于A、B两点,且A点在x轴的正半轴上,B点在x轴的负半轴上,OA的长是a,OB的长是b.(1)求m的取值范围;(2)若a︰b=3︰1,求m的值,并写出此时抛物线的解析式.解:(1)设A、B两点的坐标分别为(x1,0),(x2,0).∵A、B分处原点两侧,∴xx2<0,1即-(m+1)<0,得m>-1.又∵△=[2(m-1)]2-4×(-1)(m+1)=4m2-4m+8=4(m-)2+7>0,∴m>-1为m的取值范围.(2)∵a︰b=3︰1.设a=3k,b=k(k>0),=3k,x2=-k.则x1例5、已知某二次函数,当x=1时有最大值-6,且其图象经过点(2,-8).求此二次函数的解析式.解:∵二次函数当x=1时有最大值-6,∴抛物线的顶点为(1,-6),故设所求的二次函数解析式为y=a(x-1)2-6.由题意将点(2,-8)的坐标代入上式得:a(2-1)2-6=-8,∴a=-2,∴二次函数的解析式为y=-2(x-1)2-6,即y=-2x2+4x-8.例6、二次函数y=ax2+bx+c的图象的一部分如图所示.已知它的顶点M在第二象限,且经过点A(1,0)和点B(0,1).(1)请判断实数a的取值范围,并说明理由;(2)设此二次函数的图象与x轴的另一个交点为C.当△AMC的面积为△ABC面积的倍时,求a的值.解:(1)由图象可知:a<0,图象过点(0,1),∴c=1.图象过点(1,0),∴a+b+c=0,∴b=-(a+c)=-(a+1).由题意知,当x=-1时,应有y>0,∴a-b+c>0,∴a+(a+1)+1>0,∴a>-1,∴实数a的取值范围是-1<a<0.(2)此时函数为y=ax2-(a+1)x+1,与x轴两交点A、C之间的距离为例7、根据下列条件,求抛物线的解析式.(1)经过点(0,-1),(1,),(-2,-5);(2)经过点(-3,2),顶点是(-2,3);(3)与x轴两交点(-1,0)和(2,0)且过点(3,-6).分析:求解析式应用待定系数法,根据不同的条件,选用不同形式求二次函数的解析式,可使解题简捷.但应注意,最后的函数式均应化为一般形式y=ax2+bx+c.解:(1)设y=ax2+bx+c,把(0,-1),(1,),(-2,-5)代入得方程组∴解析式为y=+x-1.(2)设y=a(x+2)2+3,把(-3,2)代入得2=a(-3+2)2+3,解得a=-1.解析式为y=-x2-4x-1.(3)设y=a(x+1)(x-2),把(3,-6)代入得-6=a(3+1)(3-2),解得.∴解析式为y=(x+1)(x-2),即.。
第1讲二次函数的图形及性质题型1:二次函数的概念1.下列函数表达式中,一定为二次函数的是()A.y=5x−1B.y=ax2+bx+c C.y=3x2+1D.y=x2+1x题型2:利用二次函数定义求字母的值2.已知y=(m+1)x|m−1|+2m是y关于x的二次函数,则m的值为()A.−1B.3C.−1或3D.0题型3:二次函数的一般形式3.二次函数y=2x2﹣3的二次项系数、一次项系数和常数项分別是()A.2、0、﹣3B.2、﹣3、0C.2、3、0D.2、0、3A.2B.﹣2C.﹣1D.﹣4题型4:根据实际问题列二次函数4.一个矩形的周长为16cm,设一边长为xcm,面积为y cm2,那么y与x的关系式是【变式4-1】如图,用长为20米的篱笆(AB+BC+CD=20),一边利用墙(墙足够长),围成一个长方形花圃.设花圃的宽AB为x米,围成的花圃面积为y米2,则y关于x的函数关系式是.【变式4-2】某商品的进价为每件20元,现在的售价为每件40元,每星期可卖出200件.市场调查反映:如调整价格,每涨价1元,每星期要少卖出5件.则每星期售出商品的利润y (单位:元)与每件涨价x(单位:元)之间的函数关系式是()A.y=(200﹣5x)(40﹣20+x)B.y=(200+5x)(40﹣20﹣x)C.y=200(40﹣20﹣x)D.y=200﹣5x题型5:自变量的取值范围5..若y=(a−2)x2−3x+4是二次函数,则a的取值范围是()A.a≠2B.a>0C.a>2D.a≠0【变式5-1】函数y=√x+2的自变量取值范围是()x−1A.x≥−2B.−2≤x<1C.x>1D.x≥−2且x≠1【变式5-2】若y=(m+1)x m2−2m−1是二次函数,则m=,其中自变量x的取值范围是.22.1.2二次函数y=ax2的图像和性质二次函数y=ax2(a≠0)的图象用描点法画出二次函数y=ax2(a≠0)的图象,如图,它是一条关于y轴对称的曲线,这样的曲线叫做抛物线.二次函数y=ax2(a ≠0)的图象的画法用描点法画二次函数y=ax 2(a≠0)的图象时,应在顶点的左、右两侧对称地选取自变量x 的值,然后计算出对应的y 值,这样的对应值选取越密集,描出的图象越准确.注意:用描点法画二次函数y=ax 2(a≠0)的图象,该图象是轴对称图形,对称轴是y 轴.画草图时应抓住以下几点:开口方向,对称轴,顶点,与轴的交点,与轴的交点.题型1:利用描点法作函数图像1.在直角坐标系中,画出函数y =2x 2的图象(取值、描点、连线、画图).【变式1-1】在如图所示的同一平面直角坐标系中,画出函数y =2x 2,y =x 2,y =﹣2x 2与y =﹣x 2的图象.x y =2x 2 y =x 2 y =﹣2x 2 y =﹣x 2x ya>0a<0题型2:二次函数y=ax2的图像2.在同一坐标系中画出y1=2x2,y2=﹣2x2,y3=x2的图象,正确的是()A.B.C.D.【变式2-1】下列图象中,是二次函数y=x2的图象的是()A.B.C.D.【变式2-2】如图,在同一平面直角坐标系中,作出函数①y=3x2;②y=;③y=x2的图象,则从里到外的三条抛物线对应的函数依次是()A.①②③B.①③②C.②③①D.③②①题型3:二次函数y=ax2的性质3.抛物线y=﹣3x2的顶点坐标为()A.(0,0)B.(0,﹣3)C.(﹣3,0)D.(﹣3,﹣3)【变式3-1】抛物线,y=x2,y=﹣x2的共同性质是:①都开口向上;②都以点(0,0)为顶点;③都以y轴为对称轴.其中正确的个数有()A.0个B.1个C.2个D.3个【变式3-2】.对于函数y=4x2,下列说法正确的是()A.当x>0时,y随x的增大而减小B.当x>0时,y随x的增大而增大C.y随x的增大而减小D.y随x的增大而增大【变式3-3】二次函数y=﹣3x2的图象一定经过()A.第一、二象限B.第三、四象限C.第一、三象限D.第二、四象限题型4:函数图像位置的识别4.已知a≠0,b<0,一次函数是y=ax+b,二次函数是y=ax2,则下面图中,可以成立的是()A.B.C.D.【变式4-1】函数y=ax2与y=ax+a,在第一象限内y随x的减小而减小,则它们在同一平面直角坐标系中的图象大致位置是()A.B.C.D.【变式4-2】在图中,函数y=﹣ax2与y=ax+b的图象可能是()A.B.C.D.题型5:函数值的大小比较5.二次函数y1=﹣3x2,y2=﹣x2,y3=5x2,它们的图象开口大小由小到大的顺序是()A.y3<y1<y2B.y3<y2<y1C.y1<y2<y3D.y2<y1<y3题型6:简单综合-三角形面积6.求直线y=3x+4与抛物线y=x2的交点坐标,并求出两交点与原点所围成的三角形面积.22.1.3二次函数y=a(x-h)²+k的图像和性质二次函数y=ax2+c(a≠0)的图象(1)(2)0 a>0 a<题型1:二次函数y=ax²+k的图象1.建立坐标系,画出二次函数y=﹣x2及y=﹣x2+3的图象.向上向下题型2:二次函数y=ax²+k的性质2.抛物线的开口方向是()A.向下B.向上C.向左D.向右【变式2-2】抛物线y=2x2+1的对称轴是()A.直线x=B.直线x=﹣C.直线x=2D.y轴题型3:二次函数y=a(x-h)²的图象3.画出二次函数(1)y=(x﹣2)2(2)y=(x+2)2的图象.课堂总结:题型4:二次函数y=a(x-h)²的性质4.对于二次函数y=﹣(x﹣1)2的图象,下列说法不正确的是()A.开口向下B.对称轴是直线x=1C.顶点坐标为(1,0)D.当x<1时,y随x的增大而减小题型5:二次函数y=a(x-h )²+k 的图象和性质5.对于二次函数y =﹣5(x +4)2﹣1的图象,下列说法正确的是( ) A .图象与y 轴交点的坐标是(0,﹣1) B .对称轴是直线x =4C .顶点坐标为(﹣4,1)D .当x <﹣4时,y 随x 的增大而增大 【变式5-1】再同一直角坐标系中画出下列函数的图象 (1)y =(x ﹣2)2+3 (2)y =(x +2)2﹣3【变式5-2】画函数y =(x ﹣2)2﹣1的图象,并根据图象回答: (1)当x 为何值时,y 随x 的增大而减小.(2)当x 为何值时,y >0.【变式5-3】写出下列二次函数图象的开口方向、对称轴和顶点坐标. (1)y =5(x +2)2﹣3;(2)y =﹣(x ﹣2)2+3;(3)y =(x +3)2+6.二次函数的平移 1.平移步骤:⑴ 将抛物线解析式转化成顶点式,确定其顶点坐标; ⑵ 保持抛物线的形状不变,将其顶点平移到处,具体平移方法如下: ()2y a x h k =-+()h k ,2y ax =()h k ,2.平移规律:在原有函数的基础上“值正右移,负左移;值正上移,负下移”.概括成八个字“左h k加右减,上加下减”.题型6:二次函数几种形式之间的关系(平移)6.将抛物线y=(x﹣3)2﹣4先向右平移1个单位长度,再向上平移2个单位长度,得到的抛物线的函数表达式为()A.y=(x﹣4)2﹣6B.y=(x﹣1)2﹣3C.y=(x﹣2)2﹣2D.y=(x﹣4)2﹣2【变式6-1】将抛物线向上平移2个单位长度,再向右平移1个单位长度,能得到抛物线y =2(x﹣2)2+3的是()A.y=2(x﹣1)2+1B.y=2(x﹣3)2+1C.y=﹣2(x﹣1)2+1D.y=﹣2x2﹣1【变式6-2】将二次函数y=x2﹣3的图象向右平移3个单位,再向上平移5个单位后,所得抛物线的表达式是.题型7:利用增减性求字母取值范围7.抛物线y=(k﹣7)x2﹣5的开口向下,那么k的取值范围是()A.k<7B.k>7C.k<0D.k>0【变式7-1】已知点(x1,y1)、(x2,y2)是函数y=(m﹣3)x2的图象上的两点,且当0<x1<x2时,有y1>y2,则m的取值范围是()A.m>3B.m≥3C.m≤3D.m<3【变式7-2】二次函数y=(x﹣h)2+k(h、k均为常数)的图象经过P1(﹣3,y1)、P2(﹣1,y2)、P3(1,y3)三点.若y2<y1<y3,则h的取值范围是.题型8:识别图象位置8.如果二次函数y=ax2+c的图象如图所示,那么一次函数y=ax+c的图象大致是()A.B.C.D.【变式8-1】在同一平面直角坐标系中,函数y=ax2+bx与y=ax+b的图象不可能是()A.B.C.D.【变式8-2】已知m是不为0的常数,函数y=mx和函数y=mx2﹣m2在同一平面直角坐标系内的图象可以是()A.B.C.D.题型9:比较函数值的大小9.已知二次函数y=(x﹣1)2+h的图象上有三点,A(0,y1),B(2,y2),C(3,y3),则y1,y2,y3的大小关系为()A.y1=y2<y3B.y1<y2<y3C.y1<y2=y3D.y3<y1=y2题型10:简单综合问题10.已知抛物线y=(x﹣5)2的顶点为A,抛物线与y轴交于点B,过点B作x轴的平行线交抛物线于另外一点C.(1)求A,B,C三点的坐标;(2)求△ABC的面积;(3)试判断△ABC 的形状并说明理由.【变式10-1】如图,在平面直角坐标系中,抛物线y =ax 2+3与y 轴交于点A ,过点A 与x 轴平行的直线交抛物线y =x 2于点B 、C ,求BC 的长度.【变式10-2】在同一坐标系内,抛物线y =ax 2与直线y =x +b 相交于A ,B 两点,若点A 的坐标是(2,3).(1)求B 点的坐标;(2)连接OA ,OB ,AB ,求△AOB 的面积.22.1.4 二次函数y=ax 2+bx+c 的图象与性质二次函数一般式与顶点式之间的相互关系 1.顶点式化成一般式从函数解析式我们可以直接得到抛物线的顶点(h ,k),所以我们称为顶点式,将顶点式去括号,合并同类项就可化成一般式. 2.一般式化成顶点式. 2()y a x h k =-+2()y a x h k =-+2()y a x h k =-+2y ax bx c =++2222222b b b b y ax bx c a x x c a x x c a a a a ⎡⎤⎛⎫⎛⎫⎛⎫=++=++=++-+⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦22424b ac b a x a a -⎛⎫=++⎪⎝⎭代入法,这三种方法都有各自的优缺点,应根据实际灵活选择和运用.题型1:一般式化成顶点式-配方法1.将二次函数y=x2−4x+5用配方法化为y=(x−ℎ)2+k的形式,结果为()A.y=(x−4)2+1B.y=(x−4)2−1C.y=(x−2)2−1D.y=(x−2)2+1题型2:一般式化成顶点式-应用2.已知:二次函数y=x2﹣2x﹣3.将y=x2﹣2x﹣3用配方法化成y=a(x﹣h)2+k的形式,并求此函数图象与x轴、y轴的交点坐标.题型3:公式法求顶点坐标及对称轴3.已知二次函数 y =−12x 2+bx +3 ,当 x >1 时,y 随x 的增大而减小,则b 的取值范围是( ) A .b ≥−1B .b ≤−1C .b ≥1D .b ≤10a >0a <题型4:二次函数y=ax2+bx+c图像与性质4.若二次函数y=ax2+bx+c的图象如图所示,则下列说法不正确的是()A.当1<x<3时,y>0B.当x=2时,y有最大值C.图像经过点(4,−3)D.当y<−3时,x<0【变式4-2】二次函数y=ax2+bx+c的部分图象如图所示,当x>0时,函数值y的取值范围是()A.y⩽9B.y⩽2C.y<2D.y⩽3 4题型5:利用二次函数的性质比较函数值5.函数y=﹣x2﹣2x+m的图象上有两点A(1,y1),B(2,y2),则()A.y1<y2B.y1>y2几种常考的关系式的解题方法题型6:二次函数y=ax2+bx+c图像与系数的关系6.已知二次函数y=ax2+bx+c(a≠0,a,b,c为常数),如果a>b>c,且a+b+c=0,则它的图象可能是()A.B.C.D.【变式6-1】已知函数y=ax2+bx+c(a≠0)的对称轴为直线x=−4.若x1,x2是方程ax2+bx+c=0的两个根,且x1<x2,1<x2<2,则下列说法正确的是A.x1x2>0B.−10<x1<−9C.b2−4ac<0D.abc>0【变式6-2】如图,已知抛物线y=ax2+bx+c(a,b,c为常数,a≠0)经过点(2,0),,有下列结论:①b<0;②a+b>0;③4a+2b+3c<0;④无且对称轴为直线x=12,0).其中正确结论有()论a,b,c取何值,抛物线一定经过(c2aA.1个B.2个C.3个D.4个【变式6-3】如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A、B两点,与y轴交于点C;对称轴为直线x=−1,点B的坐标为(1,0),则下列结论:①AB=4;②b2−4ac>0;③b>0;④a−b+c<0,其中正确的结论有()个.A.1个B.2个C.3个D.4个7.二次函数y=ax2+bx+c(a≠0)中x,y的部分对应值如下表:x…﹣2﹣1012…y…0﹣4﹣6﹣6﹣4…则该二次函数图象的对称轴为()A.y轴B.直线x=12C.直线x=1D.直线x=32题型8:利用二次函数的性质求字母的范围8.已知二次函数y=x2+bx+1当0<x<12的范围内,都有y≥0,则b的取值范围是A.b≥0B.b≥﹣2C.b≥﹣52D.b≥﹣32a题型9:利用二次函数的性质求最值9.二次函数y=−x2+2x+4的最大值是.题型10:给定范围内的最值问题10.已知二次函数y=ax2+bx+1.5的图象(0≤x≤4)如图,则该函数在所给自变量的取值范围内,最大值为,最小值为.。
二次函数的图像和性质1.二次函数的图像与性质:解析式a 的取值开口方向函数值的增减顶点坐标对称轴图像与y轴的交点y = ax2当a0时;开口向上;在对称轴的左侧y随x的增大而减小,在对称轴的右侧 y 随 x 的增大而增大。
当a0时;开口向下;在对称轴的左侧y随 x 的增大而增大,在对称轴的右侧 y 随 x 的增大而减小。
(0,0)x=0(0,0)y = ax2+ k(0,c)x =0 (0,k)y = a( x + h)2(- h,0)x = - h(0,ah2)y=a(x+h)2+k(- h,k)x = - h(0,ah2+ k)y = ax2+bx+c b 4ac - b2 (- , )2a4a b x=-2a(0,c)2.抛物线的平移法则:(1)抛物线y = ax2+ k的图像是由抛物线y = ax2的图像平移k个单位而得到的。
当k 0时向上平移;当k0时向下平移。
(2)抛物线y = a(x + h)2的图像是由抛物线y = ax2的图像平移h个单位而得到的。
当h0时向左平移;当h0时向右平移。
(3)抛物线的y = a(x + h)2+ k图像是由抛物线y = ax2的图像上下平移k个单位,左右平移h个单位而得到的。
当k0时向上平移;当k0时向下平移;当h0时向左平移;当h0 时向右平移。
3.二次函数的最值公式:形如y =ax + bx + c的二次函数。
当a0时,图像有最低点,函数有最小值4ac-b24ac-b2y最小值=4a;当a0时,图像有最高点,函数有最大值,y最大值=4a;4.抛物线y =ax + bx + c与y轴的交点坐标是(0,c)5.抛物线的开口大小是由a决定的,a越大开口越小。
6.二次函数y =ax + bx + c的最值问题:(1)自变量的取值范围是一切实数时求最值的方法有配方法、公式法、判别式法。
(2)自变量的取值范围不是一切实数:b 自变量的取值范围不是一切实数时,应当抓住对称轴x = -2a ,把他与取值范围相比较,再进行求最值。
考点七二次函数的图像与性质知识点整合一、二次函数的概念一般地,形如y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)的函数,叫做二次函数.二、二次函数解析式的三种形式(1)一般式:y =ax 2+bx +c (a ,b ,c 为常数,a ≠0).(2)顶点式:y =a (x –h )2+k (a ,h ,k 为常数,a ≠0),顶点坐标是(h ,k ).(3)交点式:y =a (x –x 1)(x –x 2),其中x 1,x 2是二次函数与x 轴的交点的横坐标,a ≠0.三、二次函数的图象及性质1.二次函数的图象与性质解析式二次函数y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)对称轴x =–2b a顶点(–2b a ,244ac b a-)a 的符号a >0a <0图象开口方向开口向上开口向下最值当x =–2ba 时,y 最小值=244ac b a-当x =–2ba时,y 最大值=244ac b a-最点抛物线有最低点抛物线有最高点增减性当x <–2ba时,y 随x 的增大而减小;当x >–2ba时,y 随x 的增大而增大当x <–2ba时,y 随x 的增大而增大;当x >–2ba时,y 随x 的增大而减小2.二次函数图象的特征与a ,b ,c 的关系字母的符号图象的特征aa >0开口向上a <0开口向下b b =0对称轴为y 轴ab >0(a 与b 同号)对称轴在y 轴左侧ab <0(a 与b 异号)对称轴在y轴右侧c c =0经过原点c >0与y 轴正半轴相交c <0与y 轴负半轴相交b 2–4ac b 2–4ac =0与x 轴有唯一交点(顶点)b 2–4ac >0与x 轴有两个交点b 2–4ac <0与x 轴没有交点四、抛物线的平移1.将抛物线解析式化成顶点式y =a (x –h )2+k ,顶点坐标为(h ,k ).2.保持y =ax 2的形状不变,将其顶点平移到(h ,k )处,具体平移方法如下:3.注意二次函数平移遵循“上加下减,左加右减”的原则,据此,可以直接由解析式中常数的加或减求出变化后的解析式;二次函数图象的平移可看作顶点间的平移,可根据顶点之间的平移求出变化后的解析式.考向一二次函数的有关概念1.二次函数的一般形式的结构特征:①函数的关系式是整式;②自变量的最高次数是2;③二次项系数不等于零.2.一般式,顶点式,交点式是二次函数常见的表达式,它们之间可以互相转化.典例引领变式拓展考向二二次函数的图象与性质二次函数的图象是一条关于某条直线对称的曲线,叫做抛物线,该直线叫做抛物线的对称轴,对称轴与抛物线的交点叫做抛物线的顶点.二次函数的解析式中,a决定抛物线的形状和开口方向,h、k仅决定抛物线的位置.若两个二次函数的图象形状完全相同且开口方向相同,则它们的二次项系数a必相等.典例引领1x=时有最小值2-,即a-当2x=-时有最大值6,即4解得:89a=,109b=-,∴1118110 333939 a b⎛-=⨯-⨯-⎝②a<0时,如图,1x =时有最大值6,即26a a b -+=当2x =-时有最小值2-,即44a a +解得:89a =-,469b =,∴11181462333939a b ⎛⎫-=⨯--⨯=- ⎪⎝⎭,故答案为:23或2-.4.定义:两个不相交的函数图象在竖直方向上的最短距离,抛物线223y x x =-+与直线y x =-【答案】114【分析】此题考查了一次函数,二次函数的性质以及新定义问题,变式拓展【答案】②③④【分析】本题考查了二次函数图象与系数的关系,①根据抛物线开口向下可得在y轴右侧,得0b>,抛物线与x=,即对称轴是直线1【答案】②④/④②【分析】本题考查二次函数的图象和性质,结合的数学思想是解题的关键.【详解】解:将点(11933b c b c ++=⎧⎨++=⎩,。
22.1.4二次函数y=ax2+bx+c的图象和性质第1课时二次函数y=ax2+bx+c的图象和性质知识点1二次函数y=ax2+bx+c与二次函数y=a(x-h)2+k之间的关系1.用配方法将y=x2-6x+11化成y=a(x-h)2+k的形式为( )A.y=(x+3)2+2B.y=(x-3)2-2C.y=(x-6)2-2D.y=(x-3)2+22.将二次函数y=x2-4x+5化为y=(x-h)2+k的形式,那么h+k=知识点2二次函数y=ax2+bx+c(a≠0)的图象和性质3.关于二次函数y=x2-8x+12的图象,下列说法错误的是( )A.函数图象与y轴的交点坐标是(0,12)B.顶点坐标是(4,-3)C.函数图象与x轴的交点坐标是(2,0),(6,0)D.当x<0时,y随x的增大而减小4.(雅安中考)在二次函数y=x2-2x-3中,当0≤x≤3时,y的最大值和最小值分别是( )A.0,-4B.0,-3C.-3,-4D.0,0知识点3二次函数y=ax2+bx+c(a≠0)的图象与a,b,c的关系5.已知抛物线y=ax2+bx+c(a≠0)在平面直角坐标系中的位置如图所示,则有( )A.a>0,b>0B.a>0,c>0C.b>0,c>0D.a,b,c都小于06.二次函数y=ax2+bx+c的图象如图所示,那么点位于( )A.第一象限B.第二象限C.第三象限D.第四象限7.(泰安中考)二次函数y=ax2+bx+c的图象如图所示,那么一次函数y=ax+b的图象大致是( )8.将抛物线y=x2+2x+2向上平移3个单位长度,再向左平移2个单位长度后,得到的抛物线的解析式为( )A.y=(x-1)2+3B.y=(x-3)2+4C.y=(x+3)2+4D.y=(x+1)2+49.已知二次函数y=x2+(m-1)x+2,当x>1时,y随x的增大而增大,而m的取值范围是( )A.m=1B.m=2C.m≤-1D.m≥-110.已知函数y=ax2-2ax-1(a是常数,a≠0),下列结论正确的是( )A.当a=1时,函数图象过点(-1,1)B.当a=-2时,函数图象与x轴没有交点C.若a>0,则当x≥1时,y随x的增大而减小D.若a<0,则当x≤1时,y随x的增大而增大11.(日照中考)如图是二次函数y=ax2+bx+c的图象,其对称轴为x=1,下列结论:①abc>0;②2a+b=0;③4a+2b+c<0;④若-是抛物线上两点,则y1<y2.其中结论正确的是( )A.①②B.②③C.②④D.①③④12.抛物线y=x2+bx+c(其中b,c是常数)过点A(2,6),且抛物线的对称轴与线段y=0(1≤x≤3)有交点,则c的值不可能是( )A.4B.6C.8D.1013.若抛物线y=2x2-px+4p+1中不管p取何值时都通过定点,则定点坐标为14.已知二次函数y=ax2-bx-2(a≠0)的图象的顶点在第四象限,且过点(-1,0),当a-b为整数时,ab的值为15.如图,抛物线y=-x2+2x+3与y轴交于点C,点D(0,1),点P是抛物线上的动点.若△PCD是以CD为底的等腰三角形,则点P的坐标为16.已知P(-5,m)和Q(3,m)是二次函数y=2x2+bx+1图象上的两点.(1)求b的值;(2)将二次函数y=2x2+bx+1的图象沿y轴向上平移k(k>0)个单位,使平移后的图象与x轴无交点,求k的取值范围.拓展探究突破练17.若两个二次函数图象的顶点,开口方向都相同,则称这两个二次函数为“同簇二次函数”.(1)请写出两个为“同簇二次函数”的函数;(2)已知关于x的二次函数y1=2x2-4mx+2m2+1和y2=x2+bx+c,其中y1的图象经过点A(1,1),若y1+y2与y1为“同簇二次函数”,求函数y2的解析式,并求当0≤x≤3时,y2的取值范围.。
适用标准文档二次函数的图像与性质一、二次函数的基本形式1.二次函数基本形式: y ax 2的性质:a 的符号张口方向极点坐标 对称轴性质0,0 x 0时,y 随x 的增大而增大;x0时,y 随向上y 轴x0时,y 有最小值0.x 的增大而减小;a0,0 x 0时,y 随x 的增大而减小;x 0时,y 随向下 y 轴x0时,y 有最大值0.x 的增大而增大;的绝对值越大,抛物线的张口越小。
yax 2c 的性质:上加下减。
a 的符号 张口方向 极点坐标 对称轴 性质a0,c x 0时,y 随x 的增大而增大;x0时,y 随向上y 轴x0时,y 有最小值c .x 的增大而减小;a 00,c x 0时,y 随x 的增大而减小;x 0时,y 随向下y 轴x0时,y 有最大值c .x 的增大而增大;3.yax 2h 的性质:左加右减。
a 的符号 张口方向 极点坐标 对称轴 性质a 0 向上 h ,0 X=h x h 时,y 随x 的增大而增大; xh 时,y随x 的增大而减小; x h 时,y 有最小值0.a 0 向下 h ,0 X=h x h 时,y 随x 的增大而减小; xh 时,y随x 的增大而增大; x h 时,y 有最大值0.4.yax 2hk 的性质:a 的符号 张口方向 极点坐标 对称轴性质a0h,k xh时,y随x的增大而增大;xh时,y向上X=hx h时,y有最小值k.随x的增大而减小;a0h,k xh时,y随x的增大而减小;xh时,y向下X=hx h时,y有最大值k.随x的增大而增大;文案大全适用标准文档二、二次函数图象的平移1.平移步骤:方法一:⑴将抛物线分析式转变为极点式yaxh 2h ,k ;k ,确立其极点坐标 ⑵保持抛物线yax 2的形状不变,将其极点平移到h ,k 处,详细平移方法以下:向上(k>0)【或向下(k<0)】平移|k|个单位y=ax2y=ax 2+k向右(h>0)【或左(h<0)】向右(h>0)【或左(h<0)】 向右(h>0) 【或左(h<0) 】平移|k|个单位平移|k|个单位平移|k|个单位向上(k>0)【或下(k<0)】平移|k|个单位y=a(x-h)2向上(k>0)【或下(k<0)】平移|k|个单位y=a(x-h)2+k平移规律在原有函数的基础上 “h 值正右移,负左移; k 值正上移,负下移 ”.归纳成八个字“左加右减,上加下减” .方法二:⑴y ax 2 bx c 沿y 轴平移:向上(下)平移 m 个单位,y ax 2 bx c 变为yax 2 bx c m (或y ax 2 bx cm )⑵y ax 2 bx c 沿轴平移:向左(右)平移m 个单位,yax 2 bx c 变为ya(x m)2 b(x m) c (或y a(x m)2 b(x m) c )三、二次函数yax h 2k 与y2bx c 的比较ax从分析式上看, y a x 2k 与y ax 2 bxc 是两种不一样的表达形式,后者经过配hb 24ac b 2b,k4ac b 2方能够获得前者,即y a x,此中h .2a4a2a4a四、二次函数yax 2 bx c 图象的画法五点绘图法:利用配方法将二次函数 y ax 2 bx c 化为极点式y a(x h)2k ,确立其张口方向、对称轴及极点坐标,而后在对称轴双侧,左右对称地描点绘图.一般我们选用的五点为:极点、与 y 轴的交点0,c 、以及 0,c 对于对称轴对称的点 2h ,c 、与x 轴的交点x 1,0 ,x 2,0(若与x 轴没有交点,则取两组对于对称轴对称的点).画草图时应抓住以下几点:张口方向,对称轴,极点,与 x 轴的交点,与y 轴的交点.文案大全五、二次函数yax2bxc的性质1.当a0时,抛物线张口向上,对称轴为x b,极点坐标为b,4ac b2.2a2a4a当x b时,y随x的增大而减小;当x b时,y随x的增大而增大;当x b 2a2a2a 2时,y有最小值4acb.4a2.当a0时,抛物线张口向下,对称轴为x b,极点坐标为b,4ac b2.当2a2a4ax b时,y随x的增大而增大;当xb时,y随x的增大而减小;当x b时,y 2a2a2a 2有最大值4ac b.4a六、二次函数分析式的表示方法1.一般式:y ax2bxc(a,b,c为常数,a0);2.极点式:y a(x h)2k(a,h,k为常数,a0);3.两根式:y a(x x1)(x x2)(a0,x1,x2是抛物线与x轴两交点的横坐标).注意:任何二次函数的分析式都能够化成一般式或极点式,但并不是全部的二次函数都能够写成交点式,只有抛物线与x轴有交点,即b24ac0时,抛物线的分析式才能够用交点式表示.二次函数分析式的这三种形式能够互化.七、二次函数的图象与各项系数之间的关系二次项系数a二次函数2yaxbxc中,a作为二次项系数,明显a0.⑴当a0时,抛物线张口向上,a的值越大,张口越小,反之a的值越小,张口越大;⑵当a0时,抛物线张口向下,a的值越小,张口越小,反之a的值越大,张口越大.总结起来,a决定了抛物线张口的大小和方向,a的正负决定张口方向,a的大小决定张口的大小.一次项系数b在二次项系数a确立的前提下,b决定了抛物线的对称轴.⑴在a0的前提下,当b0时,b0,即抛物线的对称轴在y轴左边;2a当b0时,b0,即抛物线的对称轴就是y轴;2a当b0时,b0,即抛物线对称轴在y轴的右边.2a文案大全⑵在a0的前提下,结论恰好与上述相反,即当b0时,b0,即抛物线的对称轴在y轴右边;2a当b0时,b0,即抛物线的对称轴就是y轴;2a当b0时,b0,即抛物线对称轴在y轴的左边.2a总结起来,在a确立的前提下,b决定了抛物线对称轴的地点.ab的符号的判断:对称轴xb0,在y轴左边则ab0,在y轴的右边则ab2a归纳的说就是“左同右异”总结:常数项c⑴当c0时,抛物线与y轴的交点在x轴上方,即抛物线与y轴交点的纵坐标为正;⑵当c0时,抛物线与y轴的交点为坐标原点,即抛物线与y轴交点的纵坐标为0;⑶当c0时,抛物线与y轴的交点在x轴下方,即抛物线与y轴交点的纵坐标为负.总结起来,c决定了抛物线与y轴交点的地点.总之,只需a,b,c都确立,那么这条抛物线就是独一确立的.二次函数分析式确实定:依据已知条件确立二次函数分析式,往常利用待定系数法.用待定系数法求二次函数的分析式一定依据题目的特色,选择适合的形式,才能使解题简易.一般来说,有以下几种状况:已知抛物线上三点的坐标,一般采用一般式;已知抛物线极点或对称轴或最大(小)值,一般采用极点式;已知抛物线与x轴的两个交点的横坐标,一般采用两根式;已知抛物线上纵坐标同样的两点,常采用极点式.八、二次函数图象的对称二次函数图象的对称一般有五种状况,能够用一般式或极点式表达对于x轴对称y ax2bx c对于x轴对称后,获得的分析式是y ax2bx c;y a x h 2yax h2 k对于x轴对称后,获得的分析式是k;对于y轴对称y ax2bx c对于y轴对称后,获得的分析式是y ax2bx c;y a x h 2y ax h2 k对于y轴对称后,获得的分析式是k;文案大全适用标准文档对于原点对称y ax2bx c对于原点对称后,获得的分析式是y ax2bx c;y ax h 2y a x h2k;k对于原点对称后,获得的分析式是4.对于极点对称(即:抛物线绕极点旋转180°)y ax2bx c对于极点对称后,获得的分析式是y ax2bx c b2;2ay ax h 2y a x h2k.k对于极点对称后,获得的分析式是5.对于点m,n对称y ax h 2y a x h22nk k对于点m,n对称后,获得的分析式是2m依据对称的性质,明显不论作何种对称变换,抛物线的形状必定不会发生变化,所以a永久不变.求抛物线的对称抛物线的表达式时,能够依照题意或方便运算的原则,选择适合的形式,习惯上是先确立原抛物线(或表达式已知的抛物线)的极点坐标及张口方向,再确定其对称抛物线的极点坐标及张口方向,而后再写出其对称抛物线的表达式.二次函数图像参照:y=2x 2y=3(x+4)2y=3x2y=3(x-2)2y=x2y=2x2y=2(x-4)2x2十y=2y=2(x-4)2-3一、y=2x2+2y=2x2y=2x2-4x2y=-2y=-x2y=-2(x+3)2y=-2x2y=-2(x-3)2y=-2x2文案大全适用标准文档【例题精讲】一、一元二次函数的图象的画法【例1】求作函数y1x24x6的图象1x221(x2【解】y4x68x12)22 1[(x24)2-4]1(x24)2-222以x4为中间值,取x的一些值,列表以下:x-7-6-5-4-3-2-1y 53-2352222【例2】求作函数y x24x3的图象。
二次函数一般式的图像和性质
一•选择题(共11小题)
1.
用配方法解一元二次方程 2x 2-4x+仁0,
变形正确的是( )
A. ( x -丄)I 。
B . (x -丄)
2
='
2 2 2
C. ( x - 1) 2=—
D. (x - 1) 2=0
2
2. 把抛物线y=x 2向上平移3个单位,再向 右平移1个单位,则平移后抛物线的解析式 为( ) A. y= (x+3) 2+1 B. y= (x+3) 2 - 1
2 2
C. y= (x - 1) +3
D. y= ( x+1) +3 3. 方程x 2
- 2x=0的根是( )
A.x 1=X 2=0
B.x 1=X 2=2
C.X 1=0,x 2=2
D.X 1=0, X 2 = — 2
.. 2
4. 如图,抛物线y=ax +bx+c 的对称轴是经过 点(1,0)且平行于y 轴的直线,若点P (4,
2 . _ .
y= - 2 (x - 3)
+1的图象的顶
点坐标是(
A. ( 3,1 )
B. (3, - 1)
C. (- 3,1 )
D. (- 3, - 1)
6. —元二次方程x 2-・x+仁0的根的情况 是( ) A.无实数根B .有两个实数根 C.有两个不相等的实数根
D .无法确定
7. 抛物线y= - 3( x - 1) 2 - 2的顶点坐标为 ( )
A. (- 1, - 2)
B. (1, - 2)
C. (- 1,2 ) D . (1 , - 2)
8. 将抛物线y=3x 2向上平移3个单
位,再向 左平移2个单位,那么得到的抛物线的解析 式为( )
2 2
A . y=3 (x+2) +3
B . y=3 (x - 2) +3
2 2
C. y=3 (x+2) - 3
D. y=3 (x - 2) - 3
9. 二次函数y=ax +bx+c 的图象如图所示, 对称轴是直线 x= - 1,有以下结论:①abc >0;②4ac v b 2;③2a+b=0;④a - b+c >2.其 中正确的结论的个数是(
)
A . 1 B. 2 C. 3 D. 4
10. 关于x 的一元二次方程kx +2x - 1=0有两 个不相等的实数根,则
k 的取值范围是
( )
A.k >- 1
B.k > 1
C.k 工 0
D. k >- 1 且k 工0 11. 一元二次方程 x 2+3x+2=0的两个根为
()
A.1, - 2
B. - 1 , - 2
C. - 1 , 2
D . 1 ,
2
二.填空题(共 9小题)
12 .如图,有一个抛物线型拱桥,其最大高 度为
C. 2
D. 4
5.二次函数
则4a - 2b+c 的值为(
16m跨度为40m现把它的示意图放
在平面直角坐标系中,则此抛物线的函数关系式为.
2
13. 已知关于x的方程(1 - m) x+4x+1=0
有两个不相等的实数根,则m的取值范围
是_______ .
14. 公园有一块正方形的空地,后来从这块
空地上划出部分区域栽种鲜花(如图) ,原
空地一边减少了1m,另一边减少了2m,剩余空地的面积为18m,求原正方形空地的边长.设原正方形的空地的边长xm则可列方程.
15. 抛物线y=x2向上平移5个单位,得到的
抛物线解析式为________ .
16. 如图,抛物线y=ax2+bx经过原点0,与x轴的另一个交点是A点,点B (- 1 , 4) 和点C ( 4, 4)是抛物线上的两个点,则点
____ 2
17 . 一元二次方程x +2x - 4=0的解是 .
18. 如图,在平面直角坐标系中,点A、B 的坐标分别为(-5, 0)、(- 2 , 0).点P 在抛物线y= - 2x2+4x+8上,设点P的横坐标
为m当O W me 3时,△ PAB的面积S的取值范围是.
19. 一元二次方程2x2+bx+1=0有两个相等的
实数根,则b= _______ .
2
20. 将抛物线y=2 (x - 1) +2向左平移3
个单位,再向下平移4个单位,那么得到的抛物线的表达式为_____________ .
三.解答题(共10小题)
21. 如图,隧道的截面由抛物线和长方形构
成,长方形的长为16m宽为6m,抛物线的最高点C离地面AA的距离为8m.
(1)按如图所示的直角坐标系,求表示该
抛物线的函数表达式.
(2 )一大型汽车装载某大型设备后,高为
7m,宽为4m,如果该隧道内设双向行车道,
那么这辆贷车能否安全通过?
22. 如图,是某市一座人行天桥的示意图,
天桥离地面的高BC是10米,坡面10米处有一建筑物HQ为了方便使行人推车过天桥,市政府部门决定降低坡度,使新坡面DC
的倾斜角/ BDC=30,若新坡面下D处与建筑物
之间需留下至少3米宽的人行道,问该建筑物是
否需要拆除(计算最后结果保留一位小数).(参考
数据:甘;1=1.414 ,
(2)如图,在(1)的条件下,若点N是y 轴上一
点,当△ ABN是直角三角形时,请求出点N的
坐标;
(3)△ ABC是否为等边三角形?若能,请直
23. 在体质监测时,初三某男生推铅球,铅球行
进高度ym与水平距离xm之间的关系是y= _
^^X2+X+2
12
(1 )铅球行进的最大高度是多少?
(2)该男生把铅球推出的水平距离是多
少?(精确到0.01米,.亍~ 3.873 )
26.如图,已知二次函数y=ax2+bx+c的图象顶
点在x轴上,且OA=1,与一次函数y= - x —1的
图象交于y轴上一点B和另一交点C.
(1)求抛物线的解析式;
(2 )点D为线段BC上一点,过点D作DE 丄
x轴,垂足为E,交抛物线于点F,请求出线段DF
的最大值.
24. 若规定两数a, b通过※”运算,得到
4ab,即玄※ b=4ab,例如2 探6=4 X 2 X 6=48 .求
乂※x+2※^ x—2探4=0中x的值.
25. 已知y关于x的二次函数y=x2+2mx-
3m2(0)的图象的顶点为A,与x轴交于点B, C,与
y轴交于点D.
(1 )当m=1时,点A的坐标为________ ,点
D的坐标为______ ;(请直接写出答案)
27 .某商场2014年销售计算机5000台,2016
年销售计算机7200台,求每年销售计算机
的平均增长率.
接写出m的值;若不能,请简要说明理由.
28.
如图,在平面直角坐标系中,点
A 是抛
物线y= - I X 2+4X 与x 轴正半轴的交点,点
2
B 在抛物线上,其横坐标为 2,直线AB 与y 轴交于点C.点M P 在线段A
C 上(不含端 点),点Q 在抛物线上,且 MC 平行于X 轴, PQ 平行于y 轴.设点P 横坐标为m.
(1) 求直线AB 所对应的函数表达式. (2) 用含m 的代数式表示线段 PQ 的长. (3) 以PQ QM 为邻边作矩形 PQMN 求矩形
2
30. 如图1,已知抛物线 y=x+2x - 3与X 轴 相交于A, B 两点,与y 轴交于点C, D 为顶 占 八、、♦
(1) 求直线AC 的解析式和顶点 D 的坐标; (2) 已知E ( 0,丄)点P 是直线AC 下方
2
的抛物线上一动点,作 PR! AC 于点R,当 PR 最大时,有一条长为 匸的线段MN (点M 在点N 的左侧)在直线 BE 上移动,首尾顺 次连接A M N 、P 构成四边形 AMNP 请求 出四边形AMNP 的周长最小时点 N 的坐标;
(3) 如图2,过点D 作DF// y 轴交直线AC 于点F ,连接AD Q 点是线段AD 上一动点, 将厶DFQ 沿直线FQ 折叠至△ DFQ 是否存在 点Q 使得△ DFQ 与厶AFQ 重叠部分的图形是 直角
三角形?若存在,请求出 AQ 的长;若
不存在,请说明理由.
29. 2013年,某市一楼盘以毎平方米
5000
元的均价对外销售•因为楼盘滞销,房地产 开发商为了加快资金的周转,
决定进行降价
促销,经过连续两年的下调后,2015年的均 价为每平方米4050元.
(1) 求平均每年下调的百分率;
(2) 假设2016年的均价仍然下调相同的百 分率,张强准备购买一套100平方米的住房, 他持有现金45万元,张强的愿望能否实现? (房价每平方米按照均价计算
)
欢迎您的
下载,
资料仅供
参考!
致力为企业和个人提供合同协议,策划案计划书,学习资料
等等
打造全网一站式需求。