高考数学圆锥曲线深度拓展 蒙日圆及其证明
- 格式:docx
- 大小:15.42 KB
- 文档页数:14
大招9 蒙日圆及其证明 大招总结定理1曲线2222:1x y a bΓ+=的两条互相垂直的切线的交点P 的轨迹是圆2222x y a b +=+.定理1的结论中的圆就是蒙日圆.证明当题设中的两条互相垂直的切线中有斜率不存在或斜率为0时,可得点P 的坐标是(,)a b ±,或(,)a b ±-.当题设中的两条互相垂直的切线中的斜率均存在且均不为0时,可设点P 的坐标是()(000,x y x ≠±a ,且)0y b ≠±,所以可设曲线Γ的过点P 的切线方程是()00(0)y y k x x k -=-≠. 由()2222001x y a b y y k x x ⎧+=⎪⎨⎪-=-⎩,得 ()()()222222222000020a kb x ka kx y x a kx y a b +--+--=由其判别式的值为0,得()()222222200000200xa k x y k yb x a --++=-≠因为,PA PB k k 是这个关于k 的一元二次方程的两个根,所以220220PA PBy b k k x a-⋅=- 由此,得2222001PA PB k k x y a b ⋅=-⇔+=+进而可得欲证成立.定理2(1)双曲线22221(0)x y a b a b -=>>的两条互相垂直的切线的交点的轨迹是圆2222x y a b +=-; (2)抛物线22y px =的两条互相垂直的切线的交点是该抛物线的准线.定理3过圆2222x y a b +=+上的动点P 作椭圆22221(0)x y a b a b+=>>的两条切线PA,PB,则.PA PB ⊥证明:设P 点坐标()00x y由()2222001x y a b y y k x x ⎧+=⎪⎨⎪-=-⎩得()()()222222222000020a k b x ka kx y x a kx y a b +--+--= 由其判别式的值为0, 得()()222222200000200x akx y k y b x a --+-=-≠因为,PA PB k k 是这个关于k 的一元二次方程的两个根,所以220220PA PBy b k k x a-⋅=- 22222200220,1,PA PBy b x y a b k k PA PB x a -+=+⋅==-⊥- 定理4设P 为蒙日圆2222:O x y a b +=+上任一点,过点P 作椭圆22221x y a b+=的两条切线,交椭圆于点A,B,O 为原点,则OP,AB 的斜率乘积为定值22OP AB b k k a⋅=-定理5设P 为蒙日圆2222:O x y a b +=+上任一点,过点P 作椭圆22221x y a b+=的两条切线,切点分别为A,B,O 为原点,则OA,PA 的斜率乘积为定值22OA PA b k k a ⋅=-,且OB,PB 的斜率乘积为定值OB k ⋅22(PB b k a=-垂径定理)定理6过圆2222x y a b +=+上的动点P 作椭圆22221(0)x y a b a b+=>>的两条切线,O 为原点,则PO 平分椭圆的切点弦AB.证明:P 点坐标()00,x y ,直线OP 斜率00OP y k x =由切点弦公式得到AB 方程200022201,AB x x y y b x k a b a y +==-22OP ABb k k a⋅=-,由点差法可知,OP 平分AB,如图M 是中点定理7设P 为蒙日圆2222:O x y a b +=+上任一点,过点P 作椭圆22221x y a b+=的两条切线,切点分别为A,B,延长PA,PB 交伴圆O 于两点C,D,则//CD AB . 证明:由性质2可知,M 为AB 中点.由蒙日圆性质可知,90APB ︒∠=,所以MA MB MP ==. 同理OP OC OD ==.因此有PAM APM CPO PCO ∠=∠=∠=∠, 所以//AB CD .典型例题(例1.)(2020春-安徽月考)已知点P 为直线40ax y +-=上一点,PA,PB 是椭圆222:1(1)x C y a a+=>的两条切线,若恰好存在一点P 使得PA PB ⊥,则椭圆C 的离心率为 解方法1:设(,)P m n ,过点P 的切线方程为()y n k x m -=-,联立222()1y n k x m x y a-=-⎧⎪⎨+=⎪⎩,得()22222212()()10k a x ka n km x a n km ⎡⎤++-+--=⎣⎦, 直线与椭圆相切,()24222224()41()10k a n km a k a n km ⎡⎤∆=--+--=⎣⎦,整理得()2222210am k mnk n -++-=,若切线PA,PB 的斜率均存在,分别设为12,k k ,212221,1n PA PB k k a m-⊥∴⋅==--,即2221m n a +=+, ∴点P 在以(0,0)为圆心,即(0,0)到直线40ax y +-=d ∴==,解得a =1,a a >∴=若切线PA,PB 分别与两坐标轴垂直,则(,1)P a 或(,1)a -或(,1)a -或(,1)a --, 存在点(,1)P a ,将其代入直线40ax y +-=中,解得a =综上所述,a =又1,b c =∴==∴离心率3c e a ===. 故答案为. 方法2:在方法1中,实际上证明了一遍蒙日圆,如果知道结论,可得P 的轨迹2221x y a +=+,且此圆与40ax y +-=相忉.其中(0,0)到直线40ax y +-=的距离d =d ∴==,解得a =1,a a >∴=又1,b c =∴==∴离心率3c e a ===.故答案为. (例2.)(2020春-安徽月考)已知两动点A,B 在椭圆222:1(1)x C y a a+=>上,动点P 在直线3410x y +-0=上,若APB ∠恒为锐角,则椭圆C 的离心率的取值范围为解由结论可知:椭圆2221x y a+=的两条互相垂直的切线的交点的轨迹是冡日圆2221x y a +=+,若APB ∠恒为锐角,则直线34100x y +-=与圆2221x y a +=+相离,>,又1,1a a >∴<<,.c e a ⎛∴=== ⎝⎭故答案为:⎛ ⎝⎭.例3.已知22:1O x y +=.若直线2y kx =+上总存在点P ,使得过点P 的O 的两条切线互相垂直,则实数k 的取值范围是解(,1][1,-∞-⋃+∞).在下图中,若小圆(其圆心为点O ,半径为r )的过点A 的两条切线AB,AD 互相垂直(切点分别为E,F ),得正方形AEOF,所以|||OA OE ==,即点A 的轨迹是以点O 为圆心为半径的圆.由此结论可得:在本题中,点P 在圆222x y +=上.所认本题的题意即直线2y kx =+与圆222x y +=有公共点,进而可得答案.例4.已知椭圆2222:1(0)x y C a b a b+=>>的一个焦点为0),(1)求椭圆C 的标准方程;(2)若动点()00,P x y 为椭圆C 外一点,且点P 到椭圆C 的两条切线相互垂直,求点P 的轨迹方程.解(1)依题意有3,2c a b ===故所求椭圆C 的标准方程为22194x y +=. (2)当两条切线的斜率存在时,设过()00,P x y 点的切线为()00y y k x x -=-. 联立()0022194y y k x x x y ⎧-=-⎪⎨+=⎪⎩消去y 得()()222004918360k xk y kx ++--=判别式()()()222222000018364940x k y kx k y kx ⎡⎤∆=+--+--=⎣⎦,化简得()2200940y kx k ---=,即()2220000924x k x y k y --+-.依题意得201220419y k k x -⋅==--,即220013x y +=(可由222200x y a b +=+直接可得答案) (例5.已知椭圆2222:1(0)x y C a b a b+=>>的一个焦点为0),点P 为圆22:13M x y +=上任意一点,O 为坐标原点. (I )求椭圆C 的标准方程;(II )记线段OP 与椭圆交点为Q ,求|PQ|的取值范围;(III )设直线l 经过点P 且与椭圆C 相切,l 与圆M 相交于另一点A ,点A 关于原点O 的对称点为B ,试判断直线PB 与椭圆C 的位置关系,并证明你的结论.解(I)由题意可知:c c e a ===,则2223,4a b a c ==-=,∴椭圆的标准方程:22194x y +=; (III )由题意可知:||||||||PQ OP OQ OQ =-=,设()221111,,194x y Q x y +=, ||OQ ∴===由1[3,3]x ∈-,当10x =时,min ||2OQ =,当13x =±时,max ||3OQ =,||PQ ∴的取值范围2]; (III )证明:由题意,点B 在圆M 上,且线段AB 为圆M 的直径,所以PA PB ⊥.分3种情况讨论,(1)当直线PA x ⊥轴时,易得直线PA 的方程为3x =±,由题意,得直线PB 的方程为2y =±, 显然直线PB 与椭圆C 相切.(2)同理当直线//PA x 轴时,直线PB 也与椭圆C 相切. (3)当直线PA 与x 轴既不平行也不垂直时,设点()00,P x y ,直线PA 的斜率为k ,则0k ≠,直线PB 的斜率1k-, 所以直线()00:PA y y k x x -=-,直线()001:PB y y x x k-=--, 由()0022194y y k x x x y ⎧-=-⎪⎨+=⎪⎩,消去y ,得()()()220000941892360.k x y kx kx y kx ++-+--=因为直线PA 与椭圆C 相切,所以()()()22210000184949360y kx k k y kx ⎡⎤⎡⎤∆=--+--=⎣⎦⎣⎦, 整理,得()222100001449240x k x y k y ⎡⎤∆=---+-=⎣⎦ 同理,由直线PB 与椭圆C 的方程联立,得()2220000211144924x x y y k k ⎡⎤∆=--++-⎢⎥⎣⎦.(2)因为点P 为圆22:13M x y +=上任意一点,所以220013x y +=,即220013y x =-.代入(1)式,得()()22200009290x k x y k x --+-=, 代入(2)式,得()()()2222200000002214414492492(9x x y k y k x x y k k k⎡⎤⎡∆=--++-=--++-⎣⎦⎣)220x k ⎤⎦, ()()222000021449290x k x y k x k⎡⎤=--+-=⎣⎦. 所以此时直线PB 与椭圆C 相切. 综上,直线PB 与椭圆C 相切. 例6.(2021-安徽模拟)已知圆22:5O x y +=,椭圆2222:1(0)x y a b aΓ+=>>的左,右焦点为12,F F ,过1F 且垂直于x 轴的直线被椭圆和圆所截得弦长分别为1和.(I )求椭圆的标准方程;(II )如图P 为圆上任意一点,过P 分别作椭圆两条切线切椭圆于A,B 两点. (i )若直线PA 的斜率为2,求直线PB 的斜率;(ii )作PQ AB ⊥于点Q ,求证:12QF QF +是定值.解(I)由题意可得2,21b a ⎧=⎪⎨=⎪⎩解得2,1,a b c ===所以椭圆的方程为2214x y +=.(II )(I )设()00,P x y ,切线()00y y k x x -=-,则22005x y +=, 由()220014x y y y k x x ⎧+=⎪⎨⎪-=-⎩,化简得()()()2220000148440,k x k y kx x y kx ++-+--=,由0∆=得()2220004210x kx y k y -++-=,设切线PA,PB 的斜率分别为12,k k ,则()2200122200111445y y k k x y --===----, 又直线PA 的斜率为2,则直线PB 的斜率为12-. (II )当切线PA,PB 的斜率都存在时,设()()1122,,,A x y B x y ,切线PA,PB 的方程为(),1,2i i i y y k x x i -=-=, 由(1)得()2224210,1,2,(*)i i i i i x k x y k y i -++-==又A,B 点在椭圆上得,221,1,2,(*)4i i x y i +== 得2202i i i x y k ⎛⎫+= ⎪⎝⎭,即,1,24i i i x k i y =-=,氻线PA,PB 的方程为1,1,24i i x xy y i +==,又过,点P ,则001,1,24i i x xy y i +==,所直线AB 的方程为0014x xy y +=,(可直接代㔹点弦方程)由PQ AB ⊥的直线PQ 的方程为()00004y y y x x x -=-,联立直线AB 方程为0014x xy y +=,解得()()22000000222200004131341,165165Q Q x y y y x x y y x y x y ++====++, 由22005x y +=得,点Q 轨迹方程为2255116x y +=,且焦,点恰为12,F F ,故122QF QF +==,当切线PA,PB 的斜率有一个不存在时,易得12QF QF +=.综上,125QF QF +=. 自我检测1.(2021-全国二模)已知双曲线2221(1)4x y a a -=>上存在一点M ,过点M 向圆221x y +=做两条切线MA,MB,若0MA MB ⋅=,则实数a 的取值范围是()A.B.C.)+∞D.)+∞ 答案:方法1:双曲线2221(1)4x y a a -=>上存在一点M ,过点M 向圆221x y +=做两条切线MA 、MB,若MA0MB =,可知MAOB 是正方形,MO =,所以a ∈.故选B.方法2:过点M 向圆221x y +=做两条切线MA 、MB,若0,MA MB M ⋅=点轨迹即为蒙日圆222x y +=,且此圆与双曲线2221(1)4x y a a -=>有公共点M ,所以a ∈.故选B2.给定椭圆2222:1(0)x y C a b a b+=>>,称圆心在原点O ,C 的“准圆”.已知椭圆C 的一个焦点为F ,其短轴的一个端点到点F (I )求椭圆C 及其“准圆”的方程(II )若点A 是椭圆C 的“准圆”与x 轴正半轴的交点,B,D 是椭圆C 上的相异两点,且BD x ⊥轴,求AB AD ⋅的取值范围;(III)在椭圆C 的“准圆”上任取一点(,)P s t ,过点P 作两条直线12,l l ,使得12,l l 与椭圆C 都只有一个公共点,且12,l l 分别与椭圆的“准圆”交于M,N 两点.证明:直线MN 过原点O .答案:(I )解:由题意知c a ==,解得1b =,∴椭圆C 的方程为2213x y +=,其“准圆”为224x y +=.(II )解:由题意,设((,),(,),B m n D m n m -<<则有2213m n +=, 又A 点坐标为(2,0),故(2,),(2,)AB m n AD m n =-=--,2222(2)4413m AB AD m n m m ⎛⎫∴⋅=--=-+-- ⎪⎝⎭2244343332m m m ⎛⎫=-+=- ⎪⎝⎭,又243[0,732m m ⎛⎫<<∴-∈+ ⎪⎝⎭.AB AD ∴⋅的取值范围是[0,7+. (III )设(,)P s t ,则224s t +=,当s =,1t =±,则12,l l 其中之一斜率不存在,另一条斜率为0,12l l ∴⊥.当t ≠,设过(,)P s t 且与有一个公共点的直线l 的斜率为k , 则l 的方程为()y t k x s -=-,代人椭圆C 的方程,得:223[()]3x k x s t +-+=,即()222316()3()30k x k t ks x t kt +--+--=,由()222236()4313()30k t ks k t kt ⎡⎤∆=--+--=⎣⎦,得()2223230tkstk t -++-=,其中230t -≠,设12,l l 的斜率分别为12,k k ,则12,k k 分别是上述方程的两个根,12121,k k l l ∴=-∴⊥.综上所述,12l l ⊥,MN ∴是准圆的直径,∴直线MN 过原点O .3.已知A 是圆224x y +=上的一个动点,过点A 作两条直线12,l l ,它们与椭圆2213x y +=都只有一个公共点,且分别交圆于点M,N(1)若(2,0)A -,求直线12,l l 的方程;(2)(1)求证:对于圆上的任意点A ,都有12l l ⊥成立; (2)求AMN 面积的取值范围.答案:(1)解:设直线的方程为(2)y k x =+,代人椭圆2213x y +=,消去y ,可得()222213121230k x k x k +++-=由0∆=,可得210k -=设12,l l 的斜率分别为1212,,1,1k k k k ∴=-= ∴直线12,l l 的方程分别为2,2y x y x =--=+;(2)(1)证明:当直线12,l l 的斜率有一条不存在时,不妨设1l 无斜率1l 与椭圆只有一个公共点,所以其方程为x =当1l的方程为x =,此时1l与圆的交点坐标为1±),所以2l 的方程为1y =(或)121,y l l =-⊥成立,同理可证,当1l的方程为x =,结论成立;当直线12,l l 的斜率都存在时,设点(,)A m n ,且224m n += 设方程为()y k x m n =-+,代人椭圆方程,可得()22136()3()230k xk n km x n km ++-+--=由0∆=化简整理得()2223210mkmnk n -++-=224m n +=()2223230m k mnk m ∴-++-=设12,l l 的斜率分别为121212,,1,k k k k l l ∴=-∴⊥成立 综上,对于圆上的任意点A ,都有12l l ⊥成立; (2)记原点到直线12,l l 的距离分别为12,d d ,22124,d d AMN +=∴面积()()2222222121114444216S d d d d d ==-=--+221[1,3],[12,16]d S ∈∴∈4]S ∴∈.4.过P 点作椭圆两条切线,若椭圆的两条切线互相垂直,设圆心到切点弦的距离为1,d P 到切点弦的距离为2d 证明12d d 之积为常数.答案:证明:如图所示,设椭圆方程为22221(0)x y a b a b+=>>,那么在椭圆上A,B 两处切线的交点P 在圆2222(\neq )a x y a b x +=+,现设)Pθθ,那么AB 的直线方程为220xb ya a b θθ+-=.原点到切点弦AB 的距离221d =切线交点P 到切点弦AB 的距离是42422d==所以221222a b d d a b=+(常数).5.(2021贵州模拟)已知椭圆22:1,2x C y M +=是圆223x y +=上的任意一点,MA,MB 分别与椭圆切于A,B.求AOB 面积的取值范围.答案:设()()()001122,,,,,M x y A x y B x y ,得1212:1,:122x x x x MA y y MB y y +=+=,且2203x y += 由()()()001122,,,,,M x y A x y B x y ,得010201021,122x x x x y y y y +=+=,从而00:12x xAB y y +=将直线AB 的方程与椭圆C 的方程联立,得 ()22200034440y x x x y +--+=. 所以,20012122200444,33x y x x x x y y -+==++, 因此,)202013y AB y +=+.又原点O 到直线AB的距离d ==所以01||22OABS AB d =⋅=令[1,2]t =,得到21222,2332OABt St t t⎡==⋅∈⎢+⎣⎦+6.(2021河北模拟)设椭圆22154x y +=的两条互相垂直的切线的交点轨迹为C ,曲线C 的两条切线PA,PB 交于点P ,且与C 分别切于A,B 两点,求PA PB ⋅的最小值.答案:设两切线为12,l l(1)当1l x ⊥轴或1//l x 轴时,对应2//l x 轴或2l x ⊥轴,可知(2)P ±; (2)当1l 与x 轴不垂直且不平行时,x ≠设1l 的斜率为k ,则20,k l ≠的斜率为11,l k-的方程为y -()00y k x x =-,联立22154x y +=, 得()()()222000054105200k x y kx kx y k ++-+--=,因为直线与椭圆相切,所以0∆=,得()()()2222000055440y kx k k y kx ⎡⎤--+--=⎣⎦,()220020440k y kx ⎡⎤∴-+--=⎣⎦,()22200005240x k x y k y ∴--+-=,所以k 是方程()22200005240x k x y k y --+-=的一个根, 同理1k-是方程()22200005240x k x y k y --+-=的另一个根, 2020415y k k x -⎛⎫∴⋅-= ⎪-⎝⎭得22009x y +=,其中x ≠所以点P的轨迹方程为229(x y x +=≠, 因为(3,2)P ±±满足上式,综上知:点P 的轨迹方程为229x y +=.设,PM PB x APB θ==∠=,则在AOB 与APB 中应用余弦定理知,2222cos AB OA OB OA OB AOB =+-⋅⋅∠ 222cos PA PB PA PB APB =+-⋅⋅∠,即()3322\38cdo 3233cos 102c s t o x x x x θθ︒+-⋅⋅-=+-⋅,即 29(1cos )1cos x θθ+=-||||cos cos PA PB PA PB APB x x θ⋅=⋅∠=⋅9(1cos )cos 1cos θθθ+=-令1cos (0,2]t θ=-∈,则cos 1t θ=-. ()29329(2)(1)293t t t t PA PB t t t t -+--⎛⎫⋅===⋅+ ⎪-⎝⎭9233)t ⎛⎫⋅⋅=⎪ ⎪⎝⎭且仅当2t t=,即t =时,PA PB ⋅取得最小3).7.(衡水中学模拟)如图,在平面直角坐标系xOy,设点()00,M x y 是椭圆22:12412x y C +=上一点,从原点O 向圆()()22008M x x y y -+-=作两条切线分别与椭圆C 交于点P,Q .(1)若M 点在第一象限,且直线OP,OQ 互相垂直,求圆M 的方程; (2)若直线OP,OQ 的斜率存在,分别记为12,k k .求12k k ⋅的值;(3)试问22||||OP OQ +是否为定值?若是求出该定值;若不是,说明理由.答案:(1)由圆M的方程知圆M的半径r=因为直线OP,OQ互相垂直,且和圆M相切,所以||4OM==,即220016x y+=又点R在椭圆C上,所以2212412x y+=联立(1)(2),解得0xy⎧=⎪⎨=⎪⎩,所以,所求圆M的方程为22((8x y-+-=.(2)因为直线1:OP y k x=和2:OQ y k x=都与圆R相切,(3)==化简得212288yk kx-⋅=-,因为点()00,R x y在椭圆C上,所以2212412x y+=,即22001122y x=-,所以2122141282xk kx-⋅==--(3)(1)当直线OP,OQ不落在坐标轴上时,设()()1122,,,P x y Q x y,由(2)知12210k k+=,所以121221y yx x=,故2222121214y y x x=,因为()()1122,,,P x y Q x y,在椭圆C上,所以222211221,124122412x y x y+=+=即222211221112,1222y x y x=-=-,所以222212121111212224x x x x⎛⎫⎛⎫--=⎪⎪⎝⎭⎝⎭;整理得221224x x+=,所以222212121112121222y y x x⎛⎫⎛⎫+=-+-=⎪ ⎪⎝⎭⎝⎭,所以2222221122241236OP OQ x y x y+=+++=+=.(2)当直线OP,OQ 落在坐标轴上时,显然有2236OP OQ +=.综上:2236OP OQ +=结论:设点()00,M x y 是椭圆2222:1(0)x y C a b a b+=>>上任意一点,从原点O 向圆()20:(M x x y -+-)222022a b y a b=+作两条切线分别与椭圆C 交于点P 、Q,直线OP,OQ 的斜率分别记为12,k k .8.(2021年甘肃省张掖市肃南一中高考数学模拟)已知椭圆22122:1(0)y x C a b a b+=>>的离心率e =且经过点⎛ ⎝⎭,抛物线22:2(0)C x py p =>的焦点F 与椭圆1C 的一个焦点重合. (I )过F 的直线与抛物线2C 交于M,N 两点,过M,N 分别作抛物线2C 的切线12,l l ,求直线12,l l 的交点Q 的轨迹方程;(II)从圆22:5O x y +=上任意一点P 作椭圆1C 的两条切线,切点为A,B,证明:AOB ∠为定值,并求出这个定值.答案:(I )设椭圆的半焦距为c ,则c a =,即a =,则b =,椭圆方程为2222132y x c c +=,将点⎛ ⎝⎭的坐标代人得21c =,故所求的椭圆方程为22132y x +=焦点坐标(0,1)± 故抛物线方程为24x y =.设直线()()1122:1,,,MN y kx M x y N x y =+, 代人抛物线方程得2440x kx --=, 则12124,4x x k x x +==-,由于214y x =,所以12y x '=, 故直线1l 的斜率为111,2x l 的方程为 ()22111111111, ?´ 2224y x x x x y x x x -=-=-同理2l 的方程为2221124y x x x =-,令22112211112424x x x x x x -=-,即 ()()()12121212x x x x x x x -=-+,显然12x x ≠,()1212x x x =+,即点Q 的横坐标是()1212x x +,点Q 的纵坐标是()221111*********124244y x x x x x x x x x =-=+-==-即点(2,1)Q k -,故点Q 的轨迹方程是1y =-.(阿基米德三角形)(II )证明:(1)当两切线的之一的斜率不存在时,根据对称性,设点P 在第一象限,则此时P ,代人圆的方程得P此时两条切线方程分别为x y ==此时2APB π∠=若APB ∠的大小为定值,则这个定值只能是2π. (2)当两条切线的斜率都存在时,即x ≠, 设()00,P x y ,切线的斜率为k , 则切线方程为()00y y k x x -=-, 与椭圆方程联立消元得()()()2220000324260k xk y kx kx y ++-+--=.由于直线()00y y k x x -=-是椭圆的切线,故()()()222200016432260ky kx k kx y ⎡⎤∆=--+--=⎣⎦,整理得()22200002230x k x y k y -++-=.切线PA,PB 的斜率12,k k 是上述方程的两个实根,故2012232y k k x -=--, 点P 在圆225x y +=上,故220032y x -=-,所以121k k =-,所以2APB π∠=综上可知:APB ∠的大小为定值2π,得证.。
蒙日圆及其证明高考题 (2014年高考广东卷文科、理科第20题)已知椭圆2222:1(0)x y C a b a b+=>>的一个焦点为,离心率为3.(1)求椭圆C 的标准方程;(2)若动点00(,)P x y 为椭圆C 外一点,且点P 到椭圆C 的两条切线相互垂直,求点P 的轨迹方程.答案:(1)22194x y +=;(2)2213x y +=.这道高考题的背景就是蒙日圆.普通高中课程标准实验教科书《数学2·必修·A 版》(人民教育出版社,2007年第3版,2014年第8次印刷)第22页对画法几何的创始人蒙日(G.Monge ,1745-1818)作了介绍.以上高考题第(2)问的一般情形是定理 1 曲线1:2222=+Γb y a x 的两条互相垂直的切线的交点P 的轨迹是圆2222b a y x +=+.定理1的结论中的圆就是蒙日圆.先给出定理1的两种解析几何证法:定理1的证法1 当题设中的两条互相垂直的切线中有斜率不存在或斜率为0时,可得点P 的坐标是),(b a ±,或),(b a -±.当题设中的两条互相垂直的切线中的斜率均存在且均不为0时,可设点P 的坐标是,)(,(000a x y x ±≠且)0b y ±≠,所以可设曲线Γ的过点P 的切线方程是)0)((00≠-=-k x x k y y .由⎪⎩⎪⎨⎧-=-=+)(1002222x x k y y b y a x ,得 0)()(2)(2220020022222=--+--+b a y kx a x y kx ka x b k a由其判别式的值为0,得)0(02)(22022*******≠-=++--a x b y k y x k a x因为PB PA k k ,是这个关于k 的一元二次方程的两个根,所以220220ax b y k k PBPA -+=⋅由此,得2220201b a y x k k PB PA +=+⇔-=⋅进而可得欲证成立.定理1的证法2 当题设中的两条互相垂直的切线中有斜率不存在或斜率为0时,可得点P 的坐标是),(b a ±,或),(b a -±.当题设中的两条互相垂直的切线中的斜率均存在且均不为0时,可设点P 的坐标是,)(,(000a x y x ±≠且)0b y ±≠,所以可设两个切点分别是)0)(,(),,(21212211≠y y x x y x B y x A .得直线1:2020=+b y y a x x AB ,切线1:,1:22222121=+=+byy a x x PB b y y a x x PA .所以:2121221121421422221212,x x y y x y x y k k y y a x x b y a x b y a x b k k OB OA PBPA =⋅==⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-= PBPA OBOA k k a b k k 44= 因为点)2,1)(,(=i y x i i 既在曲线1:2222=+Γb y a x 上又在直线1:2020=+by y a x x AB 上,所以220202222⎪⎭⎫ ⎝⎛+=+b y y a x x b y a x i i 0)(2)(2204002222204=-+⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛-a x b x y y x b a xy b y a iiii所以 PBPA OBOA k k a b b y a a x b x x y y k k 44220422042121)()(=--==220220ax b y k k PBPA --= 由此,可得222020b a y x PB PA +=+⇔⊥进而可得欲证成立.再给出该定理的两种平面几何证法,但须先给出四个引理.引理1 (椭圆的光学性质,见普通高中课程标准实验教科书《数学·选修2-1·A 版》(人民教育出版社,2007年第2版,2014年第1次印刷)第76页)从椭圆的一个焦点发出的光线,经过椭圆反射后,反射光线交于椭圆的另一个焦点上(如图1所示).图1证明 如图2所示,设P 为椭圆Γ(其左、右焦点分别是21,F F )上任意给定的点,过点P 作21PF F ∠的外角平分线所在的直线)43(∠=∠l .先证明l 和Γ相切于点P ,只要证明l上异于P 的点P '都在椭圆Γ的外部,即证2121PF PF F P F P +>'+':图2在直线1PF 上选取点F ',使2PF F P =',得F P P ''∆≌2PF P '∆,所以2F P F P '='',还得2111121PF PF F P P F F F F P F P F P F P +='+='>''+'='+'再过点P 作21PF F ∠的平分线(12)PA ∠=∠,易得l PA ⊥,入射角等于反射角,这就证得了引理1成立.引理2 过椭圆Γ(其中心是点O ,长半轴长是a )的任一焦点F 作椭圆Γ的任意切线l 的垂线,设垂足是H ,则a OH =.证明 如图3所示,设点F F ,'分别是椭圆Γ的左、右焦点,A 是椭圆Γ的切线l 上的切点,又设直线A F FH ',交于点B .图3由引理1,得B A H F lA FAH ∠='∠=∠(即反射角与入射角的余角相等),进而可得FAH ∆≌BAH ∆,所以点H 是FB 的中点,得OH 是F BF '∆的中位线.又AB AF =,所以a AF A F AB A F OH =+'=+'=)(21)(21.引理3 平行四边形各边的平方和等于其两条对角线的平方和. 证明 由余弦定理可证(这里略去过程).引理4 设点P 是矩形ABCD 所在平面上一点,则2222PD PB PC PA +=+.证明 如图4所示,设矩形ABCD 的中心是点O .图4由引理3,可得22222222)(2)(2PD PB OP OB OP OA PC PA +=+=+=+即欲证成立.注 把引理4推广到空间,得到的结论就是:底面是矩形的四棱锥相对侧棱长的平方和相等.定理1的证法3 可不妨设0,0>>b a .当b a =时,易证成立.下面只证明b a >的情形.如图5所示.设椭圆的中心是点O ,左、右焦点分别是21,F F ,焦距是c 2,过动点P 的两条切线分别是PN PM ,.图5连结OP ,作PN OH PM OG ⊥⊥,,垂足分别是H G ,.过点1F 作PM D F ⊥1,垂足为D ,由引理2得a OD =.再作OG K F ⊥1于K .记θ=∠K OF 1,得θcos 1c K F DG ==. 由Rt ODG ∆,得θ222222cos c a DG OD OG -=-=.又作OH L F PN E F ⊥⊥22,,垂足分别为L E ,.在Rt OEH ∆中,同理可得θ222222sin c a HE OE OH -=-=.(1)若PN PM ⊥,得矩形OGPH ,所以22222222222)sin ()cos (b a c a c a OH OG OP +=-+-=+=θθ(2)若222b a OP +=,得222222222)sin ()cos (OH OG c a c a OP +=-+-=θθ由PM OG ⊥,得222GP OG OP +=,所以OH GP =.同理,有HP OG =,所以四边形OGPH 是平行四边形,进而得四边形OGPH 是矩形,所以PN PM ⊥.由(1),(2)得点P 的轨迹方程是2222b a y x +=+.定理1的证法4 可不妨设0,0>>b a .当b a =时,易证成立.下面只证明b a >的情形. 如图6所示.设椭圆的中心是点O ,左、右焦点分别是21,F F ,焦距是c 2,过动点P 的两条切线分别是PB PA ,,两切点分别为B A ,.分别作右焦点2F 关于切线PB PA ,的对称点N M ,,由椭圆的光学性质可得三点M A F ,,1共线(用反射角与入射角的余角相等).同理,可得三点N B F ,,1共线.图6由椭圆的定义,得a BF BF NF a AF AF MF 2,2211211=+==+=,所以11NF MF =.由O 是21F F 的中点,及平行四边形各边的平方和等于其两条对角线的平方和,可得)(2)(2222222221221OP c OP OF PF PF PM PF +=+=+=+ (1)若PB PA ⊥,得︒=∠+∠=∠+∠180)(22211BPF APF NPF MPF ,即三点N P M ,,共线.又PN PF PM ==2,所以MN PF ⊥1,进而得)(2422221212OP c PM PF MF a +=+==222b a OP +=(2)若222b a OP +=,得212222222214)(2)(2MF a b a c OP c PM PF ==++=+=+所以PM PF ⊥1.同理,可得PN PF ⊥1.所以三点N P M ,,共线. 得︒=∠+∠=∠+∠=∠90)(212222NPF MPF BPF APF APB ,即PB PA ⊥. 由(1),(2)得点P 的轨迹方程是2222b a y x +=+.定理1的证法5 (该证法只能证得纯粹性)可不妨设0,0>>b a .当b a =时,易证成立.下面只证明b a >的情形.如图7所示,设椭圆的中心是点O ,左、右焦点分别是21,F F ,焦距是c 2,过动点P 的两条切线分别是PB PA ,,切点分别是B A ,.设点1F 关于直线PB PA ,的对称点分别为''21,F F ,直线'11F F 与切线PA 交于点G ,直线'21F F 与切线PB 交于点H .图7得1211,BF BF AF AF ='=',再由椭圆的定义,得a F F F F 22221='=',所以a OH OG ==. 因为四边形H PGF 1为矩形,所以由引理4得2222212a OH OG OP OF =+=+,所以222b a OP +=,得点P 的轨迹方程是2222b a y x +=+.读者还可用解析几何的方法证得以下结论:定理 2 (1)双曲线)0(12222>>=-b a b y a x 的两条互相垂直的切线的交点的轨迹是圆2222b a y x -=+;(2)抛物线px y 22=的两条互相垂直的切线的交点是该抛物线的准线.定理 3 (1)椭圆)0(12222>>=+b a by a x 的两条斜率之积是22a b -的切线交点的轨迹方程是22222=+by a x ;(2)双曲线)0,0(12222>>=-b a by a x 的两条斜率之积是22a b 的切线交点的轨迹方程是22222=-b y a x . 定理4 过椭圆)0(22222>>=+b a b y a x 上任一点),(00y x P 作椭圆12222=+by a x 的两条切线,则(1)当a x ±=0时,所作的两条切线互相垂直;(2)当a x ±≠0时,所作的两条切线斜率之积是22ab -.定理5 (1)椭圆)0(12222>>=+b a by a x 的两条斜率之积是)0(≠λλ的切线交点的轨迹Γ是:①当1-=λ时,Γ即圆2222b a y x +=+(但要去掉四个点),(),,(b a b a -±±);②当0<λ且1-≠λ时,Γ即椭圆1222222=-+-ab y b a x λλ(但要去掉四个点),(),,(b a b a -±±);③当22a b -=λ时,Γ即两条直线x aby ±=在椭圆)0(12222>>=+b a b y a x 外的部分(但要去掉四个点),(),,(b a b a -±±);④当220a b <<λ时,Γ即双曲线1222222=---a b x a b y λλ在椭圆)0(12222>>=+b a b y a x 外的部分(但要去掉四个点),(),,(b a b a -±±);⑤当22ab >λ时,Γ即双曲线1222222=---b a y b a x λλ在椭圆)0(12222>>=+b a by a x 外的部分(但要去掉四个点),(),,(b a b a -±±).(2)双曲线)0(12222>>=-b a by a x 的两条斜率之积是)0(≠λλ的切线交点的轨迹Γ是:①当1-=λ时,Γ即圆2222b a y x -=+; ②当0>λ时,Γ即双曲线1222222=+-+b a y b a x λλ; ③当1-<λ或221ab -<<-λ时,Γ即椭圆1222222=--++ba yb a x λλ; ④当022<<-λab 时,Γ不存在.(3)抛物线px y 22=的两条斜率之积是)0(≠λλ的切线交点的轨迹Γ是:①当0<λ时,Γ即直线λ2p x =; ②当0>λ时,Γ的方程为⎪⎭⎫⎝⎛>=λλp y p x 2. 例 (北京市海淀区2015届高三第一学期期末文科数学练习第14题)已知22:1O x y +=. 若直线2y kx =+上总存在点P ,使得过点P 的O 的两条切线互相垂直,则实数k 的取值范围是_________. 解 (,1][1,)-∞-+∞.在图8中,若小圆(其圆心为点O ,半径为r )的过点A 的两条切线AD AB ,互相垂直(切点分别为F E ,),得正方形AEOF ,所以r OE OA 22==,即点A 的轨迹是以点O 为圆心,r 2为半径的圆.图8由此结论可得:在本题中,点P 在圆222x y +=上.所以本题的题意即直线2y kx =+与圆222x y +=有公共点,进而可得答案.注 本题的一般情形就是蒙日圆.。
蒙日圆及其证明高考题 (2014年高考广东卷文科、理科第20题)已知椭圆2222:1(0)x y C a b a b+=>>的一个焦点为,离心率为3. (1)求椭圆C 的标准方程;(2)若动点00(,)P x y 为椭圆C 外一点,且点P 到椭圆C 的两条切线相互垂直,求点P 的轨迹方程.答案:(1)22194x y +=;(2)2213x y +=.定理 1 曲线1:2222=+Γb y a x 的两条互相垂直的切线的交点P 的轨迹是圆2222b a y x +=+.定理1的结论中的圆就是蒙日圆. 先给出定理1的两种解析几何证法:定理1的证法1 当题设中的两条互相垂直的切线中有斜率不存在或斜率为0时,可得点P 的坐标是),(b a ±,或),(b a -±.当题设中的两条互相垂直的切线中的斜率均存在且均不为0时,可设点P 的坐标是,)(,(000a x y x ±≠且)0b y ±≠,所以可设曲线Γ的过点P 的切线方程是)0)((00≠-=-k x x k y y .由⎪⎩⎪⎨⎧-=-=+)(1002222x x k y y b y a x ,得 0)()(2)(2220020022222=--+--+b a y kx a x y kx ka x b k a由其判别式的值为0,得)0(02)(22022*******≠-=++--a x b y k y x k a x因为PB PA k k ,是这个关于k 的一元二次方程的两个根,所以220220a x b y k k PBPA -+=⋅ 由此,得2220201b a y x k k PB PA +=+⇔-=⋅进而可得欲证成立.定理1的证法2 当题设中的两条互相垂直的切线中有斜率不存在或斜率为0时,可得点P 的坐标是),(b a ±,或),(b a -±.当题设中的两条互相垂直的切线中的斜率均存在且均不为0时,可设点P 的坐标是,)(,(000a x y x ±≠且)0b y ±≠,所以可设两个切点分别是)0)(,(),,(21212211≠y y x x y x B y x A .得直线1:2020=+b y y a x x AB ,切线1:,1:22222121=+=+byy a x x PB b y y a x x PA .所以: 2121221121421422221212,x x y y x y x y k k y y a x x b y a x b y a x b k k OB OA PBPA =⋅==⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-= PBPA OBOA k k a b k k 44= 因为点)2,1)(,(=i y x i i 既在曲线1:2222=+Γb y a x 上又在直线1:2020=+by y a x x AB 上,所以220202222⎪⎭⎫ ⎝⎛+=+b y y a x x b y a x i i 0)(2)(2204002222204=-+⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛-a x b x y y x b a xy b y a iiii 所以 PBPA OBOA k k a b b y a a x b x x y y k k 44220422042121)()(=--==220220ax b y k k PBPA --= 由此,可得222020b a y x PB PA +=+⇔⊥进而可得欲证成立.再给出该定理的两种平面几何证法,但须先给出四个引理.引理1 (椭圆的光学性质,见普通高中课程标准实验教科书《数学·选修2-1·A 版》(人民教育出版社,2007年第2版,2014年第1次印刷)第76页)从椭圆的一个焦点发出的光线,经过椭圆反射后,反射光线交于椭圆的另一个焦点上(如图1所示).图1证明 如图2所示,设P 为椭圆Γ(其左、右焦点分别是21,F F )上任意给定的点,过点P 作21PF F ∠的外角平分线所在的直线)43(∠=∠l .先证明l 和Γ相切于点P ,只要证明l上异于P 的点P '都在椭圆Γ的外部,即证2121PF PF F P F P +>'+':图2在直线1PF 上选取点F ',使2PF F P =',得F P P ''∆≌2PF P '∆,所以2F P F P '='',还得2111121PF PF F P P F F F F P F P F P F P +='+='>''+'='+'再过点P 作21PF F ∠的平分线(12)PA ∠=∠,易得l PA ⊥,入射角等于反射角,这就证得了引理1成立.引理2 过椭圆Γ(其中心是点O ,长半轴长是a )的任一焦点F 作椭圆Γ的任意切线l 的垂线,设垂足是H ,则a OH =.证明 如图3所示,设点F F ,'分别是椭圆Γ的左、右焦点,A 是椭圆Γ的切线l 上的切点,又设直线A F FH ',交于点B .图3由引理1,得BAH F lA FAH ∠='∠=∠(即反射角与入射角的余角相等),进而可得FAH ∆≌BAH ∆,所以点H 是FB 的中点,得OH 是F BF '∆的中位线.又AB AF =,所以a AF A F AB A F OH =+'=+'=)(21)(21.引理3 平行四边形各边的平方和等于其两条对角线的平方和. 证明 由余弦定理可证(这里略去过程).引理4 设点P 是矩形ABCD 所在平面上一点,则2222PD PB PC PA +=+. 证明 如图4所示,设矩形ABCD 的中心是点O .图4由引理3,可得22222222)(2)(2PD PB OP OB OP OA PC PA +=+=+=+即欲证成立.注 把引理4推广到空间,得到的结论就是:底面是矩形的四棱锥相对侧棱长的平方和相等.定理1的证法3 可不妨设0,0>>b a .当b a =时,易证成立.下面只证明b a >的情形. 如图5所示.设椭圆的中心是点O ,左、右焦点分别是21,F F ,焦距是c 2,过动点P 的两条切线分别是PN PM ,.图5连结OP ,作PN OH PM OG ⊥⊥,,垂足分别是H G ,.过点1F 作PM D F ⊥1,垂足为D ,由引理2得a OD =.再作OG K F ⊥1于K .记θ=∠K OF 1,得θcos 1c K F DG ==. 由Rt ODG ∆,得θ222222cos c a DG OD OG -=-=.又作OH L F PN E F ⊥⊥22,,垂足分别为L E ,.在Rt OEH ∆中,同理可得θ222222sin c a HE OE OH -=-=.(1)若PN PM ⊥,得矩形OGPH ,所以22222222222)sin ()cos (b a c a c a OH OG OP +=-+-=+=θθ(2)若222b a OP +=,得222222222)sin ()cos (OH OG c a c a OP +=-+-=θθ由PM OG ⊥,得222GP OG OP +=,所以OH GP =.同理,有HP OG =,所以四边形OGPH 是平行四边形,进而得四边形OGPH 是矩形,所以PN PM ⊥.由(1),(2)得点P 的轨迹方程是2222b a y x +=+.定理1的证法4 可不妨设0,0>>b a .当b a =时,易证成立.下面只证明b a >的情形. 如图6所示.设椭圆的中心是点O ,左、右焦点分别是21,F F ,焦距是c 2,过动点P 的两条切线分别是PB PA ,,两切点分别为B A ,.分别作右焦点2F 关于切线PB PA ,的对称点N M ,,由椭圆的光学性质可得三点M A F ,,1共线(用反射角与入射角的余角相等).同理,可得三点N B F ,,1共线.图6由椭圆的定义,得a BF BF NF a AF AF MF 2,2211211=+==+=,所以11NF MF =.由O 是21F F 的中点,及平行四边形各边的平方和等于其两条对角线的平方和,可得)(2)(2222222221221OP c OP OF PF PF PM PF +=+=+=+ (1)若PB PA ⊥,得︒=∠+∠=∠+∠180)(22211BPF APF NPF MPF ,即三点N P M ,,共线.又PN PF PM ==2,所以MN PF ⊥1,进而得)(2422221212OP c PM PF MF a +=+==222b a OP +=(2)若222b a OP +=,得212222222214)(2)(2MF a b a c OP c PM PF ==++=+=+所以PM PF ⊥1.同理,可得PN PF ⊥1.所以三点N P M ,,共线.得︒=∠+∠=∠+∠=∠90)(212222NPF MPF BPF APF APB ,即PB PA ⊥. 由(1),(2)得点P 的轨迹方程是2222b a y x +=+.定理1的证法5 (该证法只能证得纯粹性)可不妨设0,0>>b a .当b a =时,易证成立.下面只证明b a >的情形.如图7所示,设椭圆的中心是点O ,左、右焦点分别是21,F F ,焦距是c 2,过动点P 的两条切线分别是PB PA ,,切点分别是B A ,.设点1F 关于直线PB PA ,的对称点分别为''21,F F ,直线'11F F 与切线PA 交于点G ,直线'21F F 与切线PB 交于点H .图7得1211,BF BF AF AF ='=',再由椭圆的定义,得a F F F F 22221='=',所以a OH OG ==. 因为四边形H PGF 1为矩形,所以由引理4得2222212a OH OG OP OF =+=+,所以222b a OP +=,得点P 的轨迹方程是2222b a y x +=+.读者还可用解析几何的方法证得以下结论:定理 2 (1)双曲线)0(12222>>=-b a b y a x 的两条互相垂直的切线的交点的轨迹是圆2222b a y x -=+;(2)抛物线px y 22=的两条互相垂直的切线的交点是该抛物线的准线.定理 3 (1)椭圆)0(12222>>=+b a by a x 的两条斜率之积是22a b -的切线交点的轨迹方程是22222=+by a x ;(2)双曲线)0,0(12222>>=-b a by a x 的两条斜率之积是22a b 的切线交点的轨迹方程是22222=-b y a x . 定理4 过椭圆)0(22222>>=+b a b y a x 上任一点),(00y x P 作椭圆12222=+by a x 的两条切线,则(1)当a x ±=0时,所作的两条切线互相垂直;(2)当a x ±≠0时,所作的两条切线斜率之积是22ab -.定理5 (1)椭圆)0(12222>>=+b a by a x 的两条斜率之积是)0(≠λλ的切线交点的轨迹Γ是:①当1-=λ时,Γ即圆2222b a y x +=+(但要去掉四个点),(),,(b a b a -±±);②当0<λ且1-≠λ时,Γ即椭圆1222222=-+-a b y b a x λλ(但要去掉四个点),(),,(b a b a -±±);③当22a b -=λ时,Γ即两条直线x aby ±=在椭圆)0(12222>>=+b a b y a x 外的部分(但要去掉四个点),(),,(b a b a -±±);④当220a b <<λ时,Γ即双曲线1222222=---a b x a b y λλ在椭圆)0(12222>>=+b a b y a x外的部分(但要去掉四个点),(),,(b a b a -±±);⑤当22ab >λ时,Γ即双曲线1222222=---b a y b a x λλ在椭圆)0(12222>>=+b a by a x 外的部分(但要去掉四个点),(),,(b a b a -±±).(2)双曲线)0(12222>>=-b a by a x 的两条斜率之积是)0(≠λλ的切线交点的轨迹Γ是:①当1-=λ时,Γ即圆2222b a y x -=+; ②当0>λ时,Γ即双曲线1222222=+-+b a y b a x λλ; ③当1-<λ或221ab -<<-λ时,Γ即椭圆1222222=--++ba yb a x λλ; ④当022<<-λab 时,Γ不存在.(3)抛物线px y 22=的两条斜率之积是)0(≠λλ的切线交点的轨迹Γ是:①当0<λ时,Γ即直线λ2p x =; ②当0>λ时,Γ的方程为⎪⎭⎫ ⎝⎛>=λλp y p x 2. 例 (北京市海淀区2015届高三第一学期期末文科数学练习第14题)已知22:1O x y +=. 若直线2y kx =+上总存在点P ,使得过点P 的O 的两条切线互相垂直,则实数k 的取值范围是_________.解 (,1][1,)-∞-+∞.在图8中,若小圆(其圆心为点O ,半径为r )的过点A 的两条切线AD AB ,互相垂直(切点分别为F E ,),得正方形AEOF ,所以r OE OA 22==,即点A 的轨迹是以点O 为圆心,r 2为半径的圆.图8由此结论可得:在本题中,点P 在圆222x y +=上.所以本题的题意即直线2y kx =+与圆222x y +=有公共点,进而可得答案.注 本题的一般情形就是蒙日圆.。
原创不容易,【关注】店铺,不迷路!切瓦定理与三线公共点用塞瓦定理证明几个重要三线共点问题我们知道,三角形的三条中线在同一点,三条垂线在同一点,三个内角的平分线在同一点。
有些容易看到,有些则不然。
所以,在这里,我想从Seva定理证明这三个常见的问题。
先说Seva定理和Seva定理的逆定理。
塞瓦定理:有一个三角形ABC,点x,y和z分别是BC,CA和AB上的点。
如果它的三条滑移线AX、BY、CZ共享同一点,则以下公式成立:证明:以同样的方式;以类似的方式将以上三个公式相乘得到塞瓦定理的逆定理:有一个三角形ABC,点x,y和z分别是BC,CA和AB上的点。
如果下列公式成立那么它的三条滑移线AX、BY、CZ共用一个点。
(省略证明)(1)三角三条中线交于一点可以很容易地用塞瓦定理的逆定理证明。
x,y,z 是BC,CA,AB的中点,所以BX=XC,CY=YA,AZ=ZB。
所以所以三条中线有一个共同点,这个点就是重心或者中心。
(2)利用塞瓦定理的逆定理证明了三角形三条垂线交于一点。
如下图所示,AX、BY、CZ分别是BC、CA、AB边上的垂线。
因为将以上三个公式相乘得到所以三条垂线在一点相交,这个点是垂直的。
(3)利用塞瓦定理的逆定理证明了三角形三条内角平分线交于一点。
如下图所示,根据正弦定理,有将两个公式相除,得到同样的理由也是存在的将以上三个公式相乘得到所以,三条线共用一个点。
其实这个点就是三角形ABC的内切圆的中心,也就是心脏。
下一期会讲塞瓦定理和墨涅拉俄斯定理的关系,但是这个月15号才推,因为要出门近四五天,不能天天推。
这一期我们还是用微信的定期发送功能,但是这个功能只能今天设置,明天发送,后天不行。
可以重读之前的内容,也可以让大脑休息一下,等我回来再交流。
上海市教育委员会信息中心(上海市教育信息应用研究开发中心)【素材积累】宋庆龄自1913年开始追随孙中山,致力于中国革命事业,谋求中华民族独立解放。
在近70年的漫长岁月里,经过护法运动(1917年)、国民大革命(1924—1927年)、国共对立十年(1927—1937年)、抗日战争(1937—1945年)、解放战争(1945—1949年),她始终忠贞不渝地坚持孙中山的革命主张,坚定地和中国人民站在一起,为国的繁荣富强和人民生活的美满幸福而殚精竭虑,英勇奋斗,在中国现代历史上,谱写了光辉的篇章。
蒙日圆及其证明甘志国(已发表于河北理科教学研究,2015(5) : 11-13)2 2高考题(2014年高考广东卷文科、理科第20题)已知椭圆C :笃•打=1(a ■ b ■ 0)的a b一个焦点为(-5,0),离心率为〈.3(1)求椭圆C的标准方程;⑵若动点P(x0,y°)为椭圆C外一点,且点P到椭圆C的两条切线相互垂直,求点P 的轨迹方程.2 2答案:⑴、.丄1 ;⑵x2 y2=13 •9 4这道高考题的背景就是蒙日圆•普通高中课程标准实验教科书《数学 2 •必修• A版》(人民教育出版社,2007年第3 版,2014年第8次印刷)第22页对画法几何的创始人蒙日(G.Monge, 1745-1818)作了介绍• 以上高考题第(2)问的一般情形是2 2定理1 曲线]:电•电=1的两条互相垂直的切线的交点P的轨迹是圆 a bx2 y2 =a2 b2.定理1的结论中的圆就是蒙日圆.先给出定理1的两种解析几何证法:定理1的证法1当题设中的两条互相垂直的切线中有斜率不存在或斜率为0时,可得点P的坐标是(_a, b),或(_a,-b).当题设中的两条互相垂直的切线中的斜率均存在且均不为0时,可设点 P的坐标是(人,齐)(召址二a,且y。
= _b),所以可设曲线】的过点 P的切线方程是y -y° =k(x -x°)(k =0).“ 2 2由<a2 b2,得y —y。
=k(x —x。
)(a2k2 b2)x2—2ka2(kx0—y0)x a2(k\ —y0)2-a2b2 = 0由其判别式的值为0,得%2-a2)k2 -2x0y°k y^ b2 = 0(x°2 - = 0)因为k PA,k PB是这个关于k的一元二次方程的两个根,所以k PA k PBy °2b 2~2 2x 0 —a由此,得k PA k PB = -1x 02 y 02二 a 2 b 2进而可得欲证成立•定理1的证法2点P 的坐标是(_a, b ),当题设中的两条互相垂直的切线中有斜率不存在或斜率为或(二a,_b ). 0时,可得当题设中的两条互相垂直的切线中的斜率均存在且均不为 0时,可设点 P 的坐标是(X o ,y °)(x 。
一道 蒙日圆 背景下的题目分析与探究谷红亮(银川市第六中学ꎬ宁夏回族自治区银川750011)摘㊀要:对试题所涵盖知识点进行分析讨论ꎬ有助于学生掌握所学知识的本质ꎬ而且通过抽象出一般的解题思路ꎬ还可以有效地提升学生的逻辑推理㊁数学运算等数学核心素养.而 蒙日圆 搭建起了圆与圆锥曲线间的桥梁ꎬ很好地体现了这一过程.关键词:蒙日圆ꎻ切线方程ꎻ面积范围中图分类号:G632㊀㊀㊀文献标识码:A㊀㊀㊀文章编号:1008-0333(2023)31-0062-03收稿日期:2023-08-05作者简介:谷红亮(1991.10-)ꎬ男ꎬ河南省驻马店人ꎬ本科ꎬ从事高中数学教学研究.㊀㊀ 蒙日圆 曾出现于2014年广东卷ꎬ随后在各省份的模考题中以此为背景被反复创新.本文以 蒙日圆 为背景的一道试题为例进行探究ꎬ呈现出了问题的分析路径ꎬ进而探索找到了涉及该问题的试题特点ꎬ如定点问题㊁三点共线问题及面积范围问题等ꎬ希望起到抛砖引玉的作用.1题目呈现题目㊀(郑州市2022年高三一模理科数学)在圆(x-3)2+(y-4)2=r2(r>0)上总存在点Pꎬ使得过点P能作椭圆x23+y2=1的两条相互垂直的切线ꎬ则r的取值范围是.表面平平无奇的题目ꎬ仔细思考可以发现其中丰富的内涵.初看题目是一个存在性问题ꎬ涉及了圆的知识㊁椭圆的切线等ꎬ但是该题的题眼是 两条切线相互垂直 ꎬ所以需要进一步思考如何利用这一条件才能顺利解决该题目[1].下面从椭圆的切线方程谈起.2椭圆切线方程问题2.1椭圆上某点处的切线方程定理1㊀已知椭圆C:x2a2+y2b2=1(a>b>0)ꎬ设点P(x0ꎬy0)为C上任意一点ꎬ则过点P的切线方程为x0xa2+y0yb2=1.证明㊀当点P(x0ꎬy0)位于x轴上方时ꎬy=b1-x2a2ꎬ则yᶄ=-bxa2 11-x2/a2.此时点P(x0ꎬy0)处的切线斜率为k=yᶄx=x0=-bx0a2 11-x20/a2.而1-x20a2=y0bꎬ所以k=yᶄx=x0=-b2x0a2y0.故切线方程为y-y0=-b2x0a2y0(x-x0).整理ꎬ得x0xa2+y0yb2=1.26同理ꎬ当点P(x0ꎬy0)位于x轴下方时ꎬ切线方程为x0xa2+y0yb2=1.当点P(x0ꎬy0)位于x轴上时ꎬ此时切线方程为x=ʃaꎬ仍满足x0xa2+y0yb2=1.综上所述ꎬ椭圆C:x2a2+y2b2=1(a>b>0)上任意一点P(x0ꎬy0)处的切线方程为x0xa2+y0yb2=1.2.2切点弦方程定理2㊀已知椭圆C:x2a2+y2b2=1(a>b>0)ꎬ设点P(x0ꎬy0)为C外一点ꎬ过点P作椭圆C的两条切线PAꎬPBꎬ则切点弦AB所在的直线方程为x0xa2+y0yb2=1.证明㊀设A(x1ꎬy1)ꎬB(x2ꎬy2)ꎬ由定理1可知ꎬ切线PA的方程为x1xa2+y1yb2=1ꎬ切线PB的方程为x2xa2+y2yb2=1.又直线PAꎬPB均过点P(x0ꎬy0)ꎬ代入得x1x0a2+y1y0b2=1ꎬx2x0a2+y2y0b2=1.ìîíïïïï也即点A(x1ꎬy1)ꎬB(x2ꎬy2)均在直线x0xa2+y0yb2=1上ꎬ又两点确定一条直线ꎬ所以切点弦AB所在的直线方程为x0xa2+y0yb2=1.运用椭圆的切点弦方程ꎬ可以扩展出两种题型 定点问题和三点共线问题.例1㊀已知椭圆C:x24+y23=1ꎬ在直线l:x-y+1=0上任取一点P(mꎬn)ꎬ且点P满足m24+n23>1ꎬ过点P作椭圆C的两条切线ꎬ切点分别为AꎬBꎬ证明:直线AB过定点.证明㊀由定理2可知ꎬ切点弦AB所在的直线方程为mx4+ny3=1ꎬ也即3mx+4ny-12=0.又点P(mꎬn)在直线l:x-y+1=0上ꎬ所以n=m+1.则lAB:3mx+4(m+1)y-12=0.整理ꎬ得m(3x+4y)+4y-12=0.所以直线AB过定点(-4ꎬ3).例2㊀已知椭圆C:x2a2+y2b2=1(a>b>0)ꎬ过椭圆外一点P(x0ꎬy0)作椭圆C的两条切线ꎬ切点分别为AꎬBꎬ证明:OP平分弦AB.证明㊀设A(x1ꎬy1)ꎬB(x2ꎬy2)ꎬ弦AB的中点为Mꎬ由定理2可知ꎬ切点弦AB所在的直线方程为x0xa2+y0yb2=1ꎬ与椭圆方程x2a2+y2b2=1联立ꎬ消y得ꎬb2(a2y20+b2x20)x2-2a2b4x0x+a4b2(b2-y20)=0.所以x1+x2=2a2b2x0a2y20+b2x20.同理可知y1+y2=2a2b2y0a2y20+b2x20.则Ma2b2x0a2y20+b2x20ꎬa2b2y0a2y20+b2x20æèçöø÷.所以kOM=y0x0ꎬ而kOP=y0x0ꎬ即kOP=kOM.所以OꎬMꎬP三点共线ꎬ也即OP平分弦AB.3蒙日圆定理3㊀椭圆C:x2a2+y2b2=1(a>b>0)的两条相互垂直的切线PAꎬPB的交点P的轨迹为圆x2+y2=a2+b2.证明㊀设P(x0ꎬy0)ꎬA(x1ꎬy1)ꎬB(x2ꎬy2)ꎬ由定理2可知ꎬ切点弦AB所在的直线方程为x0xa2+y0yb2=1ꎬ与椭圆方程x2a2+y2b2=1联立ꎬ消y得ꎬb2(a2y20+b2x20)x2-2a2b4x0x+a4b2(b2-y20)=0.36所以x1x2=a4b2-a4y20a2y20+b2x20.同理可知y1y2=a2b4-b4x20a2y20+b2x20.又PAʅPBꎬ所以kPA kPB=-1.由定理1可知ꎬlPA:x1xa2+y1yb2=1ꎬlPB:x2xa2+y2yb2=1ꎬ所以kPA kPB=-b2x1a2y1æèçöø÷ -b2x2a2y2æèçöø÷=b4a4 x1x2y1y2ꎬ把x1x2ꎬy1y2代入得kPA kPB=b4a4 a4b2-a4y20a2b4-b4x20=b2-y20a2-x20=-1ꎬ也即x20+y20=a2+b2.综上所述ꎬ点P的轨迹为圆x2+y2=a2+b2.结合以上归纳的定理ꎬ解决最初的 郑州市2022年高三一模理科数学第10题 就会感觉轻而易举ꎬ也即题目中所给的圆(x-3)2+(y-4)2=r2(r>0)需与椭圆x23+y2=1所对应的 蒙日圆 x2+y2=4相交.当以上两圆相交时ꎬ3ɤrɤ7.4以 蒙日圆 为背景的面积问题定理4㊀已知椭圆C:x2a2+y2b2=1(a>b>0)ꎬ设点P(x0ꎬy0)为C外一点ꎬ过点P作椭圆C的两条切线PAꎬPBꎬ且PAʅPBꎬ则SәPABɪb4a2+b2ꎬa4a2+b2[].证明㊀由题意易得ꎬ点P在椭圆C:x2a2+y2b2=1所对应的 蒙日圆 x2+y2=a2+b2上ꎬ也即x20+y20=a2+b2.设A(x1ꎬy1)ꎬB(x2ꎬy2)ꎬ联立lAB:x0xa2+y0yb2=1ꎬ与椭圆方程x2a2+y2b2=1ꎬ消y得ꎬb2(a2y20+b2x20)x2-2a2b4x0x+a4b2(b2-y20)=0.所以x1+x2=2a2b2x0a2y20+b2x20ꎬx1x2=a4b2-a4y20a2y20+b2x20.代入弦长公式AB=1+k2x1-x2ꎬ整理得AB=2(a4y20+b4x20)(a2y20+b2x20-a2b2)a2y20+b2x20.又点P(x0ꎬy0)到直线AB距离为d=a2y20+b2x20-a2b2a4y20+b4x20.所以SәPAB=12ˑABˑd=a2y20+b2x20-a2b2a2y20+b2x20ˑa2y20+b2x20-a2b2.令t=a2y20+b2x20ꎬ则ta2b2=y20b2+x20a2>1.也即t>a2b2ꎬ所以SәPAB=(t-a2b2)32t.又因为x20+y20=a2+b2ꎬ则t=a4+a2b2+(b2-a2)x20.又0ɤx20ɤa2+b2ꎬ所以tɪ[b4+a2b2ꎬa4+a2b2].而Sᶄ=(t-a2b2)12 12t+a2b2æèçöø÷t2>0ꎬ所以SәPAB为单调递增函数ꎬ故当t=b4+a2b2时ꎬ此时点P位于x轴上ꎬSmin=b4a2+b2ꎻ当t=a4+a2b2时ꎬ此时点P位于y轴上ꎬSmax=a4a2+b2.综上所述ꎬSәPABɪb4a2+b2ꎬa4a2+b2[].本文对以 蒙日圆 为背景的模考题进行了解题分析和思考探究ꎬ希望学生能够学会分析题目ꎬ教师能够在已知的题目下ꎬ引导学生多加思考ꎬ真正做到举一反三.此过程可以很好地锻炼学生的逻辑思维能力和运算求解能力ꎬ从而跳出 题海战术 的怪圈ꎬ适应新高考对考生的要求.参考文献:[1]陶煜瑾.例谈椭圆的蒙日圆命题角度[J].数理天地(高中版)ꎬ2022(14):12-13.[责任编辑:李㊀璟]46。
第38讲蒙日圆知识与方法1.蒙日圆:如下图所示,过点P作椭圆2222:1x yCa b+=()0a b>>的两条切线,若这两条切线互相垂直,则点P的轨迹是圆2222x y a b+=+,该圆即为蒙日圆.2.蒙日圆的性质:如下图所示,延长PA、PB与蒙日圆分别交于点M、N,OP与AB 交于点Q,则:(1)M、O、N三点共线;(2)MN AB∥;(3)22OP MN OP AB OA PA OB PBbk k k k k k k ka ⋅=⋅=⋅=⋅=−;(4)44 OA OBb k ka⋅−.提醒:双曲线22221x ya b−=()0a b>>的蒙日圆为2222x y a b+=−,而当a b≤时,双曲线没有蒙日圆;抛物线的蒙日圆是抛物线的准线,这里把直线看成了半径无限大的圆.典型例题【例1】已知椭圆22:13xC y+=,若直线:420l mx y m−−+=()m∈R上存在点P,使得过P作椭圆C的两条切线,且这两条切线互相垂直,则m的取值范围是______.【解析】要使过点P作的椭圆C的两条切线互相垂直,则点P在椭圆C的蒙日圆224x y+=上,所以问题等价于直线l与圆224x y+=有公共点,从而圆心O到直线l的距离2d=≤,解得:34m≤≤,所以m的取值范围是30,4⎡⎤⎢⎥⎣⎦.【答案】30,4⎡⎤⎢⎥⎣⎦变式1 已知椭圆22:13x C y +=,若直线:420l mx y m −−+=()m ∈R 上存在点P ,使得过P 作椭圆C 的两条切线PA 、PB ,其中A 、B 为切点,且APB ∠是钝角,则m 的取值范围是______.【解析】要使APB ∠为钝角,则点P 应落在如图所示的蒙日圆224x y +=内椭圆C 外的部分,所以只需直线l 与蒙日圆相交即可,从而圆心O 到直线l 的距离2d =<,解得:304m <<,所以m 的取值范围是30,4⎛⎫ ⎪⎝⎭.【答案】30,4⎛⎫⎪⎝⎭变式2 已知椭圆22:13x C y +=和点12Q ⎛ ⎝⎭,若P 为一动点,且过P 作椭圆C 的两条切线PA 、PB ,其中A 、B 为切点,满足APB ∠为锐角,若PQ d ≥恒成立,则d 的最大值是______.【解析】要使APB ∠为锐角,则点P 应落在如图所示的蒙日圆224x y +=外,延长OQ 交蒙日圆于点0P ,显然蒙日圆上的动点到点Q 的距离的最小值为00211P Q OP OQ =−=−=,从而当点P 在蒙日圆外运动时,PQ 的取值范围是()1,+∞, 要使PQ d ≥恒成立,则1d ≤,所以max 1d =.【答案】1【例2】(2014·广东)已知椭圆2222:1x y C a b+=()0a b >>的一个焦点为),离心率为3. (1)求椭圆C 的标准方程;(2)若动点()00,P x y 为椭圆外一点,且点P 到椭圆C 的两条切线相互垂直,求点P 的轨迹方程.【解析】(1)由题意,225a b −=解得:3a =,2b =,故椭圆C 的方程为22194x y +=. (2)若两条切线分别与x 轴、y 轴垂直,这样的点P 有四个, 分别为()3,2,()3,2−,()3,2−,()3,2−−,若切线都不与坐标轴垂直,设切线方程为()00y y k x x −=−,代入椭圆方程整理得:()()()222000049189360k x k y kx x y kx ++−+−−=,判别式()()()2220000184499360k y kx k y kx ⎡⎤⎡⎤∆=−−+−−=⎣⎦⎣⎦, 化简得:()222000036481640x k x y k y −++−=,所以过P 的两条切线的斜率为上述关于k 的一元二次方程的两根1k ,2k ,因为两切线垂直,所以201221641364y k k x −==−−,整理得:220013x y +=, 显然()3,2,()3,2−,()3,2−,()3,2−−也满足上述方程, 故点P 的轨迹方程为2213x y +=.强化训练1.(★★★)从圆()222:0C x y r r +=>上一定点P 作椭圆221124x y +=的两条切线,若这两条切线互相垂直,则直线:220l mx y m +−被圆C 截得的线段长的最小值是________. 【解析】要使两切线互相垂直,则点P 在椭圆C 的蒙日圆上,从而4r =,()(2202120mx y m m x y +−=⇒−+−=⇒直线l 过定点122Q ⎛ ⎝⎭,且易求得1OQ =,如图,当直线l PQ ⊥时,直线l 被圆C 截得的线段长最小,且最小值为=.【答案】2.(★★★)已知椭圆22:142x y C +=,点P 在直线:30l x y −+=上,若过P 作椭圆C 的两条切线PA 、PB ,且PA PB ⊥,则满足条件的点P 有____个.【解析】要使PA PB ⊥,则点P 应在椭圆C 的蒙日圆226x y +=上,该圆的圆心到直线l 的距离2d ==<l 与蒙日圆相交,从而满足条件的点P 有2个. 【答案】23.(★★★)已知椭圆22:154x y C +=和直线:0l x −=,若P 为l 上的一动点,过P 作椭圆C 的两条切线PA 、PB ,其中A 、B 为切点,满足APB ∠为钝角,则点P 的横坐标的取值范围是________.【解析】要使APB ∠为钝角,则点P 应落在椭圆C 的蒙日圆229x y +=内,如图,设直线l与蒙日圆相交于M 、N 两点,则P 应落在线段M 、N 上,且不含端点,联立229x x y ⎧+−=⎪⎨+=⎪⎩解得:0x =,从而点P 的横坐标的取值范围是(【答案】(4.(★★★)设A 、B 两点在椭圆()222:11x C y a a+=>上,动点P 在直线:34100l x y +−=上,若90APB ∠<︒恒成立,则椭圆C 的离心率的取值范围是_______.【解析】要使90APB ∠<︒恒成立,只需点P 始终在椭圆C 的蒙日圆222:1O x y a +=+外,所以直线l 与圆O 相离,从而d =1a >可得1a <<故椭圆C 的离心率e ⎛== ⎝⎭. 5.(★★★★★)给定椭圆2222:1x y C a b+=()0a b >>,称圆2222x y a b +=+为椭圆C 的“蒙日圆”.已知椭圆C 的焦距为 2.(1)求椭圆C 及其“蒙日圆”的方程;(2)设P 是椭圆C 的“蒙日圆”上的动点,过P 作椭圆C 的两条切线分别交椭圆C 的“蒙日圆”于A 、B 两点,证明:PA PB ⊥,且AB 为定值.【解析】(1)由题意,椭圆C 的短轴长22b =,所以1b =,椭圆C 的焦距=,故a =C 的方程为2213x y +=,其蒙日圆的方程为224x y +=..(2)当点P 的坐标为)时,不难发现过P 的椭圆C 的两条切线分别为1y =和x =显然它们互相垂直,同理,当点P 的坐标为)1−,(),()1−时,过P 的两切线也互相垂直,当点P 不为上述四个点时,显然PA 和PB 的斜率均存在,设为1k ,2k ,设()00,P x y ,则22004x y +=,直线P A 的方程为()010y y k x x −=−,即1010y k x y k x =+−,代入2213x y +=消去y 整理得:()()()22211010010136330k x k y k x x y k x ++−+−−=因为直线PA 与椭圆C 相切,所以()()()22221010101036413330k y k x k y k x ⎡⎤∆=−−+−−=⎣⎦,整理得:()2220100103210x k x y k y −++−=,同理可得()2220200203210x k x y k y −++−=,所以1k 和2k 是方程()22200003210x k x y k y −++−=的两根,从而212213y k k x −=−, 因为22004x y +=,所以2204y x =−, 故()220012220143133x x k k x x −−−===−−−,从而PA PB ⊥, 综上所述,当点P 在蒙日圆上运动时,总有PA PB ⊥, 从而AB 为蒙日圆的直径,所以AB 为定值4.6.(★★★★★)已知椭圆22:13x C y +=,P 是圆22:4O x y +=上的一个动点,PA 、PB 分别与椭圆C 相切于点()11,A x y 和()22,B x y (1)证明:点P 在直线1113x xy y +=上; (2)求PAB 的面积的取值范围.【解析】(1)因为点A 在椭圆C 上,所以221113x y +=,从而221133x y =−,联立11221313x xy y x y ⎧+=⎪⎪⎨⎪+=⎪⎩消去y 整理得:()2222111136990x y x x x y +−+−=,判别式()()()()()22222222111111113643993633433399x x y y y y y y ∆=−+−=−−−+−()()2211108110810y y =−−−=,从而椭圆C 在点A 处的切线为1113x x y y +=,故点P 在直线1113x xy y +=上. (2)由(1)知切线PA 的方程是1113x xy y +=,同理,切线PB 的方程是2213x x y y +=,设()00,P x y ,因为点P 在圆O 上,所以22004x y +=,故2204x y =−, 因为点P 同时在PA 和PA P B 上,所以101020201313x x y y x x y y ⎧+=⎪⎪⎨⎪+=⎪⎩,故A 、B 两点的坐标均满足0013x x y y +=①,从而直线AB 的方程为0013x xy y +=,代入椭圆C 的方程消去y 整理得:()2222000036990xy x x x y +−+−=,判别式()()()()()()22222222421000000000036439936444399362x x y y y y y y y y ∆=−+−=−−−+−=+当00y =时,02x =±,代入①直线AB 的方程为32x =±,代入2213x y +=可求得12y =±,所以1AB =,显然点P 到直线AB 的距离12d =,所以1111224PABS =⨯⨯=, 当00y ≠时,000000AB ===,点P 到直线AB的距离d ==,所以00001122PABSAB d =⋅==00==,设t =,则2221y t =−,所以3322413PABt t St t ==+−+,因为2004y <≤,所以13t <≤, 设()()32133t f t t t =<≤+,则()()()()()2232222223329033t t t t t t f t t t +−⋅+'==>++ 所以()f t 在(]1,3上单调递增,又()114f =,()934f =,所以()f t 的值域为19,44⎛⎤ ⎥⎝⎦, 从而PABS的取值范围是19,44⎛⎤ ⎥⎝⎦综上所述,PAB 的面积的取值范围是19,44⎡⎤⎢⎥⎣⎦.。
蒙日圆证明及计算过点P 作直线12,l l 与椭圆C: 22221x y a b+=相切于点A,B ,若12l l ⊥,求证:OP 为定值,并求出该定值。
解:设(,)P m n 过点P 椭圆的切线方程为()y k x m n =-+ ,则2222()1y k x m nx y a b =-+⎧⎪⎨+=⎪⎩消元并整理得:222222()b x a kx km n a b +-+=(点评:①小步走策略;②消元,整式化,大必作于细)222222222()2()()0a k b x a k n mk x a n km a b ++-+--= (点评:①增强主元意识;②按照主元降幂排列;③按层次分别找准主元的二次项、一次项的系数及常数项;④若与主元无关,则视为常数项,不必展开;⑤按照先正后负顺序排列)所以222222220[2()]4()[()]0a k n mk a a k b n mk b ∆=⇒--+--= (点评:公因式化简(公因式24a ),能相约,则必相约(先约去24a )22222222()()[()]0a k n mk a k b n mk b ⇒--+--=(点评:暂时不展开2()n mk -,因为可以相消)222422()0a b k b b n mk ⇒+--=(点评: 2()n mk -为整体,则为两个含有两项的多项式乘法展开,可相消)2222()0a k b n mk ⇒+--=(点评:先约去2b )所以22222()20a m k mnk b n -++-=(点评:主元为斜率k ,按照斜率k 降幂排列)设12,l l 的斜率分别为12,k k ,则2212221b n k k a m-==-- ,所以2222m n a b +=+ 又当m a =时点P 满足方程:2222m n a b +=+,所以点P 的轨迹方程为:2222x y a b +=+,所以|OP |=高考圆锥曲线中的“蒙日圆问题”训练突破1.已知椭圆()2222:10x y C a b a b+=>>的一个焦点为),离心率为3.(1)求椭圆C 的标准方程;(2)若动点()00,P x y 为椭圆外一点,且点P 到椭圆C 的两条切线相互垂直,求点P 的轨迹方程.2.给定椭圆C :22221x y a b+=(a >b >0),称圆心在原点O C 的“准圆”.若椭圆C 的一个焦点为F ,0),其短轴上的一个端点到F (1)求椭圆C 的方程和其“准圆”方程;(2)若点P 是椭圆C 的“准圆”上的动点,过点P 作椭圆的切线l 1,l 2交“准圆”于点M ,N .证明:l 1⊥l 2,且线段MN 的长为定值.3.给定椭圆C :22221x y a b+=(0)a b >>的圆是椭圆C 的“伴随圆”.若椭圆C 的一个焦点为F ,0),其短轴上的一个端点到F 1(1)求椭圆C 的方程及其“伴随圆”方程;(2)若倾斜角45°的直线l 与椭圆C 只有一个公共点,且与椭圆C 的伴随圆相交于M .N 两点,求弦MN 的的长;(3)点P 是椭圆C 的伴随圆上一个动点,过点P 作直线l 1、l 2,使得l 1、l 2与椭圆C 都只有一个公共点,判断l 1、l 2的位置关系,并说明理由.4.已知抛物线1C :22y px =(0p >),圆2C :222(1)x y r -+=(0r >),抛物线1C 上的点到其准线的距离的最小值为14.(1)求抛物线1C 的方程及其准线方程;(2)如图,点0(2,)P y 是抛物线1C 在第一象限内一点,过点P 作圆2C 的两条切线分别交抛物线1C 于点A ,B (A ,B 异于点P ),问是否存在圆2C 使AB 恰为其切线?若存在,求出r 的值;若不存在,说明理由.5.已知椭圆C :()222210x y a b a b+=>>,点()1,e (e 为椭圆C 的离心率)在椭圆C 上.(1)求椭圆C 的标准方程;(2)如图,P 为直线2x =上任一点,过点P 椭圆C 上点处的切线为PA ,PB ,切点分别A ,B ,直线x a =与直线PA ,PB 分别交于M ,N 两点,点M ,N 的纵坐标分别为m ,n ,求mn 的值.6.已知中心在原点的椭圆C 1和抛物线C 2有相同的焦点(1,0),椭圆C 1过点31,2G ⎛⎫⎪⎝⎭,抛物线2C 的顶点为原点.(1)求椭圆C 1和抛物线C 2的方程;(2)设点P 为抛物线C 2准线上的任意一点,过点P 作抛物线C 2的两条切线PA ,PB ,其中A 、B 为切点.设直线PA ,PB 的斜率分别为k 1,k 2,求证:k 1k 2为定值;②若直线AB 交椭圆C 1于C ,D 两点,S △P AB ,S △PCD 分别是△PAB ,△PCD 的面积,试问:PABPCDS S 是否有最小值?若有,求出最小值;若没有,请说明理由.7.已知椭圆C 的方程为2212x y +=.(1)设(,)M M M x y 是椭圆C 上的点,证明:直线12M M x xy y +=与椭圆C 有且只有一个公共点;(2)过点N 作两条与椭圆只有一个公共点的直线,公共点分别记为A 、B ,点N 在直线AB 上的射影为点Q ,求点Q 的坐标;(3)互相垂直的两条直线1l 与2l 相交于点P ,且1l 、2l 都与椭圆C 只有一个公共点,求点P 的轨迹方程.8.已知椭圆()2222:10x y O a b a b+=>>的左、右顶点分别为A ,B ,点P 在椭圆O 上运动,若PAB △面积的最大值为O 的离心率为12.(1)求椭圆O 的标准方程;(2)过B 点作圆E :()2222x y r +-=,()02r <<的两条切线,分别与椭圆O 交于两点C ,D (异于点B ),当r 变化时,直线CD 是否恒过某定点?若是,求出该定点坐标,若不是,请说明理由.9.如图,在平面直角坐标系xOy 中,已知椭圆C 1:24x +y 2=1,椭圆C 2:22x a +22y b=1(a >b >0),C 2与C 1的长轴长之比为∶1,离心率相同.(1)求椭圆C 2的标准方程;(2)设点P 为椭圆C 2上的一点.①射线PO 与椭圆C 1依次交于点A ,B ,求证:PAPB为定值;②过点P 作两条斜率分别为k 1,k 2的直线l 1,l 2,且直线l 1,l 2与椭圆C 1均有且只有一个公共点,求证k 1·k 2为定值.10.已知抛物线()2:20C y px p =>上一点()0,2P x 到焦点F 的距离02PF x =.(1)求抛物线C 的方程;(2)过点P 引圆()(222:30M x y rr -+=<≤的两条切线PA PB 、,切线PA PB 、与抛物线C 的另一交点分别为A B 、,线段AB 中点的横坐标记为t ,求t 的取值范围.11.如图,已知00(,)M x y 是椭圆C :13622=+y x 上的任一点,从原点O 向圆M :()()22002x x y y -+-=作两条切线,分别交椭圆于点P 、Q .(1)若直线OP ,OQ 的斜率存在,并记为1k ,2k ,求证:12k k 为定值;(2)试问22OP OQ +是否为定值?若是,求出该值;若不是,说明理由.12.已知抛物线E :22x py =过点()1,1,过抛物线E 上一点()00,P x y 作两直线PM ,PN 与圆C :()2221x y +-=相切,且分别交抛物线E 于M 、N 两点.(1)求抛物线E 的方程,并求其焦点坐标和准线方程;(2)若直线MN 的斜率为P 的坐标.高考圆锥曲线中的“蒙日圆问题”突破答案一、解答题1.已知椭圆()2222:10x y C a b a b+=>>的一个焦点为),离心率为3.(1)求椭圆C 的标准方程;(2)若动点()00,P x y 为椭圆外一点,且点P 到椭圆C 的两条切线相互垂直,求点P 的轨迹方程.【答案】(1)22194x y +=;(2)220013x y +=.【详解】试题分析:(1)利用题中条件求出c 的值,然后根据离心率求出a 的值,最后根据a 、b 、c 三者的关系求出b 的值,从而确定椭圆C 的标准方程;(2)分两种情况进行计算:第一种是在从点P 所引的两条切线的斜率都存在的前提下,设两条切线的斜率分别为1k 、2k ,并由两条切线的垂直关系得到121k k =-,并设从点()00,P x y 所引的直线方程为()00y k x x y =-+,将此直线的方程与椭圆的方程联立得到关于x 的一元二次方程,利用0∆=得到有关k 的一元二次方程,最后利用121k k =-以及韦达定理得到点P 的轨迹方程;第二种情况是两条切线与坐标轴垂直的情况下求出点P 的坐标,并验证点P 是否在第一种情况下所得到的轨迹上,从而得到点P 的轨迹方程.(1)由题意知33a a =⇒=,且有=,解得2b =,因此椭圆C 的标准方程为22194x y +=;(2)①设从点P 所引的直线的方程为()00y y k x x -=-,即()00y kx y kx =+-,当从点P 所引的椭圆C 的两条切线的斜率都存在时,分别设为1k 、2k ,则121k k =-,将直线()00y kx y kx =+-的方程代入椭圆C 的方程并化简得()()()222000094189360k x k y kx x y kx ++-+--=,()()()2220000184949360k y kx k y kx ⎡⎤⎡⎤∆=--⨯+--=⎣⎦⎣⎦,化简得()2200940y kx k ---=,即()()22200009240x k kx y y --+-=,则1k 、2k 是关于k 的一元二次方程()()22200009240x k kx y y --+-=的两根,则201220419y k k x -==--,化简得220013x y +=;②当从点P 所引的两条切线均与坐标轴垂直,则P 的坐标为()3,2±±,此时点P 也在圆2213x y +=上.综上所述,点P 的轨迹方程为2213x y +=.考点:本题以椭圆为载体,考查直线与圆锥曲线的位置关系以及动点的轨迹方程,将直线与二次曲线的公共点的个数利用∆的符号来进行转化,计算量较大,从中也涉及了方程思想的灵活应用.2.给定椭圆C :22221x y a b+=(a >b >0),称圆心在原点O的圆为椭圆C 的“准圆”.若椭圆C 的一个焦点为F,0),其短轴上的一个端点到F(1)求椭圆C 的方程和其“准圆”方程;(2)若点P 是椭圆C 的“准圆”上的动点,过点P 作椭圆的切线l 1,l 2交“准圆”于点M ,N .证明:l 1⊥l 2,且线段MN 的长为定值.【答案】(1)椭圆方程为2213x y +=,“准圆”方程为x 2+y 2=4;(2)证明见解析.【分析】(1)由已知c a ==C 的方程和其“准圆”方程;(2)①当直线l 1,l 2中有一条斜率不存在时,分别求出l 1和l 2,验证命题成立;②当l 1,l 2斜率存在时,设点P (x 0,y 0),其中22004x y +=,联立过点P (x 0,y 0)与椭圆相切的直线方程与椭圆方程,由Δ=0化简整理,可证得l 1⊥l 2;进而得出线段MN 为“准圆”x 2+y 2=4的直径,即线段MN 的长为定值.【详解】(1)∵椭圆C的一个焦点为)F其短轴上的一个端点到F.∴c a ==∴1b ==,∴椭圆方程为2213x y +=,∴“准圆”方程为x 2+y 2=4.(2)证明:①当直线l 1,l 2中有一条斜率不存在时,不妨设直线l 1斜率不存在,则l 1:x =当l 1:xl 1与“准圆”交于点1),,-1),此时l 2为y =1(或y =-1),显然直线l 1,l 2垂直;同理可证当l 1:x=-l 1,l 2垂直.②当l 1,l 2斜率存在时,设点P (x 0,y 0),其中22004x y +=.设经过点P (x 0,y 0)与椭圆相切的直线为y =t (x -x 0)+y 0,∴由()002213y t x x y x y ⎧=-+⎪⎨+=⎪⎩得(1+3t 2)x 2+6t (y 0-tx 0)x +3(y 0-tx 0)2-3=0.由Δ=0化简整理,得(3-20x )t 2+2x 0y 0t +1-20y =0,∵22004x y +=,∴有(3-20x )t 2+2x 0y 0t +(20x -3)=0.设l 1,l 2的斜率分别为t 1,t 2,∵l 1,l 2与椭圆相切,∴t 1,t 2满足上述方程(3-20x )t 2+2x 0y 0t +(20x -3)=0,∴t 1·t 2=-1,即l 1,l 2垂直.综合①②知,l 1⊥l 2.∵l 1,l 2经过点P (x 0,y 0),又分别交其“准圆”于点M ,N ,且l 1,l 2垂直.∴线段MN 为“准圆”x 2+y 2=4的直径,|MN |=4,∴线段MN 的长为定值.【点睛】思路点睛:本题考查椭圆的标准方程,考查新定义,考查椭圆的切线方程,考查直线与椭圆的位置关系,有关平面解析问题一些基本解题思想总结如下:1.常规求值问题:需要找等式,范围问题需要找不等式;2.是否存在问题:当作存在去求,不存在时会无解;3.证明定值问题:把变动的元素用参数表示出来,然后证明结果与参数无关,也可先猜再证;4.处理定点问题:把方程中参数的同次项集在一起,并令各项系数为0,也可先猜再证;5.最值问题:将对象表示为变量的函数求解.3.给定椭圆C :22221x y a b+=(0)a b >>的圆是椭圆C 的“伴随圆”.若椭圆C 的一个焦点为F ,0),其短轴上的一个端点到F 1(1)求椭圆C 的方程及其“伴随圆”方程;(2)若倾斜角45°的直线l 与椭圆C 只有一个公共点,且与椭圆C 的伴随圆相交于M .N 两点,求弦MN 的的长;(3)点P 是椭圆C 的伴随圆上一个动点,过点P 作直线l 1、l 2,使得l 1、l 2与椭圆C 都只有一个公共点,判断l 1、l 2的位置关系,并说明理由.【答案】(1)椭圆方程:2213x y +=;伴随圆方程:x 2+y 2=1;(2);(3)垂直,(斜率乘积为-1,分斜率存在与否)【分析】(1)直接由椭圆C 的一个焦点为)1F ,其短轴上的一个端点到F 1,求出,即可求椭圆C 的方程及其“伴随圆”方程;(2)先把直线方程与椭圆方程联立,利用对应的判别式为0求出,进而求出直线方程以及圆心到直线的距离;即可求弦MN 的长;(3)先对直线l 1,l 2的斜率是否存在分两种情况讨论,然后对每一种情况中的直线l 1,l 2与椭圆C 都只有一个公共点进行求解即可证:l 1⊥l 2.(在斜率存在时,是先设直线方程,把直线与椭圆方程联立,利用斜率为对应方程的根来判断结论).【详解】解:(1)因为c a ==,所以b =1所以椭圆的方程为2213x y +=,伴随圆的方程为x 2+y 2=4.(2)设直线l 的方程y =x +b ,由2213y x b x y =+⎧⎪⎨+=⎪⎩得4x 2+6bx +3b 2﹣3=0由△=(6b )2﹣16(3b 2﹣3)=0得b 2=4圆心到直线l的距离为d ==所以MN ==(3)①当l 1,l 2中有一条无斜率时,不妨设l 1无斜率,因为l 1与椭圆只有一个公共点,则其方程为x =x =,当l 1方程为x =l 1与伴随圆交于点))1-,此时经过点)(或1)-且与椭圆只有一个公共点的直线是y =1(或y =﹣1),即l 2为y =1(或y =﹣1),显然直线l 1,l 2垂直;同理可证l 1方程为x =时,直线l 1,l 2垂直.②当l 1,l 2都有斜率时,设点P (x 0,y 0),其中x 02+y 02=4,设经过点P (x 0,y 0),与椭圆只有一个公共点的直线为y =k (x ﹣x 0)+y 0,由()002213y kx y kx x y ⎧=+-⎪⎨+=⎪⎩,消去y 得到x 2+3(kx +(y 0﹣kx 0))2﹣3=0,即(1+3k 2)x 2+6k (y 0﹣kx 0)x +3(y 0﹣kx 0)2﹣3=0,△=[6k (y 0﹣kx 0)]2﹣4•(1+3k 2)[3(y 0﹣kx 0)2﹣3]=0,经过化简得到:(3﹣x 02)k 2+2x 0y 0k +1﹣y 02=0,因为x 02+y 02=4,所以有(3﹣x 02)k 2+2x 0y 0k +(x 02﹣3)=0,设l 1,l 2的斜率分别为k 1,k 2,因为l 1,l 2与椭圆都只有一个公共点,所以k 1,k 2满足方程(3﹣x 02)k 2+2x 0y 0k +(x 02﹣3)=0,因而k 1•k 2=﹣1,即l 1,l 2垂直.【点睛】本题主要考查椭圆的方程和几何性质,直线的方程,两点间的距离公式以及点到直线的距离公式等基础知识,考查用代数方法研究圆锥曲线的性质和数形结合的数学思想,考查解决问题的能力和运算能力.4.已知抛物线1C :22y px =(0p >),圆2C :222(1)x y r -+=(0r >),抛物线1C 上的点到其准线的距离的最小值为14.(1)求抛物线1C 的方程及其准线方程;(2)如图,点0(2,)P y 是抛物线1C 在第一象限内一点,过点P 作圆2C 的两条切线分别交抛物线1C 于点A ,B (A ,B 异于点P ),问是否存在圆2C 使AB 恰为其切线?若存在,求出r 的值;若不存在,说明理由.【答案】(1)1C 的方程为2y x =,准线方程为14x =-.(2)存在,12r =【分析】(1)由124p =得到p 即可;(2)设()211,A y y ,利用点斜式得到PA的的方程为(110x y y -++=,由2(1,0)C 到PA 的距离为半径可得())22221121130ryr y r -+-+-=,同理())22222221130r y r y r -+-+-=,同理写出直线AB 的方程,利用点2(1,0)C 到直线AB 的距离为半径建立方程即可.解:(1)由题意得124p =,解得12p =,所以抛物线1C 的方程为2y x =,准线方程为14x =-.(2)由(1)知,P .假设存在圆2C 使得AB 恰为其切线,设()211,A y y ,()222,B y y ,则直线PA的的方程为1212(2)2y y x y -=⋅--,即(110x y y -+=.由点2(1,0)C 到PA 的距离为rr =,化简,得())22221121130r yr y r -+-+-=,同理,得())22222221130ry r y r -+-+-=.所以1y ,2y 是方程的())222221130r yr y r -+-+-=两个不等实根,故)212212r y y r -+=--,2122132r y yr-=-.易得直线AB 的方程为()12120x y y y y y -++=,由点2(1,0)C 到直线AB 的距离为rr =,所以)22222222113122r r r r r r ⎡⎤-⎛⎫-⎢⎥+=+- ⎪--⎢⎥⎝⎭⎣⎦,于是,()()()2222222234281rr rr r-=-+-,化简,得6424410r r r -+-=,即()()2421310r r r --+=.经分析知,01r <<,因此12r -=.【点睛】本题主要考查抛物线的定义和几何性质,直线与圆、抛物线的位置关系等,考查运算求解能力、数形结合思想.5.已知椭圆C :()222210x y a b a b+=>>的长半轴长为,点()1,e (e 为椭圆C 的离心率)在椭圆C 上.(1)求椭圆C 的标准方程;(2)如图,P 为直线2x =上任一点,过点P 椭圆C 上点处的切线为PA ,PB ,切点分别A ,B ,直线x a =与直线PA ,PB 分别交于M ,N 两点,点M ,N 的纵坐标分别为m ,n ,求mn 的值.【答案】(1)2212x y +=;(2)23.【分析】(1)因为点()1,e 在椭圆C 上,所以22211e a b +=,然后,利用222c a b =-,c e a =,得出2222211a b a a b-+=,进而求解即可(2)设点P 的坐标为()2,t ,直线AP 的方程为()12y k x t =-+,直线BP 的方程为()22y k x t =-+,分别联立方程:()221122x y y k x t ⎧+=⎪⎨⎪=-+⎩和12212212k k t t k k +=⎧⎪⎨-=⎪⎩,利用韦达定理,再利用)122m k t =+,)222n k t =-+,即可求出mn 的值【详解】(1)由椭圆C 2,得2a =.因为点()1,e 在椭圆C 上,所以22211e a b+=.又因为222c a b =-,c e a =,所以2222211a b a a b-+=,所以1b =-(舍)或1b =.故椭圆C 的标准方程为2212x y +=.(2)设点P 的坐标为()2,t ,直线AP 的方程为()12y k x t =-+,直线BP 的方程为()22y k x t =-+.据()221122x y y k x t ⎧+=⎪⎨⎪=-+⎩得()()()222111121422220k x k t k x t k ++-+--=.据题意,得()()()222211111624212220k t k k t k ⎡⎤--+--=⎣⎦,得22112410k tk t -+-=,同理,得22222410k tk t -+-=,所以12212212k k t t k k +=⎧⎪⎨-=⎪⎩.又可求,得)12m k t =+,)22n k t =-+,所以))1222mn k t k t ⎡⎤⎡⎤=++⎣⎦⎣⎦()()2121262k k k k t t =-+-++(())2223122t t t=--+-+3=-.【点睛】本题考查椭圆标准方程的求解以及联立方程求定值的问题,联立方程求定值的关键在于利用韦达定理进行消参,属于中档题6.已知中心在原点的椭圆C 1和抛物线C 2有相同的焦点(1,0),椭圆C 1过点31,2G ⎛⎫⎪⎝⎭,抛物线2C 的顶点为原点.(1)求椭圆C 1和抛物线C 2的方程;(2)设点P 为抛物线C 2准线上的任意一点,过点P 作抛物线C 2的两条切线PA ,PB ,其中A 、B 为切点.设直线PA ,PB 的斜率分别为k 1,k 2,求证:k 1k 2为定值;②若直线AB 交椭圆C 1于C ,D 两点,S △P AB ,S △PCD 分别是△PAB ,△PCD 的面积,试问:PABPCDS S 是否有最小值?若有,求出最小值;若没有,请说明理由.【答案】(1)抛物线2C 的标准方程为24y x =,椭圆1C 的方程为:22143x y +=,(2)①证明见解析,②有,最小值为43【分析】(1)利用12p=可得抛物线的标准方程,根据1c =和点P 在椭圆上列方程组可求得2a 和2b ,从而可得标准方程;(2)①利用△=0以及韦达定理可得结论;②先求出直线过定点(1,0),将问题转化为PAB PCD S S 1||||21||||2d AB AB CD d CD ⋅==⋅,即求||||AB CD 得最小值,当直线AB 的斜率存在时,联立直线与抛物线,利用弦长公式求出||AB 和||CD ,然后求比值,此时大于43,当直线AB 的斜率不存在时,直接求出||AB 和||CD 可得比值为43.从而可得结论.【详解】(1)因为抛物线C 2有相同的焦点(1,0),且顶点为原点,所以12p=,所以2p =,所以抛物线2C 的标准方程为24y x =,设椭圆方程为22221x ya b +=,则1c =且222211914a b ab ⎧-=⎪⎨+=⎪⎩,解得224,3a b ==,所以椭圆1C 的方程为:22143x y+=.(2)①证明:设(1,)P t -,过点P 与抛物线24y x =相切的直线为(1)y t k x -=+,由2(1)4y t k x y x -=+⎧⎨=⎩,消去x 得24440t y y k k -++=,由△=244()4(4)0tkk--+=,得210k tk +-=,则121k k =-.②设1122(,),(,)A x y B x y 由①得112,y k =222y k =,则12221211,x x k k ==,所以直线AB 的方程为211121()y y y y x x x x --=--,所以211222122(1)11k k y y x k k --=--,即122(1)y x k k =--+,即直线AB 恒过定点(1,0),设点P 到直线AB 的距离为d ,所以PABPCDS S 1||||21||||2d AB AB CD d CD ⋅==⋅,当直线AB 的斜率存在时,设直线AB 的方程为(1)y k x =-,设3344(,),(,)C x y D x y ,由24(1)y x y k x ⎧=⎨=-⎩,消去y 得2222(24)0k x k x k -++=,0k ≠时,△0>恒成立,||AB =224(1)k k+=,由22143(1)x y y k x ⎧+=⎪⎨⎪=-⎩消去y 得2222(34)84120k x k x k +-+-=,△0>恒成立,则||CD =2212(1)34k k+=+.所以22224(1)12(1)34PAB PCDk S k k S k +=++ 22234144333k k k +==+>,当直线AB 的斜率不存在时,直线AB 的方程为1x =,此时||4AB =,||3CD =,PAB PCD S S 43=,所以PAB PCD S S 的最小值为43.【点睛】本题考查了求抛物线和椭圆的标准方程,考查了直线与抛物线相切,考查了直线与椭圆相交的问题,考查了三角形的面积公式,考查了分类讨论思想,考查了弦长公式,属于难题.7.已知椭圆C 的方程为2212x y +=.(1)设(,)M M M x y 是椭圆C 上的点,证明:直线12M M x xy y +=与椭圆C 有且只有一个公共点;(2)过点N 作两条与椭圆只有一个公共点的直线,公共点分别记为A 、B ,点N 在直线AB 上的射影为点Q ,求点Q 的坐标;(3)互相垂直的两条直线1l 与2l 相交于点P ,且1l 、2l 都与椭圆C 只有一个公共点,求点P 的轨迹方程.【答案】(1)证明见解析;(2)2(,)33Q ;(3)223x y +=.【分析】(1)当0M y =时,符合题意;当0M y ≠时,联立直线与椭圆的方程,得判别式为0,从而方程组只有一组解,进而可得答案;(2)设11(,)A x y ,22(,)B x y ,得出A ,B的坐标满足直线方程 21x =,推出直线AB的方程为21x+=,联立NQ 的方程解得Q 点坐标;(3)设()00,P x y ,分两种情况:当直线1l 与2l 有一条斜率不存在时,当直线1l 与2l 有一条斜率存在时,讨论点P 的轨迹,即可得出答案.【详解】(1)当0M y =时,M x =12M M x xy y +=,即直线x =,与椭圆C 只有一个公共点.当0M y ≠时,由221212M M x xy y x y ⎧+=⎪⎪⎨⎪+=⎪⎩得2222211)1024M M M M Mx x x x y y y +-+-=(,2222422222114(1)24M M M M M M M M x x y x y y y y -++∆=-+-=,又2212M M x y +=,∴有0∆=,从而方程组只有一组解,直线12M M x xy y +=与椭圆C 的有且只有一个公共点.(2)设11(,)A x y ,22(,)B x y .由(1)知两条直线为1112x x y y +=,2212x xy y +=,又N 是它们的交点,∴1112x +=,2212x+=,从而有11(,)A x y ,22(,)B x y的坐标满足直线方程12x+=,所以直线AB:12x+=.直线NQ的方程为1)y x -=-,由121)x y x ⎧+=⎪⎨⎪=-⎩解得233x y ⎧=⎪⎪⎨⎪=⎪⎩,即2(,33Q ,(3)设00(,)P x y .当直线1l 与2l有一条斜率不存在时,(1)P ±,22003x y +=.当直线1l 与2l 的斜率都存在时,设为1k 和2k ,由0022()12y y k x x x y -=-⎧⎪⎨+=⎪⎩得22222000000(12)4()2(21)0k x k y kx x k x y kx y ++-++--=,由22222000000[4()]4(12)2(21)0k y kx k k x y kx y ∆=--⋅+⋅⋅+--=,整理得2220000(2)210x k x y k y -++-=,202x ≠,1k 和2k 是这个方程的两个根,∴有20122112y k k x -==--,得22003x y +=,所以点P 的轨迹方程是223x y +=.【点睛】关键点点睛:解决第一问主要是通过联立直线与椭圆所构成的方程组有一个解;解决第二问主要是通过第一问中的结论得出AB 的方程;解决第三问主要是依据两直线的关系得到2122112y k k x -==--.8.已知椭圆()2222:10x y O a b a b+=>>的左、右顶点分别为A ,B ,点P 在椭圆O 上运动,若PAB △面积的最大值为O 的离心率为12.(1)求椭圆O 的标准方程;(2)过B 点作圆E :()2222x y r +-=,()02r <<的两条切线,分别与椭圆O 交于两点C ,D (异于点B ),当r 变化时,直线CD 是否恒过某定点?若是,求出该定点坐标,若不是,请说明理由.【答案】(1)22143x y +=;(2)直线CD 恒过定点()14,0.【分析】(1)首先列出关于,,a b c 的等式,再求椭圆的标准方程;(2)首先设出过点()2,0B 的切线方程,利用d r =,得到关于斜率k 的一元二次方程,得到根与系数的关系121k k =,再与椭圆方程联立求得点,C D 的坐标,写出直线CD 的斜率,并写出直线CD 的方程,说明直线过定点.【详解】(1)由题可知当点P 在椭圆O 的上顶点时,PAB S 最大,此时122PABS ab ab =⨯==△222122ab c a a a b c ⎧=⎪⎪=⇒=⎨⎪-=⎪⎩,b =,1c =,∴椭圆O 的标准方程为22143x y +=.(2)设过点()2,0B 与圆E 相切的直线方程为()2y k x =-,即20kx y k --=,∵直线与圆E :()2222x y r +-=相切,∴d r ==,即得()2224840r k k r -++-=.设两切线的斜率分别为1k ,()212k k k ≠,则121k k =,设()11,C x y ,()22,D x y ,由()()12222221112341616120143y k x k x k x k x y ⎧=-⎪⇒+-+-=⎨+=⎪⎩,∴211211612234k x k -=+,即211218634k x k -=+,∴11211234k y k -=+;同理:22212222186863443k k x k k --==++,212222112123443k k y k k --==++;∴()112221111222112112211121243348686414334CDk k y y k k k k k k x x k k k ----++===---+-++,∴直线CD 的方程为()21112221111286343441k k k y x k k k ⎛⎫-+=- ⎪ ⎪+++⎝⎭.整理得()()()()111222111714412141k k k y x x k k k =-=-+++,∴直线CD 恒过定点()14,0.【点睛】本题考查椭圆方程,直线与圆,直线与椭圆的位置关系,重点考查转化思想,计算能力,逻辑推理能力,属于难题.9.如图,在平面直角坐标系xOy 中,已知椭圆C 1:24x +y 2=1,椭圆C 2:22x a +22y b=1(a >b >0),C 2与C 1的长轴长之比为∶1,离心率相同.(1)求椭圆C 2的标准方程;(2)设点P 为椭圆C 2上的一点.①射线PO 与椭圆C 1依次交于点A ,B ,求证:PAPB为定值;②过点P 作两条斜率分别为k 1,k 2的直线l 1,l 2,且直线l 1,l 2与椭圆C 1均有且只有一个公共点,求证k 1·k 2为定值.【答案】(1)28x +22y =1;(2)①证明见解析,②证明见解析【分析】(1)根据已知条件,求出a ,b 的值,得到椭圆C 2的标准方程.(2)①对直线OP 斜率分不存在和存在两种情况讨论,当OP 斜率存在时,设直线OP 的方程为y =kx ,并与椭圆C 1的方程联立,解得点A 横坐标,同理求得点P 横坐标,再通过弦长公式,求出PAPB的表达式,化简整理得到定值.②设P (x 0,y 0),写出直线l 1的方程,并与椭圆C 1联立,得到关于x 的一元二次方程,根据直线l 1与椭圆C 1有且只有一个公共点,得到方程只有一解,即Δ=0,整理得2201(4)x k --2x 0y 0k 1+20y -1=0,同理得到2202(4)x k --2x 0y 0k 2+20y -1=0,从而说明k 1,k 2是关于k 的一元二次方程的两个根,运用根与系数的关系,证得定值.【详解】(1)设椭圆C 2的焦距为2c ,由题意,a =,1b=b,因此椭圆C 2的标准方程为28x +22y =1.(2)①1°当直线OP 斜率不存在时,PA-1,PB+1,则PA PB=3-.2°当直线OP 斜率存在时,设直线OP 的方程为y =kx ,代入椭圆C 1的方程,消去y ,得(4k 2+1)x 2=4,所以22441A x k =+,同理22841P x k =+.所以222P A x x =,由题意,x P 与x A 同号,所以x Px A ,从而PA PB =p A p B x x x x --=p A p A x x x x -+3-.所以PAPB=3-为定值.②设P (x 0,y 0),所以直线l 1的方程为y -y 0=k 1(x -x 0),即y =k 1x -k 1x 0+y 0,记t =-k 1x 0+y 0,则l 1的方程为y =k 1x +t ,代入椭圆C 1的方程,消去y ,得(421k +1)x 2+8k 1tx +4t 2-4=0,因为直线l 1与椭圆C 1有且只有一个公共点,所以Δ=(8k 1t )2-4(421k +1)(4t 2-4)=0,即421k -t 2+1=0,将t =-k 1x 0+y 0代入上式,整理得,2201(4)x k --2x 0y 0k 1+20y -1=0,同理可得,2202(4)x k --2x 0y 0k 2+20y -1=0,所以k 1,k 2为关于k 的方程(20x-4)k 2-2x 0y 0k +y 2-1=0的两根,从而k 1·k 2=202014y x --.又点在P (x 0,y 0)椭圆C 2:28x +22y =1上,所以2200124y x =-,所以k 1·k 2=20201211444x x --=--为定值.【点睛】本题考查求椭圆标准方程,考查椭圆中的定值问题,椭圆中的定值问题,一种方法是直接计算,即由直线与椭圆相交求出交点坐标,求出直线斜率等,然后计算题中要证定值的量即可得,一种不直接计算,像本题(2)②中通过直线与椭圆相切,得出两直线斜率满足的关系式,从而确定这两个斜率是某个二次方程的根,由韦达定理直接得证,即建立参数之间的联系,然后推导出定值.10.已知抛物线()2:20C y px p =>上一点()0,2P x 到焦点F 的距离02PF x =.(1)求抛物线C 的方程;(2)过点P 引圆()(222:30M x y rr -+=<≤的两条切线PA PB 、,切线PA PB 、与抛物线C 的另一交点分别为A B 、,线段AB 中点的横坐标记为t ,求t 的取值范围.【答案】(1)24y x =(2)见解析【分析】(1)由题意确定p 的值即可确定抛物线方程;(2)很明显切线斜率存在,由圆心到直线的距离等于半径可得12,k k 是方程()2224840r k k r --+-=的两根,联立直线方程与抛物线方程可得点D 的横坐标()()201212223x k k k k =+-+-.结合韦达定理将原问题转化为求解函数的值域的问题即可.【详解】(1)由抛物线定义,得02pPF x =+,由题意得:0022240p x x px p ⎧=+⎪⎪=⎨⎪>⎪⎩解得021p x =⎧⎨=⎩所以,抛物线的方程为24y x =.(2)由题意知,过P 引圆()2223(0x y r r -+=<≤的切线斜率存在,设切线PA 的方程为()112y k x =-+,则圆心M 到切线PA的距离d r ==,整理得,()222114840r k k r --+-=.设切线PB 的方程为()212y k x =-+,同理可得()222224840r k k r --+-=.所以,12,k k 是方程()2224840r k k r --+-=的两根,121228,14k k k k r +==-.设()11,A x y ,()22,B x y 由()12124y k x y x ⎧=-+⎨=⎩得,2114480k y y k --+=,由韦达定理知,111842k y k -=,所以11211424242k y k k k -==-=-,同理可得2142y k =-.设点D 的横坐标为0x ,则()()22222112124242288k k x x y y x -+-++===()()()()22212121212221223k k k k k k k k =+-++=+-+-.设12t k k =+,则[)284,24t r =∈---,所以,20223x t t =--,对称轴122t =>-,所以0937x <≤【点睛】本题主要考查抛物线方程的求解,直线与抛物线的位置关系等知识,意在考查学生的转化能力和计算求解能力.11.如图,已知00(,)M x y 是椭圆C :13622=+y x 上的任一点,从原点O 向圆M :()()22002x x y y -+-=作两条切线,分别交椭圆于点P 、Q .(1)若直线OP ,OQ 的斜率存在,并记为1k ,2k ,求证:12k k 为定值;(2)试问22OP OQ +是否为定值?若是,求出该值;若不是,说明理由.【答案】(1)见解析;(2)22OP OQ +为定值9.【解析】试题分析:(1)设直线OQ OP ,的直线方程分别为1y k x =、2y k x =,由圆心到直线的距离等于半径可以得到022)2(201002120=-+--y k y x k x 、022)2(202002220=-+--y k y x k x ,由此可得21k k 、是方程022)2(2000220=-+--y k y x k x 的两个不相等的实数根,由违达定理可知22202021--=x y k k ,由点M 在椭圆上可得201220111222x k k x -==--;(2)分直线OP 与直线OQ 与椭圆方程联立,可得222111216(1)12k x y k ++=+,222222226(1)12k x y k ++=+,直接计算22OP OQ +,并将1212k k =-代入表达式即可得到22OP OQ +的和为定值.试题解析:(1)因为直线OP :1y k x =以及OQ :2y k x =与圆M 相切,所以21||21001=+-ky x k ,化简得:022)2(201002120=-+--y k y x k x 同理:022)2(202002220=-+--y k y x k x ,所以,20122022y k k x -∴⋅=-因为点00(,)M x y 在椭圆C 上,所以2200163x y +=,即2200132y x =-,所以21220111222x k k x -==--.(2)22OP OQ +是定值,定值为9.理由如下:法一:(i )当直线OP 、OQ 不落在坐标轴上时,设),(,),(2211y x Q y x P ,联立122,1,63y k x x y =⎧⎪⎨+=⎪⎩解得21212211216,126.12x k k y k ⎧=⎪+⎪⎨⎪=⎪+⎩所以222111216(1)12k x y k ++=+,同理,得222222226(1)12k x y k ++=+,由1212k k =-,所以2222221122OP OQ x y x y +=+++221222126(1)6(1)1212k k k k ++=+++2211221116(1())6(1)211212()2k k k k +-+=+++-212191812k k +=+9=(ii )当直线OP 、OQ 落在坐标轴上时,显然有22OP OQ +9=,综上:22OP OQ +9=法二:(i )当直线OP 、OQ 不落在坐标轴上时,设),(,),(2211y x Q y x P ,因为1212k k =-,所以2222121214y y x x =,因为),(,),(2211y x Q y x P 在椭圆C 上,所以22112222163163x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,即22112222132132y x y x ⎧=-⎪⎪⎨⎪=-⎪⎩,所以22221212111(3)(3)224x x x x --=,整理得22126x x +=,所以222212121133322y y x x ⎛⎫⎛⎫+=-+-= ⎪ ⎪⎝⎭⎝⎭,所以22OP OQ +9=.(ii )当直线OP 、OQ 落在坐标轴上时,显然有22OP OQ +9=,综上:22OP OQ +9=.考点:1.椭圆的定义与几何性质;2.直线与圆的位置关系;3.直线与椭圆的位置关系.12.已知抛物线E :22x py =过点()1,1,过抛物线E 上一点()00,P x y 作两直线PM ,PN 与圆C :()2221x y +-=相切,且分别交抛物线E 于M 、N 两点.(1)求抛物线E 的方程,并求其焦点坐标和准线方程;(2)若直线MN的斜率为,求点P 的坐标.【答案】(1)抛物线E 的方程为2x y =,焦点坐标为10,4⎛⎫⎪⎝⎭,准线方程为14y =-;(2))或1,33⎛⎫- ⎪ ⎪⎝⎭【分析】(1)将点()1,1代入抛物线方程,可求出抛物线E 的方程,进而可求出焦点坐标及准线方程;(2)设()211,M x x ,()222,N x x ,可表示出直线PM 及PN 的斜率的表达式,进而可表示出两直线的方程,再结合直线和圆相切,利用点到直线的距离等于半径,可得1x ,2x 满足方程()2220001230x x x x x -++-=,从而得到0122021x x x x -+=-,又直线MN的斜率为12x x +=,可求出0x 的值,即可求出点P 的坐标.【详解】(1)将点()1,1代入抛物线方程得,12p =,所以抛物线E 的方程为2x y =,焦点坐标为:10,4⎛⎫⎪⎝⎭,准线方程为:14y =-.(2)由题意知,200y x =,设()211,M x x ,()222,N x x ,则直线PM 的斜率为22010101PMx x k x x x x -==+-,同理,直线PN 的斜率为02x x +,直线MN 的斜率为22121212x x x x x x -=-+,故12x x +=,于是直线PM 的方程为()()20010y x x x x x -=+-,即()01100x x y x x x +--=,1=,即()222010101230x x x x x -++-=,同理,直线PN 的方程为()02200x x x y x x +--=,可得()222020201230x x x x x -++-=,故1x ,2x 是方程()2220001230x x x x x -++-=的两根.故0122021x x x x -+=-,即02021x x -=-20020x=-,解得0=x 或3-.当0=x 时,03y =;当033x =-时,13y=.故点P的坐标为)或1,33⎛⎫-⎪ ⎪⎝⎭.【点睛】本题考查抛物线方程的求法,考查直线与圆位置关系的应用,考查直线的方程,考查学生的计算求解能力,属于中档题.。
圆锥曲线中的定点、定值和定直线问题一、椭圆定点问题1已知圆E :x +1 2+y 2=16,点F 1,0 ,G 是圆E 上任意一点,线段GF 的垂直平分线和半径GE 相交于H(1)求动点H 的轨迹Γ的方程;(2)经过点F 和T 7,0 的圆与直线l :x =4交于P ,Q ,已知点A 2,0 ,且AP 、AQ 分别与Γ交于M 、N .试探究直线MN 是否经过定点.如果有,请求出定点;如果没有,请说明理由.2已知点A (2,0),B -65,-45 在椭圆M :x 2a 2+y 2b2=1(a >b >0)上.(1)求椭圆M 的方程;(2)直线l 与椭圆M 交于C ,D 两个不同的点(异于A ,B ),过C 作x 轴的垂线分别交直线AB ,AD 于点P ,Q ,当P 是CQ 中点时,证明.直线l 过定点.2024年高考数学专项复习圆锥曲线中的定点、定值和定直线问题(解析版)3如图,椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右顶点分别为A ,B .左、右焦点分别为F 1,F 2,离心率为22,点M (2,1)在椭圆C 上.(1)求椭圆C 的方程;(2)已知P ,Q 是椭圆C 上两动点,记直线AP 的斜率为k 1,直线BQ 的斜率为k 2,k 1=2k 2.过点B 作直线PQ 的垂线,垂足为H .问:在平面内是否存在定点T ,使得TH 为定值,若存在,求出点T 的坐标;若不存在,试说明理由.4已知椭圆C :x 2a 2+y 2b2=1a >b >0 的左、右焦点分别为F 1,F 2,A ,B 分别是C 的右、上顶点,且AB =7,D 是C 上一点,△BF 2D 周长的最大值为8.(1)求C 的方程;(2)C 的弦DE 过F 1,直线AE ,AD 分别交直线x =-4于M ,N 两点,P 是线段MN 的中点,证明:以PD 为直径的圆过定点.5已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左顶点为A ,过右焦点F 且平行于y 轴的弦PQ =AF =3.(1)求△APQ 的内心坐标;(2)是否存在定点D ,使过点D 的直线l 交C 于M ,N ,交PQ 于点R ,且满足MR ⋅ND =MD ⋅RN 若存在,求出该定点坐标,若不存在,请说明理由.二、双曲线定点问题1已知点P 4,3 为双曲线E :x 2a 2-y 2b2=1(a >0,b >0)上一点,E 的左焦点F 1到一条渐近线的距离为3.(1)求双曲线E 的标准方程;(2)不过点P 的直线y =kx +t 与双曲线E 交于A ,B 两点,若直线PA ,PB 的斜率和为1,证明:直线y =kx +t 过定点,并求该定点的坐标.2双曲线C:x2a2-y2b2=1(a>0,b>0)的左顶点为A,焦距为4,过右焦点F作垂直于实轴的直线交C于B、D两点,且△ABD是直角三角形.(1)求双曲线C的方程;(2)已知M,N是C上不同的两点,MN中点的横坐标为2,且MN的中垂线为直线l,是否存在半径为1的定圆E,使得l被圆E截得的弦长为定值,若存在,求出圆E的方程;若不存在,请说明理由.3已知双曲线C:x2a2-y2b2=1a>0,b>0的右焦点,右顶点分别为F,A,B0,b,AF=1,点M在线段AB上,且满足BM=3MA,直线OM的斜率为1,O为坐标原点.(1)求双曲线C的方程.(2)过点F的直线l与双曲线C的右支相交于P,Q两点,在x轴上是否存在与F不同的定点E,使得EP⋅FQ=EQ⋅FP恒成立?若存在,求出点E的坐标;若不存在,请说明理由.4已知双曲线C 与双曲线x 212-y 23=1有相同的渐近线,且过点A (22,-1).(1)求双曲线C 的标准方程;(2)已知点D (2,0),E ,F 是双曲线C 上不同于D 的两点,且DE ·DF =0,DG ⊥EF 于点G ,证明:存在定点H ,使GH 为定值.5已知双曲线C :x 2-y 2b2=1b >0 的左、右焦点分别为F 1,F 2,A 是C 的左顶点,C 的离心率为2.设过F 2的直线l 交C 的右支于P 、Q 两点,其中P 在第一象限.(1)求C 的标准方程;(2)若直线AP 、AQ 分别交直线x =12于M 、N 两点,证明:MF 2 ⋅NF 2 为定值;(3)是否存在常数λ,使得∠PF 2A =λ∠PAF 2恒成立?若存在,求出λ的值;否则,说明理由.三、抛物线定点问题1已知动圆M 恒过定点F 0,18 ,圆心M 到直线y =-14的距离为d ,d =MF +18.(1)求M 点的轨迹C 的方程;(2)过直线y =x -1上的动点Q 作C 的两条切线l 1,l 2,切点分别为A ,B ,证明:直线AB 恒过定点.2已知抛物线C 1:x 2=2py (p >0)和圆C 2:(x +1)2+y 2=2,倾斜角为45°的直线l 1过C 1焦点,且l 1与C 2相切.(1)求抛物线C 1的方程;(2)动点M 在C 1的准线上,动点A 在C 1上,若C 1在点A 处的切线l 2交y 轴于点B ,设MN =MA +MB ,证明点N 在定直线上,并求该定直线的方程.3已知直线l1:x-y+1=0过椭圆C:x24+y2b2=1(b>0)的左焦点,且与抛物线M:y2=2px(p>0)相切.(1)求椭圆C及抛物线M的标准方程;(2)直线l2过抛物线M的焦点且与抛物线M交于A,B两点,直线OA,OB与椭圆的过右顶点的切线交于M,N两点.判断以MN为直径的圆与椭圆C是否恒交于定点P,若存在,求出定点P的坐标;若不存在,请说明理由.4在平面直角坐标系中,已知圆心为点Q的动圆恒过点F(0,1),且与直线y=-1相切,设动圆的圆心Q的轨迹为曲线Γ.(1)求曲线Γ的方程;(2)P为直线l:y=y0y0<0上一个动点,过点P作曲线Γ的切线,切点分别为A,B,过点P作AB的垂线,垂足为H,是否存在实数y0,使点P在直线l上移动时,垂足H恒为定点?若不存在,说明理由;若存在,求出y0的值,并求定点H的坐标.5已知抛物线C :y 2=2px p >0 ,直线x +y +1=0与抛物线C 只有1个公共点.(1)求抛物线C 的方程;(2)若直线y =k x -p 2与曲线C 交于A ,B 两点,直线OA ,OB 与直线x =1分别交于M ,N 两点,试判断以MN 为直径的圆是否经过定点?若是,求出定点坐标;若不是,请说明理由.四、椭圆定值问题1已知椭圆C :x 2a 2+y 2b2=1a >b >0 的离心率e =12,短轴长为23.(1)求椭圆C 的方程;(2)已知经过定点P 1,1 的直线l 与椭圆相交于A ,B 两点,且与直线y =-34x 相交于点Q ,如果AQ =λAP ,QB =μPB ,那么λ+μ是否为定值?若是,请求出具体数值;若不是,请说明理由.2在椭圆C :x 2a 2+y 2b2=1(a >b >0)中,其所有外切矩形的顶点在一个定圆Γ:x 2+y 2=a 2+b 2上,称此圆为椭圆的蒙日圆.椭圆C 过P 1,22,Q -62,12 .(1)求椭圆C 的方程;(2)过椭圆C 的蒙日圆上一点M ,作椭圆的一条切线,与蒙日圆交于另一点N ,若k OM ,k ON 存在,证明:k OM ⋅k ON 为定值.3已知O 为坐标原点,定点F 1-1,0 ,F 21,0 ,圆O :x 2+y 2=2,M 是圆内或圆上一动点,圆O 与以线段F 2M 为直径的圆O 1内切.(1)求动点M 的轨迹方程;(2)设M 的轨迹为曲线E ,若直线l 与曲线E 相切,过点F 2作直线l 的垂线,垂足为N ,证明:ON 为定值.4设椭圆E :x 2a 2+y 2b2=1a >b >0 过点M 2,1 ,且左焦点为F 1-2,0 .(1)求椭圆E 的方程;(2)△ABC 内接于椭圆E ,过点P 4,1 和点A 的直线l 与椭圆E 的另一个交点为点D ,与BC 交于点Q ,满足AP QD =AQ PD ,证明:△PBC 面积为定值,并求出该定值.5椭圆C :x 2a 2+y 2b2=1的右焦点为F (1,0),离心率为12.(1)求椭圆C 的方程;(2)过F 且斜率为1的直线交椭圆于M ,N 两点,P 是直线x =4上任意一点.求证:直线PM ,PF ,PN 的斜率成等差数列.五、双曲线定值问题1在平面直角坐标系xOy中,圆F1:x+22+y2=4,F22,0,P是圆F1上的一个动点,线段PF2的垂直平分线l与直线PF1交于点M.记点M的轨迹为曲线C.(1)求曲线C的方程;(2)过点F2作与x轴不垂直的任意直线交曲线C于A,B两点,线段AB的垂直平分线交x轴于点H,求证:ABF2H为定值.2已知双曲线x2-y2=1的左、右顶点分别为A1,A2,动直线l:y=kx+m与圆x2+y2=1相切,且与双曲线左、右两支的交点分别为P1(x1,y1),P2(x2,y2).(1)求k的取值范围;(2)记直线P1A1的斜率为k1,直线P2A2的斜率为k2,那么k1k2是定值吗?证明你的结论.3已知P 是圆C :(x +2)2+y 2=12上一动点,定点M (2,0),线段PM 的垂直平分线n 与直线PC 交于点T ,记点T 的轨迹为C .(1)求C 的方程;(2)若直线l 与曲线C 恰有一个共点,且l 与直线l 1:y =33x ,l 2:y =-33x 分别交于A 、B 两点,△OAB 的面积是否为定值?若是,求出该定值,若不是,请说明理由.4已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的渐近线方程为y =±34x ,焦距为10,A 1,A 2为其左右顶点.(1)求C 的方程;(2)设点P 是直线l :x =2上的任意一点,直线PA 1、PA 2分别交双曲线C 于点M 、N ,A 2Q ⊥MN ,垂足为Q ,求证:存在定点R ,使得QR 是定值.5已知F1,F2分别为双曲线C:x2a2-y2b2=1(a>0,b>0)的左,右焦点,点P2,26在C上,且双曲线C的渐近线与圆x2+y2-6y+8=0相切.(1)求双曲线C的方程;(2)若过点F2且斜率为k的直线l交双曲线C的右支于A,B两点,Q为x轴上一点,满足QA=QB,试问AF1+BF1-4QF2是否为定值?若是,求出该定值;若不是,请说明理由.六、抛物线定值问题1已知抛物线C:x2=2py(p>0)的焦点为F,准线为l,过点F且倾斜角为π6的直线交抛物线于点M(M在第一象限),MN⊥l,垂足为N,直线NF交x轴于点D,MD=43.(1)求p的值.(2)若斜率不为0的直线l1与抛物线C相切,切点为G,平行于l1的直线交抛物线C于P,Q两点,且∠PGQ=π2,点F到直线PQ与到直线l1的距离之比是否为定值?若是,求出此定值;若不是,请说明理由.2已知抛物线C1:y2=2px p>0到焦点的距离为3.上一点Q1,a(1)求a,p的值;(2)设P为直线x=-1上除-1,-3两点外的任意一点,过P作圆C2:x-2,-1,32+y2=3的两条切线,分别与曲线C1相交于点A,B和C,D,试判断A,B,C,D四点纵坐标之积是否为定值?若是,求该定值;若不是,请说明理由.3已知点F是抛物线C:y2=2px p>0的焦点,纵坐标为2的点N在C上,以F为圆心、NF为半径的圆交y轴于D,E,DE=23.(1)求抛物线C的方程;(2)过-1,0作直线l与抛物线C交于A,B,求k NA+k NB的值.4贝塞尔曲线是计算机图形学和相关领域中重要的参数曲线.法国数学象卡斯特利奥对贝塞尔曲线进行了图形化应用的测试,提出了De Casteljau 算法:已知三个定点,根据对应的比例,使用递推画法,可以画出地物线.反之,已知抛物线上三点的切线,也有相应成比例的结论.如图所示,抛物线Γ:x 2=2py ,其中p >0为一给定的实数.(1)写出抛物线Γ的焦点坐标及准线方程;(2)若直线l :y =kx -2pk +2p 与抛物线只有一个公共点,求实数k 的值;(3)如图,A ,B ,C 是H 上不同的三点,过三点的三条切线分别两两交于点D ,E ,F ,证明:|AD ||DE |=|EF ||FC |=|DB ||BF |.5已知点A 为直线l :x +1=0上的动点,过点A 作射线AP (点P 位于直线l 的右侧)使得AP ⊥l ,F 1,0 ,设线段AF 的中点为B ,设直线PB 与x 轴的交点为T ,PF =TF .(1)求动点P 的轨迹C 的方程.(2)设过点Q 0,2 的两条射线分别与曲线C 交于点M ,N ,设直线QM ,QN 的斜率分别为k 1,k 2,若1k 1+1k 2=2,请判断直线MN 的斜率是否为定值以及其是否过定点,若斜率为定值,请计算出定值;若过定点,请计算出定点.七、椭圆定直线问题1椭圆E的方程为x24+y28=1,左、右顶点分别为A-2,0,B2,0,点P为椭圆E上的点,且在第一象限,直线l过点P(1)若直线l分别交x,y轴于C,D两点,若PD=2,求PC的长;(2)若直线l过点-1,0,且交椭圆E于另一点Q(异于点A,B),记直线AP与直线BQ交于点M,试问点M是否在一条定直线上?若是,求出该定直线方程;若不是,说明理由.2已知曲线C:(5-m)x2+(m-2)y2=8(m∈R).(1)若曲线C是椭圆,求m的取值范围.(2)设m=4,曲线C与y轴的交点为A,B(点A位于点B的上方),直线l:y=kx+4与曲线C交于不同的两点M,N.设直线AN与直线BM相交于点G.试问点G是否在定直线上?若是,求出该直线方程;若不是,说明理由.3已知椭圆C :x 2a 2+y 2b2=1a >0,b >0 过点M 263,63 ,且离心率为22.(1)求椭圆C 的标准方程;(2)若直线l :y =x +m 与椭圆C 交y 轴右侧于不同的两点A ,B ,试问:△MAB 的内心是否在一条定直线上?若是,请求出该直线方程;若不是,请说明理由.4已知椭圆C :x 2a 2+y 2b2=1a >b >0 过点Q 1,32 ,且离心率为12.(1)求椭圆C 的方程;(2)过点P 1,2 的直线l 交C 于A 、B 两点时,在线段AB 上取点M ,满足AP ⋅MB =AM ⋅PB ,证明:点M 总在某定直线上.5椭圆E的中心为坐标原点,坐标轴为对称轴,左、右顶点分别为A-2,0,B2,0,点1,6在椭圆E上.(1)求椭圆E的方程.(2)过点-1,0的直线l与椭圆E交于P,Q两点(异于点A,B),记直线AP与直线BQ交于点M,试问点M是否在一条定直线上?若是,求出该定直线方程;若不是,请说明理由.八、双曲线定直线问题1如图1所示,双曲线具有光学性质:从双曲线右焦点发出的光线经过双曲线镜面反射,其反射光线的反向延长线经过双曲线的左焦点.若双曲线E:x24-y2b2=1b>0的左、右焦点分别为F1、F2,从F2发出的光线经过图2中的A、B两点反射后,分别经过点C和D,且tan∠CAB=-34,AB⊥BD.(1)求双曲线E的方程;(2)设A1、A2为双曲线E实轴的左、右顶点,若过P4,0的直线l与双曲线C交于M、N两点,试探究直线A1M与直线A2N的交点Q是否在某条定直线上?若存在,请求出该定直线方程;如不存在,请说明理由.2已知曲线C上的动点P满足|PF1|-|PF2|=2,且F1-2,0,F22,0.(1)求C的方程;(2)若直线AB与C交于A、B两点,过A、B分别做C的切线,两切线交于点P .在以下两个条件①②中选择一个条件,证明另外一个条件成立.①直线AB经过定点M4,0;②点P 在定直线x=14上.3已知点(2,3)在双曲线C:x2a2-y2a2+2=1上.(1)双曲线上动点Q处的切线交C的两条渐近线于A,B两点,其中O为坐标原点,求证:△AOB的面积S 是定值;(2)已知点P12,1,过点P作动直线l与双曲线右支交于不同的两点M、N,在线段MN上取异于点M、N的点H,满足PMPN=MHHN,证明:点H恒在一条定直线上.4已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 经过点D 4,3 ,直线l 1、l 2分别是双曲线C 的渐近线,过D 分别作l 1和l 2的平行线l 1和l 2,直线l 1交x 轴于点M ,直线l 2交y 轴于点N ,且OM ⋅ON =23(O 是坐标原点)(1)求双曲线C 的方程;(2)设A 1、A 2分别是双曲线C 的左、右顶点,过右焦点F 的直线交双曲线C 于P 、Q 两个不同点,直线A 1P 与A 2Q 相交于点G ,证明:点G 在定直线上.5已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 的离心率为2,过点E 1,0 的直线l 与C 左右两支分别交于M ,N 两个不同的点(异于顶点).(1)若点P 为线段MN 的中点,求直线OP 与直线MN 斜率之积(O 为坐标原点);(2)若A ,B 为双曲线的左右顶点,且AB =4,试判断直线AN 与直线BM 的交点G 是否在定直线上,若是,求出该定直线,若不是,请说明理由九、抛物线定直线问题1过抛物线x 2=2py (p >0)内部一点P m ,n 作任意两条直线AB ,CD ,如图所示,连接AC ,BD 延长交于点Q ,当P 为焦点并且AB ⊥CD 时,四边形ACBD 面积的最小值为32(1)求抛物线的方程;(2)若点P 1,1 ,证明Q 在定直线上运动,并求出定直线方程.2已知抛物线E :y 2=2px p >0 ,过点-1,0 的两条直线l 1、l 2分别交E 于A 、B 两点和C 、D 两点.当l 1的斜率为12时,AB =210.(1)求E 的标准方程;(2)设G 为直线AD 与BC 的交点,证明:点G 在定直线上.3已知抛物线C 1:x 2=2py (p >0)和圆C 2:x +1 2+y 2=2,倾斜角为45°的直线l 1过C 1的焦点且与C 2相切.(1)求p 的值:(2)点M 在C 1的准线上,动点A 在C 1上,C 1在A 点处的切线l 2交y 轴于点B ,设MN =MA +MB,求证:点N 在定直线上,并求该定直线的方程.4已知拋物线x 2=4y ,P 为拋物线外一点,过P 点作抛物线的切线交抛物线于A ,B 两点,交x 轴于M ,N 两点.(1)若P -1,-2 ,设△OAB 的面积为S 1,△PMN 的面积为S 2,求S 1S 2的值;(2)若P x 0,y 0 ,求证:△PMN 的垂心H 在定直线上.5已知F为抛物线C:x2=2py(p>0)的焦点,直线l:y=2x+1与C交于A,B两点且|AF|+|BF|= 20.(1)求C的方程.(2)若直线m:y=2x+t(t≠1)与C交于M,N两点,且AM与BN相交于点T,证明:点T在定直线上.圆锥曲线中的定点、定值和定直线问题一、椭圆定点问题1已知圆E :x +1 2+y 2=16,点F 1,0 ,G 是圆E 上任意一点,线段GF 的垂直平分线和半径GE 相交于H(1)求动点H 的轨迹Γ的方程;(2)经过点F 和T 7,0 的圆与直线l :x =4交于P ,Q ,已知点A 2,0 ,且AP 、AQ 分别与Γ交于M 、N .试探究直线MN 是否经过定点.如果有,请求出定点;如果没有,请说明理由.【答案】(1)x 24+y 23=1(2)经过定点,定点坐标为1,0 【分析】(1)利用椭圆的定义即可求出动点H 的轨迹Γ的方程;(2)设M x 1,y 1 ,N x 2,y 2 ,直线MN 的方程为:x =my +n ,与椭圆方程联立,根据韦达定理列出x 1,y 1,x 2,y 2之间的关系,再利用两点式写出直线MA 的方程,求出点P 4,2y 1x 1-2 ,Q 4,2y 2x 2-2,再写出以PQ 为直径的圆的方程,根据圆的方程经过点T 7,0 ,得到关系式,进而求得n 为定值,从而得到直线MN 过定点.【详解】(1)如图所示,∵HE +HF =HE +HG =4,且EF =2<4,∴点H 的轨迹是以E ,F 为焦点的椭圆,设椭圆方程x 2a 2+y 2b2=1,则2a =4,c =1,∴a =2,b =a 2-c 2= 3.所以点H 的轨迹方程为:x 24+y 23=1.(2)设直线MN 的方程为:x =my +n ,由x 24+y 23=1x =my +n ,得3m 2+4 y 2+6mny +3n 2-12=0设M x 1,y 1 ,N x 2,y 2 ,则y 1+y 2=-6mn 3m 2+4,y 1y 2=3n 2-123m 2+4.所以,x 1+x 2=m y 1+y 2 +2n =8n 3m 2+4,x 1x 2=my 1+n my 2+n =-12m 2+4n 23m 2+4因为直线MA 的方程为:y =y 1x 1-2x -2 ,令x =4,得y P =2y 1x 1-2,所以,P 4,2y 1x1-2 ,同理可得Q 4,2y 2x 2-2,以PQ 为直径的圆的方程为:x -4 2+y -2y 1x 1-2 y -2y 2x 2-2=0,即x -4 2+y 2-2y 1x 1-2+2y 2x 2-2y +2y 1x 1-2×2y 2x 2-2=0,因为圆过点7,0 ,所以,9+2y 1x 1-2×2y 2x 2-2=0,得9+4y 1y 2x 1x 2-2x 1+x 2 +4=0,代入得9+12n 2-483m 2+4-12m 2+4n 23m 2+4-16n3m 2+4+4=0,化简得,9+12n 2-484n 2-16n +16=04n 2-16n +16≠0,n ≠2 ,解得n =1或n =2(舍去),所以直线MN 经过定点1,0 ,当直线MN 的斜率为0时,此时直线MN 与x 轴重合,直线MN 经过点1,0 ,综上所述,直线MN 经过定点1,0 .2已知点A (2,0),B -65,-45 在椭圆M :x 2a 2+y 2b2=1(a >b >0)上.(1)求椭圆M 的方程;(2)直线l 与椭圆M 交于C ,D 两个不同的点(异于A ,B ),过C 作x 轴的垂线分别交直线AB ,AD 于点P ,Q ,当P 是CQ 中点时,证明.直线l 过定点.【答案】(1)x 24+y 2=1(2)证明见解析【分析】(1)根据椭圆所经过的点列方程求出其方程;(2)设出CD 方程,结合韦达定理和P 是CQ 中点的条件,找到直线CD 中两个参数的关系,从而求出定点.【详解】(1)由题知a =2,又椭圆经过B -65,-45 ,代入可得14-652+1b2-452=1,解得b 2=1,故椭圆的方程为:x 24+y 2=1(2)由题意知,当l ⊥x 轴时,不符合题意,故l 的斜率存在,设l 的方程为y =kx +m ,联立y =kx +m x 24+y 2=1消去y 得4k 2+1 x 2+8kmx +4m 2-4=0,则Δ=64k 2m 2-16m 2-1 4k 2+1 =164k 2-m 2+1 >0,即4k 2+1>m 2设C x 1,y 1 ,D x 2,y 2 ,x 1+x 2=-8km 4k 2+1,x 1x 2=4m 2-44k 2+1AB 的方程为y =14(x -2),令x =x 1得P x 1,x 1-24 ,AD 的方程为y =y 2x 2-2(x -2),令x =x 1得Q x 1,x 1-2x 2-2y 2,由P 是CQ 中点,得x 1-22=y 1+x 1-2x 2-2⋅y 2,即y 1x 1-2+y 2x 2-2=12,即kx 1+m x 2-2 +kx 2+m x 1-2 =12x 1x 2-2x 1+x 2 +4 ,即(1-4k )x 1x 2+(4k -2m -2)x 1+x 2 +4+8m =0,即4m 2+(16k +8)m +16k 2+16k =0,所以(m +2k )(m +2k +2)=0,得m =-2k -2或m =-2k ,当m =-2k -2,此时由Δ>0,得k <-38,符合题意;当m =-2k ,此时直线l 经过点A ,与题意不符,舍去.所以l 的方程为y =kx -2k -2,即y =k (x -2)-2,所以l 过定点(2,-2).3如图,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右顶点分别为A ,B .左、右焦点分别为F 1,F 2,离心率为22,点M (2,1)在椭圆C 上.(1)求椭圆C 的方程;(2)已知P ,Q 是椭圆C 上两动点,记直线AP 的斜率为k 1,直线BQ 的斜率为k 2,k 1=2k 2.过点B 作直线PQ 的垂线,垂足为H .问:在平面内是否存在定点T ,使得TH 为定值,若存在,求出点T 的坐标;若不存在,试说明理由.【答案】(1)C :x 24+y 22=1;(2)存在定点T 23,0 使TH 为定值,理由见解析.【分析】(1)根据离心率,椭圆上点及参数关系列方程组求a ,b ,c ,即可得椭圆方程;(2)根据题意设BQ :y =k (x -2),AP :y =2k (x +2),联立椭圆方程求P ,Q 坐标,判断直线PQ 过定点,结合BH ⊥PQ 于H 确定H 轨迹,进而可得定点使得TH 为定值.【详解】(1)由题意c a =222a 2+1b 2=1a 2=b 2+c 2,可得a 2=4b 2=c 2=2 ,则椭圆方程为C :x 24+y 22=1;(2)若直线BQ 斜率为k ,则直线AP 斜率为2k ,而A (-2,0),B (2,0),所以BQ :y =k (x -2),AP :y =2k (x +2),联立BQ 与椭圆C ,则x 2+2k 2(x -2)2=4,整理得(1+2k 2)x 2-8k 2x +8k 2-4=0,所以2x Q =8k 2-41+2k 2,则x Q =4k 2-21+2k 2,故y Q =-4k1+2k 2,联立AP 与椭圆C ,则x 2+8k 2(x +2)2=4,整理得(1+8k 2)x 2+32k 2x +32k 2-4=0,所以-2x P =32k 2-41+8k 2,则x P =2-16k 21+8k 2,故y P=8k 1+8k 2,综上,x Q -x P =4k 2-21+2k 2-2-16k 21+8k 2=64k 4-4(1+8k 2)(1+2k 2),y Q -y P =-4k 1+2k 2-8k 1+8k 2=-12k +48k 31+8k 2 1+2k 2,当64k 4-4≠0,即k ≠±12时,k PQ =12k (1+4k 2)4(1-16k 4)=3k1-4k 2,此时PQ :y +4k 1+2k 2=3k 1-4k 2x +2-4k 21+2k 2=3k 1-4k 2x +6k -12k 3(1+2k 2)(1-4k 2),所以PQ :y =3k 1-4k 2x +2k 1-4k 2=k 1-4k 2(3x +2),即直线PQ 过定点-23,0 ;当64k 4-4=0,即k =±12时,若k =12,则x Q =-23且y Q =-43,x P =-23且y P =43,故直线PQ 过定点-23,0 ;若k =-12,则x Q =-23且y Q =43,x P =-23且y P =-43,故直线PQ 过定点-23,0 ;综上,直线PQ 过定点M -23,0 ,又BH ⊥PQ 于H ,易知H 轨迹是以BM 为直径的圆上,故BM 的中点23,0 到H 的距离为定值,所以,所求定点T 为23,0 .【点睛】关键点点睛:第二问,设直线BQ ,AP 联立椭圆,结合韦达定理求点P ,Q 坐标,再写出直线PQ 方程判断其过定点是关键.4已知椭圆C :x 2a 2+y 2b2=1a >b >0 的左、右焦点分别为F 1,F 2,A ,B 分别是C 的右、上顶点,且AB =7,D 是C 上一点,△BF 2D 周长的最大值为8.(1)求C 的方程;(2)C 的弦DE 过F 1,直线AE ,AD 分别交直线x =-4于M ,N 两点,P 是线段MN 的中点,证明:以PD 为直径的圆过定点.【答案】(1)x 24+y 23=1;(2)证明见解析.【分析】(1)根据椭圆的定义结合三角形不等式求解即可;(2)设D x 1,y 1 ,E x 2,y 2 ,直线DE :x =my -1,联立直线与椭圆的方程,根据过两点圆的方程,结合图形的对称性可得定点在x 轴上,代入韦达定理求解即可.【详解】(1)依题意,a 2+b 2=7,△BF 2D 周长DB +DF 2 +a =DB +2a -DF 1 +a ≤BF 1 +3a =4a ,当且仅当B ,F 1,D 三点共线时等号成立,故4a =8,所以a 2=4,b 2=3,所以C 的方程x 24+y 23=1;(2)设D x 1,y 1 ,E x 2,y 2 ,直线DE :x =my -1,代入x 24+y 23=1,整理得3m 2+4 y 2-6my -9=0,Δ=36m 2+363m 2+4 >0,y 1+y 2=6m 3m 2+4,y 1y 2=-93m 2+4,易知AD :y =y 1x 1-2x -2 ,令x =-4,得N -4,-6y 1x 1-2 ,同得M -4,-6y 2x 2-2,从而中点P -4,-3y 1x 1-2+y 2x 2-2,以PD 为直径的圆为x +4 x -x 1 +y +3y 1x 1-2+y 2x 2-2y -y 1 =0,由对称性可知,定点必在x 轴上,令y =0得,x +4 x -x 1 -3y 1y 1x 1-2+y 2x 2-2=0,y 1x 1-2+y 2x 2-2=y 1my 1-3+y 2my 2-3=2my 1y 2-3y 1+y 2 m 2y 1y 2-3m y 1+y 2 +9=-18m3m 2+4-18m 3m 2+4-9m 23m 2+4-18m 23m 2+4+9=-36m36=-m ,所以x +4 x -x 1 +3my 1=0,即x 2+4-x 1 x -4x 1+3my 1=0,因为x 1=my 1-1,所以x 2+5-my 1 x -my 1+4=0,即x +1 x -my 1+4 =0,解得x =-1,所以圆过定点-1,0 .【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为x 1,y 1 ,x 2,y 2 ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算Δ;(3)列出韦达定理;(4)将所求问题或题中的关系转化为x 1+x 2,x 1x 2(或y 1+y 2,y 1y 2)的形式;(5)代入韦达定理求解.5已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左顶点为A ,过右焦点F 且平行于y 轴的弦PQ =AF =3.(1)求△APQ 的内心坐标;(2)是否存在定点D ,使过点D 的直线l 交C 于M ,N ,交PQ 于点R ,且满足MR ⋅ND =MD ⋅RN若存在,求出该定点坐标,若不存在,请说明理由.【答案】(1)7-354,0 (2)存在定点D (4,0)【分析】(1)由题意,根据椭圆的定义以及a 2=b 2+c 2,列出等式即可求出椭圆C 的方程,判断△APQ 的内心在x 轴,设直线PT 平分∠APQ ,交x 轴于点T ,此时T 为△APQ 的内心,进行求解即可;(2)设直线l 方程为y =k (x -t ),M (x 1,y 1),N (x 2,y 2),将直线l 的方程与椭圆方程联立,得到根的判别式大于零,由点M 、R 、N 、D 均在直线l 上,得到MR ⋅ND =MD ⋅RN,此时2t -(1+t )(x 1+x 2)+2x 1x 2=0,结合韦达定理求出t =4,可得存在定点D (4,0)满足题意.【详解】(1)∵a 2=b 2+c 2,2b 2a=a +c =3∴a =2,b =3,c =1∴椭圆C 的标准方程为x 24+y 23=1,不妨取P 1,32 ,Q 1,-32 ,A (-2,0),则AP =352,PF =32;因为△APQ 中,AP =AQ ,所以△APQ 的内心在x 轴,设直线PT 平分∠APQ ,交x 轴于T ,则T 为△APQ 的内心,且AT TF =AP PF =5=AT 3-AT ,所以AT =355+1,则T 7-354,0 ;(2)∵椭圆和弦PQ 均关于x 轴上下对称.若存在定点D ,则点D 必在x 轴上∴设D (t ,0)当直线l 斜率存在时,设方程为y =k (x -t ),M x 1,y 1 ,N x 2,y 2 ,直线方程与椭圆方程联立y =k (x -t )x 24+y 23=1,消去y 得4k 2+3 x 2-8k 2tx +4k 2t 2-3 =0,则Δ=48k 2+3-k 2t 2>0,x 1+x 2=8k 2t4k 2+3,x 1x 2=4k 2t 2-3 4k 2+3①∵点R 的横坐标为1,M 、R 、N 、D 均在直线l 上,MR ⋅ND =MD ⋅RN∴1+k 2 1-x 1 t -x 2 =1+k 2 t -x 1 x 2-1∴2t -(1+t )x 1+x 2 +2x 1x 2=0∴2t -(1+t )8k 2t 4k 2+3+2×4k 2t 2-3 4k 2+3=0,整理得t =4,因为点D 在椭圆外,则直线l 的斜率必存在.∴存在定点D (4,0)满足题意【点睛】解决曲线过定点问题一般有两种方法:①探索曲线过定点时,可设出曲线方程,然后利用条件建立等量关系进行消元,借助于曲线系的思想找出定点,或者利用方程恒成立列方程组求出定点坐标.②从特殊情况入手,先探求定点,再证明与变量无关.二、双曲线定点问题1已知点P 4,3 为双曲线E :x 2a 2-y 2b2=1(a >0,b >0)上一点,E 的左焦点F 1到一条渐近线的距离为3.(1)求双曲线E 的标准方程;(2)不过点P 的直线y =kx +t 与双曲线E 交于A ,B 两点,若直线PA ,PB 的斜率和为1,证明:直线y =kx +t 过定点,并求该定点的坐标.【答案】(1)x 24-y 23=1(2)证明见解析,定点为(-2,3).【分析】(1)由点到直线的距离公式求出b =3,再将点P 4,3 代入双曲线方程求出a 2=4,可得双曲线E 的标准方程;(2)联立直线与双曲线方程,利用韦达定理得x 1+x 2、x 1x 2,再根据斜率和为1列式,推出t =2k +3,从而可得直线y =kx +t 过定点(-2,3).【详解】(1)设F 1(-c ,0)(c >0)到渐近线y =bax ,即bx -ay =0的距离为3,则3=|-bc |b 2+a2,结合a 2+b 2=c 2得b =3,又P (4,3)在双曲线x 2a 2-y 23=1上,所以16a2-93=1,得a 2=4,所以双曲线E 的标准方程为x 24-y 23=1.(2)联立y =kx +tx 24-y 23=1,消去y 并整理得3-4k 2 x 2-8ktx -4t 2-12=0,则3-4k 2≠0,Δ=64k 2t 2+4(3-4k 2)(4t 2+12)>0,即t 2+3>4k 2,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=8kt 3-4k 2,x 1x 2=-4t 2+123-4k 2,则k PA +k PB =y 1-3x 1-4+y 2-3x 2-4=kx 1+t -3x 1-4+kx 2+t -3x 2-4=kx 1+t -3 x 2-4 +kx 2+t -3 x 1-4 x 1-4 x 2-4=2kx 1x 2+t -4k -3 x 1+x 2 -8t +24x 1x 2-4(x 1+x 2)+16=1,所以2kx 1x 2+t -4k -3 x 1+x 2 -8t +24=x 1x 2-4(x 1+x 2)+16,所以2k -1 x 1x 2+t -4k +1 x 1+x 2 -8t +8=0,所以-2k -1 4t2+123-4k 2+t -4k +1 ⋅8kt3-4k2-8t +8=0,整理得t 2-6k +2kt -6t -8k 2+9=0,所以(t -3)2+2k (t -3)-8k 2=0,所以t -3-2k t -3+4k =0,因为直线y =kx +t 不过P (4,3),即3≠4k +t ,t -3+4k ≠0,所以t -3-2k =0,即t =2k +3,所以直线y =kx +t =kx +2k +3,即y -3=k (x +2)过定点(-2,3).【点睛】关键点点睛:利用韦达定理和斜率公式推出t =2k +3是解题关键.2双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左顶点为A ,焦距为4,过右焦点F 作垂直于实轴的直线交C 于B 、D 两点,且△ABD 是直角三角形.(1)求双曲线C 的方程;(2)已知M ,N 是C 上不同的两点,MN 中点的横坐标为2,且MN 的中垂线为直线l ,是否存在半径为1的定圆E ,使得l 被圆E 截得的弦长为定值,若存在,求出圆E 的方程;若不存在,请说明理由.【答案】(1)x 2-y 23=1(2)存在,E :(x -8)2+y 2=1【分析】(1)根据双曲线的性质,结合△ABD 是等腰直角三角形的性质,列出关系式即可求解双曲线方程;(2)首先利用点差法求出直线l 所过的定点,即可求出定圆的方程.【详解】(1)依题意,∠BAD =90°,焦半径c =2,当x =c 时,c 2a 2-y 2b 2=1,得y 2=b 2c 2a 2-1=b 4a2,即y =±b 2a ,所以BF =b 2a ,由AF =BF ,得a +c =b 2a,得a 2+2a =22-a 2,解得:a =1(其中a =-2<0舍去),所以b 2=c 2-a 2=4-1=3,故双曲线C 的方程为x 2-y 23=1;(2)设M x 1,y 1 ,N x 2,y 2 ,MN 的中点为Q x 0,y 0 因为M ,N 是C 上不同的两点,MN 中点的横坐标为2.所以x 21-y 213=1,①x 22-y 223=1,②x 0=x 1+x 22=2,③y 0=y 1+y 22,④.①-②得x 1+x 2 x 1-x 2 -y 1+y 2 y 1-y 23=0,当k MN 存在时,k MN =y 1-y2x 1-x 2=3x 1+x 2 y 1+y 2=3×42y 0=6y 0,因为MN 的中垂线为直线l ,所以y -y 0=-y 06x -2 ,即l :y =-y 06x -8 ,所以l 过定点T 8,0 .当k MN 不存在时,M ,N 关于x 轴对称,MN 的中垂线l 为x 轴,此时l 也过T 8,0 ,所以存在以8,0 为圆心的定圆E :(x -8)2+y 2=1,使得l 被圆E 截得的弦长为定值2.【点睛】关键点点睛:本题考查直线与双曲线相交的综合应用,本题的关键是求得直线所过的定点,因为半径为1,所以定圆圆心为定点,弦长就是直径.3已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 的右焦点,右顶点分别为F ,A ,B 0,b ,AF =1,点M 在线段AB 上,且满足BM =3MA ,直线OM 的斜率为1,O 为坐标原点.(1)求双曲线C 的方程.(2)过点F 的直线l 与双曲线C 的右支相交于P ,Q 两点,在x 轴上是否存在与F 不同的定点E ,使得EP ⋅FQ =EQ ⋅FP 恒成立?若存在,求出点E 的坐标;若不存在,请说明理由.【答案】(1)x 2-y 23=1(2)存在,E 12,0 【分析】(1)由AF =1,BM =3MA ,直线OM 的斜率为1,求得a ,b ,c 之间的关系式,解得a ,b 的值,进而求出双曲线的方程;(2)设直线PQ 的方程,与双曲线的方程联立,可得两根之和及两根之积,由等式成立,可得EF 为∠PEQ 的角平分线,可得直线EP ,EQ 的斜率之和为0,整理可得参数的值,即求出E 的坐标.【详解】(1)设c 2=a 2+b 2c >0 ,所以F c ,0 ,A a ,0 ,B 0,b ,因为点M 在线段AB 上,且满足BM =3MA ,所以点M 33+1a ,13+1b,因为直线OM 的斜率为1,所以13+1b 33+1a =1,所以ba=3,因为AF =1,所以c -a =1,解得a =1,b =3,c =2.所以双曲线C 的方程为x 2-y 23=1.(2)假设在x 轴上存在与F 不同的定点E ,使得EP ⋅FQ =EQ ⋅FP 恒成立,当直线l 的斜率不存在时,E 在x 轴上任意位置,都有EP ⋅FQ =EQ ⋅FP ;当直线l 的斜率存在且不为0时,设E t ,0 ,直线l 的方程为x =ky +2,直线l 与双曲线C 的右支相交于P ,Q 两点,则-33<k <33且k ≠0,设P x 1,y 1 ,Q x 2,y 2 ,由x 2-y 23=1x =ky +2 ,得3k 2-1 y 2+12ky +9=0,3k 2-1≠0,Δ=36k 2+36>0,所以y 1+y 2=-12k 3k 2-1,y 1y 2=93k 2-1,因为EP ⋅FQ =EQ ⋅FP ,即EP EQ=FP FQ,所以EF 平分∠PEQ ,k EP +k EQ =0,有y 1x 1-t +y 2x 2-t =0,即y 1ky 1+2-t +y 2ky 2+2-t=0,得2ky 1y 2+2-t y 1+y 2 =0,所以2k93k 2-1+2-t -12k 3k 2-1=0,由k ≠0,解得t =12.综上所述,存在与F 不同的定点E ,使得EP ⋅FQ =EQ ⋅FP 恒成立,且E 12,0.【点睛】方法点睛:解答直线与双曲线的题目时,时常把两个曲线的方程联立,消去x (或y )建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系,涉及到直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不存在等特殊情形,要强化有关直线与双曲线联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.4已知双曲线C 与双曲线x 212-y 23=1有相同的渐近线,且过点A (22,-1).(1)求双曲线C 的标准方程;(2)已知点D (2,0),E ,F 是双曲线C 上不同于D 的两点,且DE ·DF=0,DG ⊥EF 于点G ,证明:存在定点H ,使GH 为定值.【答案】(1)x 24-y 2=1;(2)证明见解析.【分析】(1)根据给定条件,设出双曲线C 的方程,再将点A 的坐标代入求解作答.(2)当直线EF 斜率存在时,设出其方程并与双曲线C 的方程联立,由给定的数量积关系结合韦达定理求得直线EF 过定点,再验证斜率不存在的情况,进而推理判断作答.【详解】(1)依题意,设双曲线C 的方程为x 212-y 23=λ(λ≠0),而点A (22,-1)在双曲线C 上,于是λ=(22)212-(-1)23=13,双曲线C 的方程为x 212-y 23=13,即x 24-y 2=1,所以双曲线C 的标准方程为x24-y 2=1.(2)当直线EF 斜率存在时,设直线EF 的方程为:y =kx +m ,设E x 1,y 1 ,F x 2,y 2 ,由y =kx +mx 2-4y 2=4消去y 并整理得4k 2-1 x 2+8kmx +4m 2+1 =0,有4k 2-1≠0,且Δ=(8km )2-16(m 2+1)(4k 2-1)>0,即4k 2-1≠0且4k 2-m 2-1<0,有x 1+x 2=-8km 4k 2-1,x 1x 2=4m 2+44k 2-1,又y 1y 2=kx 1+m kx 2+m =k 2x 1x 2+km x 1+x 2 +m 2,DE =(x 1-2,y 1),DF =(x 2-2,y 2),由DE ·DF =0,得x 1-2 x 2-2 +y 1y 2=0,整理得k 2+1 ⋅x 1x 2+(km -2)⋅x 1+x 2 +m 2+4=0,于是k 2+1 ⋅4m 2+44k 2-1+(km -2)⋅-8km 4k 2-1+m 2+4=0,化简得3m 2+16km +20k 2=0,即(3m +10k )(m +2k )=0,解得m =-2k 或m =-103k ,均满足条件,当m =-2k 时,直线EF 的方程为y =k (x -2),直线EF 过定点(2,0),与已知矛盾,当m =-103k 时,直线EF 的方程为y =k x -103 ,直线EF 过定点M 103,0 ;当直线EF 的斜率不存在时,由对称性不妨设直线DE 的方程为:y =x -2,。
蒙日圆几何证明蒙日圆几何证明引言蒙日圆,又称“内切圆”,是指一个圆与三角形的三边都相切。
它在数学中有着广泛的应用,特别是在计算机图形学和三角测量中。
本文将介绍蒙日圆的定义、性质以及证明。
定义蒙日圆是指一个圆与三角形的三边都相切。
它可以通过以下步骤构造:1. 连接三角形的任意两个顶点,得到一条边;2. 以这条边为直径,画一个圆;3. 分别作出从另外两个顶点到这个圆的切线;4. 这两条切线所交于的点就是蒙日圆的圆心。
性质1. 蒙日圆与三角形外接圆、内心、垂心共线。
2. 蒙日圆半径等于周长除以2减去半周长。
3. 蒙日圆是唯一一个同时与三角形三边相切的圆。
4. 任意一条直线与其相交于A、B两点的两个不同射线AB和AC所成夹角等于该直线上以A为端点且在同侧于BC的射线所成夹角的充要条件是AC是蒙日圆的切线。
证明下面将分别对蒙日圆的四个性质进行证明。
1. 蒙日圆与三角形外接圆、内心、垂心共线。
证明过程如下:(1)连接三角形垂心H和内心I,并连接AH、BH、CH。
(2)根据垂心定理可知,AH=2RcosA,BH=2RcosB,CH=2RcosC。
(3)根据内心定理可知,AI=r/tan(A/2),BI=r/tan(B/2),CI=r/tan(C/2)。
(4)设蒙日圆的圆心为O,半径为r'。
则根据相似三角形可得:AH/OH = BH/OH = CH/OH = r'/rAI/OI = BI/OI = CI/OI = r/r'(5)由于AH+BH+CH=2s,其中s为三角形半周长,则有:2R(cosA+cosB+cosC)=AH+BH+CH=2sR=(a+b+c)/4sinA=(a+b+c)/4sinB=(a+b+c)/4sinCr=s/a=s/b=s/c=tan(A/2)/a=tan(B/2)/b=tan(C/2)/c(6)代入上式中可得:OH=R-2rOI=R+2rcosA=AH/cosA=2RcosB=2RcosCOH+OI=2R因此,蒙日圆与三角形外接圆、内心、垂心共线。
第24讲 蒙日圆结论蒙日圆定理的内容:椭圆的两条切线互相垂直,则两切线的交点位于一个与椭圆同心的圆上,该圆称为蒙日圆,其半径等于椭圆长半轴和短半轴平方和的算术平方根,具体结论及证明如下:结论一:曲线2222:1x y a bΓ+=的两条互相垂直的切线的交点P 的轨迹是圆:2222x y a b +=+.证明:当题设中的两条互相垂直的切线中有斜率不存在或㪷率为0时,可得点P 的坐标是( )a b ±,或( )a b ±−,. 当题设中的两条互相垂直的切线中的斜率均存在且均不为0时,可设点P 的坐标是()(000 , x y x a ≠±,且)0y b ≠±,∴可设由线Γ的过点P 的切线方程是()00(0)y y k x x k −=−≠.联立()2222001x y a b y y k x x ⎧+=⎪⎨⎪−=−⎩得()()()222222222000020a k b x ka kx y x a kx y a b +−−+−−=.由判别式0∆=得()(2222220000020xa k x y k yb x −−+−=−)20a ≠.∵ PA PB k k ,是这个关于k 的一元二线方程的两个根,220221. PA PB y b k k x a−∴==−−∴222200x y a b +=−,进而可得证明成立.结论二:双曲线22221(0)x y a b a b−=>>的两条互相垂直的切线的交点的轨迹是圆2x +222y a b =−.结论三:抛物线22y px =的两条互相垂直的切线的交点在该抛物线的准线上.【例1】若动点()00 P x y ,为椭圆32:94x y C +=1外一点,且点P 到椭圆C 的两条切线相互垂直,求点P 的轨迹方程.【解析】(1)当切线斜率存在时,设从点P 所引的直线的方程为()00y y k x x −=−,即()00y kx y kx =+−.设从点P 所引的椭圆C 的两条切线的斜率分别为12 k k ,,则121k k =−. 将直线()00y kx y kx =+−的方程代入椭圆C 的方程并化简得()(2209418kx k y ++−)()20009360kx x y kx +−−=,()()()222000018494[9360k y kx k y kx ⎤⎡⎤∆=−−⨯+⋅−−=⎣⎦⎦,化简得()2200940y kx k −−−=,即()()22200009240x k x y k y −−+−=,则12 k k ,是关于k 的一元二次方程(20x −9)()22000240k x y k y −+−=的两根,则12k k =2020419y x −=−−,化简得220013x y +=. (2)当从点P 所引的两条切线均与坐标轴垂直,则P 的坐标为( 3 2)±±,,此时,点P 也在圆2213x y +=上.综上所述,点P 的轨的方程为2x +213y =.【例】过圆22:4O x y +=上任意一点P 作椭圆22:13x C y +=的两条切线 m n ,,求证:m n ⊥.【解析】证明:设()00 P x y ,.(1)当0x =时,01y =±,其中一条切线斜率不存在,另一条切线平行于x 轴,∴m n ⊥.(2)设0x ≠,则两条切线斜率都存在.设直线m 的斜率为k ,则其方程为()00y y k x x −=−.把00y kx y kx =+−代入2213x y +=并整理得()()2200136k x k y kx x ++−+()200330y kx −−=,由0∆=可得,()22200003210x k x y k y −++−=.注意到直线n 的斜率也适合这个关系,∴ m n ,的㸯率12 k k ,就是上述方程的两根,由韦达定理,2122013y k k x −=−.由于点P 在圆22:4O x y +=上,()220031x y −=−−,∴121k k =−.这就证明m n ⊥. 综上所述,在圆O 上任意一点P 作椭圆C 的两条切线 m n ,,总有m n ⊥.【例3】已知椭圆2222:1(x y C a b a b+=>>0)圆C 的“准圆”.若椭圆C 的一个焦点为F 0),,其短轴上的一个端点到F的距离为(1)求椭圆C 的方程及其“准圆”方程.(2)点P 是椭圆C 的“准圆”上的动点,过点P 作椭圆的切线12 l l ,交“准圆”于点 M N ,.①当点P 为“准圆”与y 轴正半轴的交点时,求直线12 l l ,的方程并证明12l l ⊥. ②求证:线段MN 的长为定值.【解析】(1)依题意可得c a =,2221b a c =−=,∴22 1 23x y r +===,.22:4O x y +=. (2)证明:①由(1)题可得(0 2)P ,,设切线方程为:2y kx =+.联立22132x y y kx ⎧+=⎪⎨⎪=+⎩,消去y 可得223(2)3x kx ++=,整理可得()22311290k x kx +++=. ∴()2221443631036k k k ∆=−+=⇒−360=,解得1k =±.∴设直线PM :2y x =+,直线:PN y =2x −+.∴PM PN ⊥,即12l l ⊥. ②设()00 P x y ,,直线0:PM y y −=()10k x x −.则()0102233y y k x x x y ⎧−=−⎪⎨+=⎪⎩,消去y 可得()2210033x k x x y ⎡⎤+−+=⎣⎦. 即()()222110103166k x k x k y x +−−+22210100036330k x k y x y −+−=. ∴()()()222222101011010003643136330k x k y k k x k y x y ∆=−−+⋅−+−=.整理得()222100103210x kx y k y −++−=.同理,设切线PN 的斜率为2k ,则有()2220200203210x k x y k y −++−=.∴20122013y k k x −=−.∴||MN 在“准圆”上.∴22220000413x y y x +=⇒−=−,∴121k k =−.∴ PM PN MN ⊥∴,为“准圆”的直径.∴||MN 为定值,||4MN =.评注:此题的准圆方程其实就是蒙旦圆方程,那看到蒙日圆方程,我们自然就知道PM PN MN ⊥,为“蒙日圆”的直径这个题其本就解出夹了.双切线模型的解题方法所谓双切线问题,就是过一点做圆锥曲线的两条切线的问题,解决这一类问题我们通常用同构式,同构式的含义是结构相同变量不同的式子,比如()11A x y ,满足110Ax By C ++=,()22B x y ,满足220Ax By C ++=,这两个式子就是同构式,则可知点A B 、在直线0Ax By C ++=上,这个同构式其实就是整体代换的思想,也是我们解决双切线问题的核心和关键. 双切线问题的解题步骤:①根据曲线外一点()00P x y ,设出切线方程()00y y k x x −=−. ②和曲线方程联立,求出判别式0∆=. ③整理出关于双切线斜率12k k 、的同构方程. ④写出关于12k k 、的韦达定理,并解题.双切线定值问题【例1】如下图所示,已知拋物线2:C y =4x ,点M 是抛物线C 的准线上任意一点,直线MA MB 、分别与拋物线C 相切于点A B 、,设直线MA MB 、的斜率分别为12k k 、.证明:12k k ⋅为定值.【解析】证明:抛物线C 的准线方程为1x =−.设点()1M t −,, 设过点()1M t −,的直线方程为()1y k x t =++. 联立()214y k x t y x ⎧=++⎨=⎩,消去x 得24440ky y k t −++=. 其判别式()1616k k t ∆=−+,令0∆=, 得210k tk +−=.由韦达定理知121k k =−, 故121k k =−(定值).【例2】为抛物线2:4C y x =的准线上任一点,过点P 作抛物线C 在其上点处的切线PA PB 、,切点分别为A B 、,直线0x =与直线PA PB 、分别交于M N 、两点,点M N、的纵坐标分别为m n 、,求mn 的值.【解析】设点P 的坐标为()01y −,,直线AP 的方程为()101y k x y =++,直线BP 的方程为()201y k x y =++.联立()21041y x y k x y ⎧=⎪⎨=++⎪⎩,得21104440k y y k y −++=.∴()110164440k k y ∆=−+=,得21k +0110y k −=.同理可得220210k y k +−=,∴120121k k y k k +=−⎧⎨=−⎩.分别令0x =,得10m k y =+,20n k y =+, ∴()()1020mn k y k y =++()2012012y k k y k k =+++22001y y =−−1=−∴mn 为定值1−.【例3】设M 是圆2212x y +=上任意一点,由M 引椭圆22:184x y C +=的两条切线MA MB 、.当两条切线的斜率都存在时,证明:两条切线斜率的积为定值.【解析】证明:设点()00M x y ,,且220012x y +=.由题意知,过点M 引椭圆C 的切线方程可设为()00y y k x x −=−,联立()0022184y y k x x x y ⎧⎪⎨⎪=−+=⎩−化简得:()()()2220000124280k x k y kx x y kx ++−+−−=∵直线与椭圆相切,∴()()()22200004412280k y kx ky kx ⎡⎤∆=⎡−⎤−+⋅−−=⎣⎦⎣⎦,化简得()22200008240x k x y k y −−+−=.∴22200012222000444181284y y y k k x y y −−−====−−−−−. ∴两条切线斜率的积为定值1−.双切线斜率引申问题【例1】过椭圆223:144x y C +=上的任意一点P ,向圆()222:0O x y r r b +=<<引两条切线12l l 、.若12l l 、的斜率乘积恒为定值,求圆O 的面积.【解析】设点()00P x y ,,则22003144x y +=,2200433x y =−设切线方程为()00y y k x x −=−,000kx y y kx −+−=,∴r =.两边平方得()22222000020x r k x y k y r −−+−=,则2202212222200433x r y r k k x r x r−+−−==−−, ∴22433r r −=,解得21r =. ∴圆O 的面积为π.【例2】P 是22:12x C y +=外的一点,过P 的直线12l l 、均与C 相切,且12l l 、的斜率之积为112m m ⎛⎫−≤≤− ⎪⎝⎭,记u 为PO 的最小值,求u 的取值范围.【解析】由题意可知,直线12l l 、的斜率存在且不为零. 设过点()00P x y ,的切线()00:l y y k x x −=−,联立()002212y y k x x x y ⎧−=−⎪⎨+=⎪⎩,,消去y 可得()()()2220000214220k x k y kx x y kx ++−+−−=,由于直线l 与椭圆C 相切, 则()()()2222000016421220ky kx k y kx ⎡⎤∆=−−+⋅−−=⎣⎦,化简并整理得()220021y kx k −=+,整理成关于k 的二次方程得()22200002210x k x y k y −−+−=(易知0x ≠),设直线12l l 、的斜率分别为12k k 、,∴20122012y k k m x −==−.∴220012y mx m =+−.∴()22200112x y m x m +=++−.∴PO ==.易知当00x =时,有min u PO == ∵112m −≤≤−,∴u ≤即u的取值范围是.【例3】如下图所示,设点P 为抛物线2:y x Γ=外一点,过点P 作抛物线Γ的两条切线PA PB 、,切点分别为A B 、,若点P 为圆()2221x y ++=上的点,记两切线PA PB 、的斜率分别为12k k 、,求1211k k −的取值范围.【解析】设点()00P x y ,,则直线PA 的方程为1100y k x k x y =−+,直线PB 的方程为2200y k x k x y =−+.由11002y k x k x y y x=−+⎧⎨=⎩,可得211000k y y k x y −−+=. ∵直线PA 与拋物线Γ相切,∴()211000101144410k k x y x k y k ∆=−−+=−+=.同理可得202024410x k y k −+=.∴12k k 、是方程2004410x k y k −+=的两根. ∴0120y k k x +=,12014k k x =,则12k k −=.又∵()220021x y ++=,则031x −≤≤−,∴121212114k k k k k k −⎡−====⎣,.双切线交点弦问题所谓双切线交点弦问题指的是由一点引出一个曲线的两条切线和另外的曲线有交点时引申出来的问题,解题时通常需要用12k k 、来凑韦达定理. 题型一:双切线交点弦过定点问题【例1】已知椭圆()2222:10x y C a b a b +=>>上的一点到两个焦点的距离之和为4,离心率为2,点A 为椭圆C 的左顶点. (1)求椭圆C 的标准方程.(2)设圆()()222:202M x y rr +−=<<,过点A 作圆M 的两条切线分别交椭圆C 于点B 和D ,求证:直线BD 过定点.(1)【解析】由题意得24a c a =⎧⎪⎨=⎪⎩,解得2c a ⎧=⎪⎨=⎪⎩2221b a c =−=. ∴椭圆C 的标准方程为2214x y +=.(2)证明)设切线AB AD 、的方程为()2y k x =+,则r =,即()2224840r k k r −−+−=.设两切线AB AD 、的斜率为12k k 、,则121k k =.联立()22214y k x x y ⎧=+⎪⎨+=⎪⎩,得()222214161640k x k x k +++−=,设点()11B x y ,,点()22D x y ,,则211212814k x k −=+,1121414k y k =+, 同理2221222212828144k k x k k −−==++,212222144144k k y k k ==++, 则()11221112221112211444143282841414BDk k k k k k k k k k k −++==−−+−++.∴直线BD 的方程为()21112221114328141441k k k y x k k k ⎛⎫−−=− ⎪+++⎝⎭,整理得()121310341k y x k ⎛⎫=+ ⎪+⎝⎭,故直线BD 过定点1003⎛⎫− ⎪⎝⎭,. 题型二:双切线交点弦定值问题【例1】若直线l 过拋物线2:2C x y =的焦点F 且与拋物线C 相交于M N 、两点,过点M N 、分别作抛物线C 的切线12l l 、,切线1l 与2l 相交于点P ,求2PF MF NF −⋅的值.【解析】抛物线C 的方程可化为212y x =,求导可得y x '=. 设点M N 、的坐标分别为()11x y ,,()22x y ,.设直线l 的方程为12y kx =+(直线l 的斜率显然存在).联立21212y kx y x ⎧=+⎪⎪⎨⎪=⎪⎩,消去y 整理得2210x kx −−=,可得121221x x k x x +=⎧⎨=−⎩.有()21212121y y k x x k +=++=+,2212121144y y x x == 可得直线1l 的方程为2111(2y x x x −=−)1x ,整理为21112y x x x =−. 同理直线2l 的方程为22212y x x x =−.联立方程2112221212y x x x y x x x ⎧=−⎪⎪⎨⎪=−⎪⎩,解得121222x x x x x y +⎧=⎪⎪⎨⎪=⎪⎩,则点P 的坐标为12k ⎛⎫− ⎪⎝⎭,. 由拋物线的几何性质知112MF y =+,212NF y =+,PF ==()()221212********* 2112224424MF NF y y y y y y k k ⎛⎫⎛⎫⋅=++=+++=+++=+ ⎪⎪⎝⎭⎝⎭,∴20PF MF NF −⋅=.【例2】在平面直角坐标系中,已知椭圆22:12412x y C +=,设点()00R x y ,为椭圆上任意一点.过原点作圆()()2200:8R x x y y −+−=的两条切线,分别交椭圆于P Q 、两点. (1)若直线OP OQ 、相互垂直,求R 的方程.(2)若直线OP OQ 、斜率存在,并记为12k k 、,求证:12k k ⋅是一个定值. (3)22OP OQ +是否为定值?若是,求出该值.若不是,请说明理由. 【解析】(1)由()()2200:8R x x y y −+−=,可得r =∵OP OQ ⊥,∴4OR ==,即220016x y +=,联立22000220001241216x y x y x y ⎧⎧=+=⎪⎪⇒⎨⎨=−⎪⎪⎩+=⎩或00x y ⎧=−⎪⎨=−⎪⎩或00x y ⎧=⎪⎨=⎪⎩00x y ⎧=−⎪⎨=⎪⎩. ∴R的方程为:((228x y +++=或((228x y ++−=或((228x y −++=或((228x y −+−=.(2)证明;设12:,:OP y k x OQ y k x ==. ∵OP 与R 相切,∴R OP d r −===.()()22100181k x y k ⇒−=+.化简可得()222010*******x k x y k y −−+−=.对于直线2:OQ y k x =,同理可得()2220200208280x k x y k y −−+−=. ∴12k k 、为()22200008280x k x y k y −−+−=的两根.∴20122088y k k x −=−∵220012412x y += ∴2200242x y =− ∴2012208124282y k k y −==−−−. (3)当P Q 、不在坐标轴上时,设点()11P x y ,,点()22Q x y ,.∴联立122222122412412y k x x k x x y =⎧⎪⇒+=⎨+=⎪⎩.∴21212421x k =+,2211212421k y k =+. 同理可得22222421x k =+,2222222421k y k =+. ∴()()222212222212112222222211221224124124242424212121212121k k k k x y x y k k k k k k +++++=+++=+++++++ ()22211122211111362121243621211212k k k k k k ⎡⎤⎛⎫⎢⎥+− ⎪++⎢⎥⎝⎭=+==⎢⎥++⎛⎫⎢⎥−+ ⎪⎢⎥⎝⎭⎣⎦. 若P Q 、在坐标轴上(不妨设P 在x 轴)上,则点()0P,点(0Q ,. ∴2236OP OQ +=.综上所述,22OP OQ +为定值36.【例3】如下图所示,过椭圆22:12x C y +=上且位于y 轴左侧的一点P ,作圆()22:11E x y −+=的两条切线,分别交y 轴于点M N 、.是否存在点P,使3MN =?若存在,求出点P 的坐标.若不存在,请说明理由.【解析】设点()()0000P x y x <,,()0M m ,,()0N n ,. 直线PM 的方程为00y my x m x −=+,即()0000y m x x y mx −−+=.∵圆心()10E ,到直线PM 的距离为11=,()()()222220000002y m x y m x m y m x m −+=−+−+,()2000220x m y m x −+−=.同理()2000220x n y n x −+−=.由此可知,m n 、为方程()202x x −+0020y x x −=的两个实根, ∴0022y m n x +=−−,002x mn x =−−.MN m n =−===. ∵点()00P x y ,在椭圆C 上,则220012x y +=即220012x y =−,则MN ==令3=,则()2029x −=. ∵00x <,则01x =−,22001122x y=−=,即02y=±, ∴存在点12P ⎛−± ⎝⎭,满足题设条件. 题型三:双切线交点弦最值问题【例1】如下图所示,已知椭圆()2222:10x y C a b a b+=>>的两个焦点12F F 、点,A B 在椭圆上,且1F 在AB 边上,2ABF ∆的周长等于.(1)求椭圆C 的标准方程.(2)过圆22:4O x y +=上任意一点P 作椭圆的两条切线PM 和PN 与圆O 交于点M N 、,求PMN ∆面积的最大值.【解析】(1)∵2ABF ∆的周长等于,点A B 、在椭圆上,且1F 在AB边上.∴4a =即a .又∵离心率3c e a ==,∴c 222321b a c =−=−=. ∴椭圆C 的标准方程为2213x y +=.(2)设点()P P P x y ,,则224P P x y +=.①当两条切线中有一条切线的斜率不存在时,即P x =1P y =±, 则另一条切线的斜率为0,从而PM PN ⊥.11222PMN S PM PN ∆=⋅=⨯⨯= (2)当切线斜率都存在,即P x ≠P 的椭圆的切线方程为()P P y y k x x −=−,联立()2213P P y y k x x x y ⎧−=−⎪⎨+=⎪⎩,得()()()222316330P P P P k x k y kx x y kx ++−+−−=,则()()()2226431330P P P P k y kx k y kx ⎡⎤∆=⎡−⎤−+⋅−−=⎣⎦⎣⎦, 即()2223210P P P P x k x y k y −++−=.设切线PM 和PN 的斜率分别是12k k 、.∴()2221222214131333P PP P P Px y x k k x x x −−−−+====−−−−. 从而PM PN ⊥,则线段MN 为圆O 直径,4MN =.()2222111114422244PMN S PM PN PM PN MN ∆⎡⎤=⋅≤+==⨯=⎢⎦⎣.当且仅当PM PN =时,等号成立,PMN S ∆取得最大值为4.综上所述,PMN S ∆的最大值为4.【例2】设()G m n ,是椭圆22:14x E y +=上的动点,过原点O 作圆()()224:5G x m y n −+−=的两条斜率存在的切线分别与椭圆E 交于点A B 、,求OA OB +的最大值.【解析】设圆()()2245x m y n −+−=的切线()OA OB 的方程为y kx ==整理得()222541054m k mnk n −−+−=0,其两根12k k 、满足21225454n k k m −=−①,这里1OA k k =,2OB k k =,且2214m n +=②,由①②得1214k k =−. 设点()11A x kx ,,点()22B x kx ,,则1OA =,2OB =,又∵22211114x k x +=,22222214x k x +=,∴()()22122112141114k OA kxk +=+=+,()()22222222241114k OB kxk +=+=+,则()222212222222121212324433225141414416k k OA OB k k k k k k +++=++=+=+++++. ∵()()222002a b a b a b +≤+>>,,当且仅当a b =时,取等号,∴OA OB +≤=OA OB =时,取等号,即()maxOA OB+=题型四:双切线交点弦范围问题 【例1】如下图所示,已知圆()224:9T x t y −+=,过椭圆22:143x y C +=的上顶点作圆T 的两条切线交椭圆于E F 、两点,当圆T 的圆心在x 轴上移动且()01t ∈,时,求EF 的斜率的取值范围.【解析】椭圆的上顶点为(0M ,设过点M 与圆T相切的直线方程为y kx =.由直线y kx =+T23=,()2294230t k −++=,∴12k k +=1222394k k t =−联立122143y k x x y ⎧=⎪⎨+=⎪⎩,消去y 得()2211340k x x ++=,∴1E x =2F x =,((()12121212334E F E F E F EFE F E F E F k x k x k k y y k x k x k x x x x x x k k +−+−−=====−−−−,当01t <<时,()210427f t t =−为增函数,故EF的斜率的范围为0⎛ ⎝⎭. 【例2】经过圆22:5O x y +=上一动点P 作椭圆22:14x C y +=的两条切线,切点分别记为A B 、,直线PA PB 、分别与圆O 相交于异于点P 的M N 、两点.(1)求证:0OM ON +=.(2)求OAB ∆的面积的取值范围.【解析】(1)证明:设点()00P x y ,.(1)当直线PA PB 、的斜率都存在时,设过点P 与椭圆C 相切的直线方程为(y k x =−)00x y +.联立()0022440y k x x y x y ⎧=−+⎨+−=⎩,消去y 得()()()2220000148440k x k y kx x y kx ++−+⋅−−=. ()())(222200006441444k y kx k y kx ⎡⎤∆=−−+−−⎣⎦.令0∆=,整理得:()22200004210x k x y k y −++−=.设直线PA PB 、的斜率分别为12k k 、.∴212214y k k x −=−. 又22005x y +=.∴()220012220154144x x k k x x −−−===−−−. ∴PM PN ⊥,即MN 为圆O 的直径, ∴0OM ON +=.②当直线PA 或PB 的斜率不存在时,不妨设()21P ,, 则直线PA 的方程为2x =.∴点()21M −,,点()21N −,,也满足0OM ON +=. 综上,有0OM ON +=. (2)设点()11A x y ,,点()22B x y ,.当直线PA 的斜率存在时,设直线PA 的方程为()111y k x x y =−+. 联立()11122440y k x x y x y ⎧=−+⎨+−=⎩,消去y 得()()()22211111111148440k x k y k x x y k x ++−+−−= ()()()2222111111116441444k y k x k y k x ⎡⎤∆=−−+⋅−−⎣⎦.令0∆=,整理得()221111142x k x y k −++2110y −=.则11111122111444x y x y x k x y y −−=−==−. ∴直线PA 的方程为()11114x y x x y y −=−+. 化简可得22111144x x y y y x +=+,即14x x+11y y =. 经验证,当直线PA 的斜率不存在时, 直线PA 的方程为2x =或2x =−,也满足1114x xy y +=. 同理,可得直线PB 的方程为2214x xy y +=. ∵()00P x y ,在直线PA PB 、上, ∴101014x x y y +=,202014x xy y +=.。
蒙日圆定理结论引言蒙日圆定理是由19世纪的法国数学家Pierre Ossian Bonnet提出的。
这个定理描述了在任何平面三角形的外接圆上,三个各角的正弦值的和恒等于1。
定理表述对于任意平面三角形ABC,其外接圆的半径为R,则有以下等式成立:sin(A) + sin(B) + sin(C) = 1推导过程步骤1:定义外接圆外接圆是与三角形的每条边都相切的圆。
在三角形ABC中,外接圆的圆心与三角形的垂直平分线相交,且半径为R。
步骤2:引入辅助量为了方便推导,我们引入以下两个辅助量: 1. 假设点O为三角形ABC的外接圆的圆心。
2. 点D、E、F分别为圆心O到边BC、CA、AB的垂直平分线与三角形ABC 的交点。
步骤3:推导定理根据辅助量的定义,我们可以得到以下结论: 1. 四边形AOBD是一个矩形,因为AO和BD是外接圆的直径。
2. 三角形AOF和ABC全等,因为它们具有共边AO,边角对应相等。
由于AO和BD是外接圆的直径,根据圆的性质可知,角AOB为直角。
因此,我们可以得到以下等式:sin(A) = sin(AOB) = sin(ODA) = sin(ODF)同样地,我们也可以得到以下等式:sin(B) = sin(BOC) = sin(OEB) = sin(OEA)sin(C) = sin(COA) = sin(OFC) = sin(OFB)将以上等式代入定理表述中的等式,我们可以得到:sin(A) + sin(B) + sin(C) = sin(ODA) + sin(OEB) + sin(OFC) = sin(ODA) + sin(OEA) + sin(OFB) = 1因此,定理得证。
应用和意义几何问题求解蒙日圆定理在解决几何问题时有着重要的应用。
通过该定理,我们可以确定外接圆的半径,并利用外接圆的性质解决各种三角形相关的问题,如确定三角形的内心、外心以及垂心等。
教育与科普意义蒙日圆定理作为基础几何学的重要内容,对于培养学生的逻辑推理能力和数学思维具有重要作用。
蒙日圆的证明方法主要基于椭圆和双曲线的切线性质。
以椭圆为例,椭圆的两条正交切线的交点轨迹是一个圆,这个圆被称为椭圆的蒙日圆。
设椭圆的切线方程为y=k1x+n1 和y=k2x+n2,其中k1 和k2 是切线的斜率,n1 和n2 是切线的截距。
通过求解这两个切线方程,可以得到它们的交点坐标(x0, y0)。
由于两条切线是正交的,它们的斜率之积k1k2=-1。
进一步,通过将切线的方程代入椭圆方程,可以证明交点坐标(x0, y0) 满足x02+y02=a2+b2,即交点轨迹是一个圆。
对于双曲线,其两条正交切线的焦点轨迹也是一个圆,这个圆被称为双曲线的蒙日圆。
证明方法与椭圆的蒙日圆类似,但需要考虑到双曲线的特殊性质。
总的来说,蒙日圆的证明方法需要利用到椭圆和双曲线的切线性质以及几何知识。
高考数学圆锥曲线深度拓展:蒙日圆及其证明一、引言在高考数学中,圆锥曲线是一个重要的知识点,它不仅在解析几何中有广泛应用,还在物理、天文等领域有所涉及。
蒙日圆,作为圆锥曲线的一种特殊形态,具有独特的性质和证明方法。
本文旨在探讨蒙日圆及其证明的深度拓展。
二、蒙日圆的基本性质蒙日圆,也被称为极坐标圆或椭圆的垂直平分线投影圆,其独特性质在于它与原始椭圆的关系。
在椭圆上任取一点P,作PP1垂直于长轴,作PP2垂直于短轴,则P1P2的垂直平分线与原始椭圆相切于点P。
这个性质表明,对于椭圆上的任意一点,其关于长轴和短轴的垂足与原点的连线段的垂直平分线,都与椭圆相切于该点。
三、蒙日圆的证明对于蒙日圆的证明,我们可以采用以下步骤:1、在椭圆上任取一点P,以点P为圆心,作一圆与椭圆相切。
这个圆的半径可以由点P到椭圆中心的距离决定。
2、根据几何性质,我们可以知道这个圆与椭圆的切点在椭圆的长轴和短轴的垂直平分线上。
3、由于这个圆是以点P为圆心,因此点P关于长轴和短轴的垂足与原点的连线段的垂直平分线必然经过这个圆心。
这就意味着这个垂直平分线与椭圆相切于点P。
4、因此,我们证明了在椭圆上任意一点都有一条过该点的直线与椭圆相切。
也就是说,我们找到了一个与椭圆相切的圆,即蒙日圆。
四、结论通过以上分析,我们证明了蒙日圆的存在及其性质。
这个知识点不仅在高考数学中具有重要作用,也是解析几何中的一个重要知识点。
希望通过本文的探讨,能够帮助同学们更深入地理解和掌握这一部分的知识。
蒙日圆以及应用蒙日圆是一种特殊的几何图形,它由法国数学家加斯帕德·蒙日(Gaspard Monge)发现并以其名字命名。
蒙日圆在几何、物理学、工程学等领域都有广泛的应用。
本文将介绍蒙日圆的定义、性质以及应用。
一、蒙日圆的定义蒙日圆也被称为“最小圆”或“极圆”,它是指在平面上,一个集合内所有点均在该集合的凸包内的最小圆。
也就是说,蒙日圆内包含着集合内的所有点,且其半径最小。
二、蒙日圆的性质1、蒙日圆是唯一的。
也就是说,对于给定的一个集合,其蒙日圆是唯一的,不会因计算方法或近似值的不同而改变。
2、蒙日圆的圆心是集合内所有点坐标的均值。
3、蒙日圆的半径是集合内所有点与圆心距离的最小值。
三、蒙日圆的应用1、几何学:在几何学中,蒙日圆可以帮助我们找到一个集合内的所有点的最小包围圆,这对于解决一些几何问题非常有用。
2、物理学:在物理学中,蒙日圆可以用来描述带电粒子的运动轨迹。
例如,在电场中,带电粒子会受到电场力的作用而运动,其运动轨迹就是一个蒙日圆。
3、工程学:在工程学中,蒙日圆可以用来描述机械零件的轮廓形状,例如车轮的形状就是一个蒙日圆。
此外,在机器视觉、图像处理等领域,蒙日圆也有广泛的应用。
4、经济学:在经济学中,蒙日圆也被用来描述经济活动的空间分布情况,例如人口分布、交通流量等。
通过蒙日圆的分析,可以更好地理解经济活动的规律和趋势。
5、生物学:在生物学中,蒙日圆也被用来描述生物体的形状和结构,例如植物的叶子、动物的肢体等。
通过蒙日圆的分析,可以更好地理解生物体的生长和演化过程。
总之,蒙日圆在各个领域都有广泛的应用价值,可以帮助我们更好地理解和解决各种问题。
高考数学深度总结:挑战高考压轴题,圆锥曲线满分之路标题:高考数学深度总结:挑战高考压轴题,圆锥曲线满分之路高考数学,作为一门对逻辑思维能力、问题解决能力和基础知识综合运用能力要求极高的科目,一直以其独特的挑战性和重要性在学术界占据着重要的地位。
其中,圆锥曲线问题由于其涉及的知识面广、解题技巧性强,常常作为高考数学中的压轴题出现,对于考生的数学能力和综合素质提出了更高的要求。
圆锥曲线问题,主要考察的是圆锥曲线的定义、性质、方程以及与直线、圆等知识点的综合运用。
这类问题常常以难题的形式出现,要求考生在紧张的考试环境下,运用所学知识进行深度思考和分析,从而找到问题的解决方法。
为了帮助考生更好地理解和掌握圆锥曲线问题的解题技巧,提高解题效率,我们总结了以下几个方面的解题策略:一、熟练掌握圆锥曲线的定义和性质。
这是解决圆锥曲线问题的根本,只有对定义和性质有深入的理解,才能在解题过程中灵活运用。
二、学会建立坐标系。
在解决圆锥曲线问题时,通过建立合适的坐标系,可以将几何问题转化为代数问题,从而更容易找到问题的突破口。
三、掌握方程的思想。
在解决圆锥曲线问题时,通过将图形信息转化为方程信息,利用方程的性质来寻找问题的答案,是一种重要的解题策略。
四、注重知识的综合运用。
圆锥曲线问题常常与其他知识点如直线、圆等结合在一起考察,因此需要考生在解题时注重知识的综合运用,提高解题效率。
五、培养解题思维。
在解决圆锥曲线问题时,需要有一定的解题思维。
这种思维包括观察、分析、综合、推理等能力,需要在平时的学习和训练中不断培养和提高。
六、加强模拟练习。
通过大量的模拟练习,可以熟悉各种类型的圆锥曲线问题,提高解题的速度和准确性。
同时也能在练习中发现自己的不足之处,及时进行弥补。
以上就是我们在解决高考圆锥曲线问题时的一些策略和方法。
当然,每个人的学习方式和解决问题的能力都有所不同,因此需要根据自己的实际情况进行适当的调整和补充。
高考数学中的圆锥曲线问题虽然具有一定的难度,但只要我们通过熟练掌握基础知识、培养解题思维、加强模拟练习等方式,不断努力提高自己的数学能力和综合素质,就一定能够在高考中取得优异的成绩。
让我们一起迎接挑战,实现自己的满分之路!圆锥曲线光学性质的证明及其应用一、引言圆锥曲线,作为几何学的一个重要分支,其优雅的形状和丰富的性质在各个领域都有广泛的应用。
特别是在光学领域,圆锥曲线展现出其独特的性质,被用于设计各种光学仪器和设备。
本文将探讨圆锥曲线光学性质的证明及其在光学工程中的应用。
二、圆锥曲线的光学性质在几何学中,圆锥曲线是由一个平面与一个圆锥相交而得到的。
根据圆锥曲线的形状,它们可以分为三种主要类型:椭圆、双曲线和抛物线。
这些曲线具有一些共同的几何性质,而这些性质在光学中有着重要的应用。
首先,圆锥曲线具有聚焦性质。
对于椭圆和抛物线,从其焦点发出的光线将沿着这些曲线的切线方向聚焦于另一点。
这一性质被广泛应用于各种光学设备的设计,如显微镜、望远镜和投影仪等。
其次,圆锥曲线具有反射性质。
当光线射到圆锥曲线上时,其传播方向会发生改变。
这一性质在光学中有着广泛的应用,如反射镜、反射望远镜等。
三、圆锥曲线光学性质的证明圆锥曲线光学性质的证明主要依赖于光的波动理论。
根据该理论,光可以被视为一种波动现象,其传播方向受到波前的引导。
当光线射到圆锥曲线上时,由于曲线的形状,光的波前会发生改变,从而导致光线的传播方向发生变化。
这一现象可以通过使用偏振片和干涉仪进行实验验证。
四、圆锥曲线光学性质的应用1、显微镜设计:在显微镜设计中,使用圆锥曲线透镜可以实现对微小物体的聚焦。
例如,使用抛物线透镜可以将从样品发出的光线聚焦到图像传感器上,从而提高图像的分辨率和清晰度。
2、望远镜设计:在望远镜设计中,使用圆锥曲线透镜可以实现远距离物体的放大和聚焦。
例如,使用椭圆透镜可以将远处的物体放大并聚焦到观察者眼中,从而提高观察效果。
3、反射镜设计:在反射镜设计中,使用圆锥曲线可以改变光线的传播方向。
例如,使用抛物线反射镜可以将光线反射到指定方向,从而实现激光束的精确控制。
4、投影仪设计:在投影仪设计中,使用圆锥曲线透镜可以将图像投射到屏幕上。
例如,使用椭圆透镜可以将电脑或电视机的图像投射到屏幕上,从而提高观看效果。
5、其他应用:除了上述应用之外,圆锥曲线还被广泛应用于其他光学仪器和设备的设计中,如相机镜头、太阳能电池板、光学纤维等。
五、结论圆锥曲线作为几何学的一个重要分支,其在光学领域的应用展现出了其独特的性质和魅力。
通过深入研究和探索,我们可以将这些曲线的性质应用于各种光学设备和仪器的设计中,从而不断提高这些设备的性能和精度。
随着科技的不断发展,圆锥曲线在光学工程中的应用将会更加广泛和深入,为我们的生活和工作带来更多的便利和惊喜。
初一数学七年级数学单项式课件课件标题:初一数学七年级数学单项式课件一、引言在七年级的数学课程中,单项式是代数学习的一个重要概念。
它涉及到数学的基本概念如运算、表达式、变量等,对后续的学习和掌握多项式的运算至关重要。
为了帮助学生更好地理解和掌握这一概念,本课件应运而生。
二、教学目标通过本课件,学生应能理解并掌握单项式的定义、系数、次数等基本概念,学会如何书写单项式,了解单项式的性质,并能进行基本的单项式运算。
三、教学内容及教学方法1、单项式的定义:我们将通过具体的例子引导学生理解单项式的定义。
并通过反复的练习,使学生能准确判断一个给定的数学表达式是否为单项式。
2、系数与次数:接着,我们将深入探讨单项式的系数和次数的概念。
通过对比和实际例子的方式,让学生明确单项式的系数和次数的定义及计算方法。
3、单项式的运算:我们将讲解并示范基本的单项式运算,包括加减乘除等基本运算规则。
通过大量的例题和练习,使学生熟练掌握单项式的运算。
四、教学步骤1、导入新课:我们将引导学生回顾之前学过的数学知识,如整数的运算、多项式的概念等,以此为基础引入单项式的概念。
2、讲解和演示:然后,我们将通过具体的例子和图表,详细讲解单项式的定义、系数、次数等基本概念,并示范如何进行单项式的运算。
3、学生练习:在讲解完成后,我们将给出一些练习题,让学生自己动手进行单项式的计算和判断,以此检验他们的掌握情况。
4、反馈与纠正:在练习过程中,我们将进行巡查,发现并纠正学生在理解概念和计算过程中出现的问题,并对问题进行及时的反馈和讲解。
5、总结与回顾:我们将对本节课的内容进行总结和回顾,让学生再次明确单项式的概念和基本运算方法。
同时,我们也会布置一些课后作业,以便学生进一步巩固所学知识。
五、教学评估在教学过程中,我们将通过学生的反应、练习结果和课后作业来评估他们的学习效果。
我们将鼓励学生在课堂上积极参与,提出自己的问题和观点,以此培养他们的数学思维能力和自主学习能力。
六、结语在七年级的数学学习中,单项式是一个基础但重要的概念。
通过本课件的学习,我们希望学生能深入理解并掌握单项式的相关知识,为后续的数学学习打下坚实的基础。
我们也鼓励学生将所学知识应用到实际生活中,以此提高他们的数学应用能力。
高考英语词汇表高考英语词汇表高考是每位学生人生中的重要阶段,英语作为其中一门学科,掌握足够的词汇量是取得好成绩的关键。
以下是一份高考英语词汇表,供大家参考。
Aabbreviate v.缩写,缩短abide v.遵守,忍受abnormal a.异常的,不规则的abolish v.废除,取消abort v.中止,堕胎abound v.丰富,充满abrupt a.突然的,陡峭的absent a.缺席,不在场absolute a.绝对的,完全的absolve v.赦免,免除absorb v.吸收,吸引abstract a.抽象的 n.摘要abstain v.戒绝,抑制abuse v.滥用,虐待 n.滥用academic a.学术的,学校的accelerate v.加速,促进accent n.重音,口音accept v.接受,认可access n.通道,入口accident n.事故,意外accidental a.偶然的,非主要的acclaim v.称赞,欢呼accompany v.陪伴,伴奏accomplish v.完成,实现accord v.一致,符合accordance n.一致,符合accumulate v.积累,积聚accuracy n.精确度,准确性accurate a.精确的,准确的accuse v.指控,控告ache v. & n.疼痛,酸痛achieve v.实现,完成achievement n.成就,成绩acid n.酸,酸性物质 a.酸的acknowledge v.承认,致谢acquire v.获得,取得。