实验二 地球化学背景及异常下限的确定
- 格式:doc
- 大小:347.00 KB
- 文档页数:3
地球化学背景值及异常下限确定方法地球化学背景值是指地球表层物质的普遍背景含量或分布特征,它代表了地球自然状态下的正常水平。
异常下限是指地球化学异常的边界或基线,用于识别具有异常地球化学特征的物质。
确定地球化学背景值及异常下限的方法可以分为以下几种。
第一种方法是统计方法。
这种方法通过大量的样品分析数据来确定地球化学背景值及异常下限。
首先需要收集大量的样品数据,包括地球表层物质的各种元素含量数据。
然后对这些数据进行统计分析,例如计算平均值、标准差、分位数等。
通过统计分析可以确定地球化学背景值,它通常是根据样品数据的分布特征来确定的,例如取所有样品数据的中间值作为地球化学背景值。
异常下限可以根据统计分析的结果和专家经验来确定,例如确定一个范围,低于这个范围的数据可以被认为是异常值。
第二种方法是地表地质特征方法。
这种方法通过研究地球表层的地质特征,例如地貌、岩石类型、土壤类型等,来确定地球化学背景值及异常下限。
地球表层的地质特征通常与地球化学特征有一定的关联性,例如其中一种地貌环境下可能富含其中一种元素。
通过研究这些地质特征可以得出地球化学背景值及异常下限的范围,例如其中一种地貌环境下的元素含量可以被认为是正常的,低于或高于这个范围的元素含量可以被认为是异常的。
第三种方法是参照国内外标准方法。
许多国家和地区都有地球化学调查和研究的标准方法,例如美国地质调查局的“地球化学参考样品和数据计划”(Geochemical Reference Samples and Data)和欧洲的“Geochemical Atlas of Europe”等。
这些标准方法提供了丰富的样品数据和分析结果,可以作为确定地球化学背景值及异常下限的参考。
通过比对本地区样品数据和国际标准数据,可以确定地球化学背景值及异常下限的范围。
确定地球化学背景值及异常下限是地球化学调查和研究的基础工作,它对于判别地球化学异常、环境污染、资源勘查等方面具有重要意义。
用计算法确定地球化学背景值及异常下限值的一些认识地球化学背景值是指某一地区或某一地质单元中普遍存在的元素或化合物的含量、性质和分布的基准值。
地球化学背景值的确定对于研究区域地球化学异常具有重要意义,可以用于评价地球化学异常的成因、时空分布规律以及对环境和人类健康的影响,为矿产资源勘探、环境污染监测、地质灾害预测等提供科学依据。
确定地球化学背景值的主要方法之一是计算法。
计算法是通过收集并统计分析成矿地区及其周边无矿化影响的样品数据,分析其元素或化合物的含量、分布规律等,从中获得背景值的估计。
计算法的基本原理是利用大量背景样品数据计算平均值、标准差、变异系数等统计参数,确定地球化学背景值。
计算法确定地球化学背景值的具体步骤如下:1.数据收集:收集大量的无矿化样品数据,包括土壤、沉积物、岩石等,覆盖研究区域的不同地质单元和不同土壤类型等。
数据来源可以包括地质调查、环境监测和矿产勘探等。
2.数据筛选:对收集到的数据进行筛选,剔除控制在矿化脉管附近的样品数据,以排除矿化影响。
3.数据统计:对经过筛选的数据进行统计分析,计算平均值、标准差、变异系数等统计参数。
可以利用专业软件进行数据分析和处理。
4.背景值估计:根据统计参数计算地球化学背景值。
常用的方法有平均值加减n倍标准差法、变异系数法等。
根据背景值的不确定性要求,选择合适的置信度和倍数。
5.空间插值:通过空间插值方法,将背景值估计结果推广到整个研究区域。
常用的插值方法有逆距离加权法、克里金插值法等。
6.异常下限值划定:在背景值基础上,结合地质地球化学特征和成矿理论,确定地球化学异常的下限值。
异常下限值是判定地球化学异常的重要参数,可以用于识别矿化体、预测矿床赋存的有效性和潜力。
需要指出的是,计算法确定地球化学背景值存在一定的局限性。
首先,背景样品的数量和质量对结果的可靠性有一定影响,样本数据的局限性和不均衡性可能导致背景值的误差。
其次,计算法难以建立起全面的空间覆盖,对大范围、复杂地质条件下的背景值估计存在一定困难。
求区域背景值的方法就用黎彤的克拉克值就可以。
设:T=黎彤的克拉克值E=光谱分析的测试值E=2的(n-1)次方*T求出的n值就是改元素的丰度值。
n的大小就能反映他的富集程度。
新方法哦。
异常下限(threshold of anomaly)是根据背景值和标准离差按一定置信度所确定的异常起始值。
它是分辨地球化学背景与异常的一个量值界限。
从这个数值起,所有的高含量都可认为是地球化学异常,低于这个数值的所有含量则属于地球化学背景范围。
异常下限多用统计学方法求得,通常用背景平均值加上两倍或三倍标准差作为异常下限。
[1异常下限(threshold of anomaly)是根据背景值和标准离差按一定置信度所确定的异常起始值。
它是分辨地球化学背景与异常的一个量值界限。
从这个数值起,所有的高含量都可认为是地球化学异常,低于这个数值的所有含量则属于地球化学背景范围。
通常异常下限求得,即采用“迭代法”来求得,具体操作为:1、先计算背景平均值,及标准差。
2、背景平均值加上三倍标准差作为一个参照数,寻找分析数据中是否有大于这个参照数。
有的话,删除。
3、删除后的数据,又进行计算背景平均值,及标准差。
按背景平均值加上三倍标准差方法得出新的参照数,寻找分析数据中的大于这个参照数,有的话,删除。
4、循环执行第3步,直至数据不存在大于背景平均值加上三倍标准差的数时,才取这时的背景平均值加上三倍标准差的值为异常下限。
有时候可以用1.5,2 3倍标准差计算异常下限)也可通过LOG10()函数将原数据转为对,用上述方法进行计算。
近年来,随着分形理论的深入,采取分形技术也可求取一个拐点值,采取其中一个合适的值作为异常下限,从而圈定异常!楼主这个算法是通常的生产中的经验,一般的都这么算。
但楼主忽略了一个东西,那就是算出来的是理论异常下限,生产中的异常下限,我们通常都要进行校正。
校正主要是考虑该区域所处的大背景。
在excel中的计算方法1选择数据,进行升序排列在EXCEL中的公式中有计算标准离差的公式平均值:X=average键入:“=average(b2:b25)”[b2、b25.代表数据所在的行数和列数]计算出某元素的平均值。
地球化学异样下限确定方法一、地球化学数据处理基础数据处理的意义是获得较为精确的平均值(背景)和异样下限。
1、地球化学数据处理归根结底仍属于统计学的范畴,所以要求数据应是正态分布的,不是拿来数据就能应用的,特殊是用公式计算时更要留意这一点。
正态(卩=0, 5 =1)----(偏态)。
大数定理:又称大数法则、大数率。
在一个随机大事中,随着试验次数的增加,大事发生的频率趋于一个稳定值;同时,在对物理量的测量实践中,测定值的算术平均也具有稳定性。
所以假如在计算时,数据中包含较多的野值时,实际获得的是一个不具稳定性的算术平均,它实际不能替代背景值。
2、异样是一个相对概念,有不同尺度上的要求,所以不要将其看作一个定值。
在悉尼国际化探会议上(1976),对异样下限定义: 异样下限是地球化学工作者依据某种分析测试结果对样品所取定的一个数值,据此可以圈定能够识别出与矿化有关的异样。
并对异样下限提出了一个笼统的定义:凡能够划分出异样和非异样数据的数值即为异样下限。
据此,异样下限不能简洁的理解为背景上限。
二、异样下限确定方法具体异样下限确定方法较多:地化剖面法、概率格纸法、直方图法、马氏距离法、单兀素计算法、数据排序法、累积频率法 .....下面逐一介绍:1、地化剖面法:(可以不考虑野值)n 1-10 ■据般彷学荊面協■处舷曹量童霜异冷下限債在已知区做地化剖面:要求芝卷剖面较长,穿过矿化区(含蚀变区)和正常地层(背景),能区分含矿区和非矿区就可确定为下限。
2、概率格纸法:(可以不考虑野值)以含量和频率作图15%--负异样50%--背景值85%--X+S(高背景)98%-- (X+2 5)异样下限3、直方图法:(可以不考虑野值)能分解出后期叠加的值就为异样下限I 1-M应型也逝确定普呆蹴和异样下4、马氏距离法:(在计算时1一彩二St总侔的直方圏已考虑野值)针对样本,实际为建立在多元素正态分布基础之上一多重样本的正态分布,超出椭球体时一异样样(如P3点)。
用计算法确定地球化学背景值及异常下限值的一些认识摘要:一、地球化学背景值及异常下限的概念与意义1.地球化学背景值:地球化学元素含量的平均水平2.地球化学异常:元素含量明显偏离背景值的现象3.异常下限:区分背景与异常的界限值二、计算法确定地球化学背景值及异常下限的方法1.数据收集与处理2.计算背景值及异常下限3.确定置信度三、计算法在地球化学背景值及异常下限确定中的应用1.在既有正异常又有负异常分布的同一地区中的应用2.应用实例:地质勘探、矿产资源评价等四、注意事项与挑战1.数据质量与可靠性2.地区特性的考虑3.方法选择的合理性正文:地球化学背景值及异常下限的确定是地质勘探、矿产资源评价等领域的重要任务。
背景值反映了地球化学元素含量的平均水平,而异常则是指元素含量明显偏离背景值的现象。
在实际应用中,我们需要将背景值与异常进行区分,以便更好地发现和评价矿产资源。
本文将介绍用计算法确定地球化学背景值及异常下限值的一些认识。
首先,我们需要收集并处理一定区域内的地球化学数据。
这一步骤中,需要注意数据的可靠性和代表性。
数据来源可以是地质调查、土壤采样、水质分析等。
在数据处理阶段,需要对原始数据进行质量控制,剔除异常值和缺失数据,并对数据进行统计分析。
接下来,我们通过计算得出地球化学背景值及异常下限。
计算方法主要包括算术平均法、中位数法、加权平均法等。
其中,算术平均法是最常用的方法。
计算公式为:背景值= (Σ元素含量)/ 样品数量在确定异常下限时,我们通常采用一定置信度的方法。
置信度反映了我们所估计的异常下限的可靠性。
常见的置信度有95%、99%等。
计算公式为:异常下限= 背景值+ 置信度对应的标准差在实际应用中,计算法在地球化学背景值及异常下限确定中具有重要意义。
例如,在既有正异常又有负异常分布的同一地区,我们可以用计算法求出总体元素背景值和异常下限。
此外,计算法还可以应用于地质勘探、矿产资源评价、环境监测等领域。
用计算法确定地球化学背景值及异常下限值的一些认识地球化学背景值和异常下限值是确定地球化学数据(如元素、同位素、矿物成分等)在特定地区或区域中的参考水平和异常程度的重要依据。
通过准确、科学地确定这些值,可以更好地了解地质体的特征和演化过程,为地质勘探、矿产资源开发、环境保护等提供科学依据。
一、地球化学背景值的确定地球化学背景值是指在其中一地区或区域内,特定物质的浓度或含量的平均水平。
确定地球化学背景值的步骤通常包括以下几个方面:1.收集样品:收集具有代表性的地球化学样品,例如土壤、水体、岩矿、植物等。
样品的选择应该根据所研究的地质背景、地貌类型、地球化学特征等因素进行科学确定。
2.分析样品:对采集的地球化学样品进行实验室分析,测量样品中感兴趣元素或化合物的浓度或含量。
常用的分析方法包括原子吸收光谱法、质谱法、电感耦合等离子体发射光谱法等。
3.数据处理:对得到的分析数据进行标准化处理,比如排除明显异常值、进行数据加权、样品稀释等。
可以使用地质统计学的方法,如均值、中位值、方差、协方差等进行数据处理。
4.制定地球化学背景值:根据所得到的标准化数据,结合地质特征、地貌分布、岩石类型和地球化学异常的特点,确定具体的地球化学背景值。
这个过程需要综合考虑样品的数量、采集方法、标准化处理等多个因素,确保背景值的可靠性和科学性。
二、地球化学异常下限值的确定地球化学异常下限值是在地球化学背景值的基础上确定的最低异常值,用于评价地球化学数据是否存在异常现象。
确定地球化学异常下限值的步骤如下:1.选择异常处理方法:根据所研究的地质背景、地貌类型、地球化学特征等因素,选择适合的异常处理方法。
常用的异常处理方法包括等级判别法、离群值分析法、空间统计法等。
2.处理异常值:对采集的地球化学样品中的异常值进行排除或修正。
排除异常值的方法通常包括删除异常值数据样本、使用替代值代替异常数据等。
3.确定异常下限值:根据排除或修正之后的数据样本,再次进行数据处理,得到修正后的数据分布。
用计算法确定地球化学背景值及异常下限值的一些认识
摘要:
一、背景值和异常下限值的定义
二、计算法确定地球化学背景值及异常下限值的方法
三、应用计算法确定地球化学背景值及异常下限值的注意事项
四、结论
正文:
地球化学背景值和异常下限值是地球化学研究中非常重要的概念。
背景值是指某一地区在自然条件下,某种元素的含量;而异常下限值则是指某种元素含量超过正常背景值的最低值。
在地球化学研究中,正确地确定地球化学背景值和异常下限值对于理解元素的分布规律和地球化学环境具有重要意义。
计算法是一种常用的确定地球化学背景值及异常下限值的方法。
这种方法主要基于统计学原理,通过计算某种元素在一定区域内的平均含量和标准离差,从而得出该元素背景值和异常下限值。
在实际操作中,通常采用最小二乘法、最大似然法等数学模型进行计算。
然而,应用计算法确定地球化学背景值及异常下限值时需要注意以下几点。
首先,计算法适用于元素含量较为均匀的地区,对于元素含量变化较大的地区,计算结果可能存在较大误差。
其次,计算法需要有足够的样本数据支持,样本数量过少可能导致计算结果偏差较大。
最后,计算法仅能确定元素的背景值和异常下限值,对于元素异常的原因和机制仍需通过其他方法进行研究。
总之,计算法作为一种常用的确定地球化学背景值及异常下限值的方法,在实际应用中需要注意其适用范围和局限性。
在局部区域内定值异常下限的确定采用以下两种方式:(1)累频方式将数据从小到大排序,取85%频数的值作为异常下限值。
采用90%、95%频数值将异常划分为弱、中、强3级浓度分带。
(2)均值标准差方式对于近似正态分布的数据,采用平均值 3倍标准差的界限循环剔除离异数据点后,采用平均值+2倍标准差来确定异常下限值。
采用平均值+2-3倍标准差和平均值+2.7倍标准差值将异常划分为弱、中、强3级浓度分带。
在省域范围内依据局部区域内定值异常下限值以及异常浓度分带值分别建立异常下限趋势面、中异常值趋势面和强异常值趋势面。
▲普通聚类分析分析方法:①选择研究区分析单元;②确定分析元素(建议不少于10个);③选择计算方法(针对元素分组和相关性分析,选择R型);④绘制谱系图;⑤确定分组相关系数下限(建议>0.5),并对元素分组;⑥对元素分组结果进行地质与成矿因素的分析解释。
应用聚类分析的元素分组可确定矿床类型和元素的组合特征,也可通过已知成矿单元的类比,预测评价相关研究区内相关单元可能发现的矿床类型等。
元素异常浓度特征元素异常浓度特征异常浓度特征是指形成异常的指标在异常区域范围内的数值特征,主要包括异常下限、异常特征值、异常强度、异常衬度、富集系数、异常浓度分带等特征参数。
▲背景值▲异常下限区域地球化学异常是相对于区域地球化学背景而言的。
区域地球化学背景不是一个确定的含量值,而是一个含量范围,将背景含量范围的最大值称为背景上限,当元素含量(或其他指标数据)超过区域背景上限时称其为异常,因此异常下限就等于背景上限。
▲异常特征值异常特征值是异常区域内数据的描绘统计参数量,主要包括中位数、算术平均值与标准离差或几何均值与几何标准离差。
▲变异系数反映区域内数据的变化程度,区域内标准差/平均值。
▲异常强度异常含量的高低或异常含量超过背景值的程度。
可以用异常的峰值、平均值、衬度等表示。
b 异常强度分为平均强度与最高强度。
平均强度是异常范围内原始数据的平均值;最高强度是指异常范围内最高的单样品原始分析值。
用计算法确定地球化学背景值及异常下限值的一些认识计算法是一种确定地球化学背景值及异常下限值的常用方法。
通过该方法,可以对地球化学样品数据进行统计分析,并根据数据的分布特征来确定背景值和异常下限值。
在进行计算法确定地球化学背景值和异常下限值的过程中,需要遵循以下一般步骤:1.数据采集与处理:收集地球化学样品的数据,并进行必要的数据处理,包括数据清洗、异常值处理、数据转换等。
2.数据分布分析:对数据进行统计分析,了解数据的分布特征。
可以使用统计方法,如平均值、中位数、众数、标准差、变异系数等,来描述数据的集中趋势和离散程度。
3.背景值确定:通过分析数据的分布特征,确定地球化学元素的背景值。
通常背景值可以采用平均值、中位数、众数等,但也要结合地质特征和地球化学元素的空间变异性进行综合分析。
4.异常下限值确定:在确定背景值基础上,可以根据数据分布的统计特征,选择一定的标准差或百分位数作为异常下限值。
常用的方法包括3倍标准差法、2倍标准差法、95%百分位数法等。
5.专家经验参考:在确定地球化学背景值和异常下限值时,还可以参考地质学、地球化学和环境科学领域的专家经验。
特别是对于一些特殊地质环境或地球化学元素的特殊性,可以综合专家经验进行判断。
需要注意的是,计算法只是一种初步的确定地球化学背景值和异常下限值的方法,其结果还需要结合实地勘察、专家评价和实际监测数据进行进一步确认。
同时,对于不同地质环境下的地球化学背景值和异常下限值的确定,也需要遵循相应的规范和标准。
综上所述,计算法是一种常用的确定地球化学背景值和异常下限值的方法。
通过对地球化学样品数据的统计分析,结合专家经验和地质环境特征,可以对地球化学背景值和异常下限值进行初步确定,为环境监测、矿产勘查和环境治理提供科学依据。
但需要注意的是,计算法的结果还需与实际数据和专家判断相结合,进行综合分析和确认。
地球化学测量法(1)地球化学测量法的基本原理:地球化学测量主要是通过发现异常、解释评价异常的过程来进行找矿的,而地球化学异常又是相对于地球化学背景而言的。
所以说研究地球化学异常是化学探矿的最基本问题。
1)地球化学背景与背景含量:在无矿或未受矿化影响的地区,区内的地质体和天然物质没有特殊的地球化学特征,且元素含量正常,这种现象称为地球化学背景,简称背景。
正常含量也叫背景含量。
元素呈正常含量的地区称背景区。
背景区内,元素的分布是不均匀的,故背景含量不是一个确定的值,而是在一定范围内变动的值。
背景含量的平均值为背景值。
背景含量的最高值称为背景上限值,或称背景上限。
高于背景上限值的含量就属于异常含量。
因此,也可以称背景上限值为异常下限。
2)地球化学异常与异常值:在广大背景区中,往往有一部分天然物质及地球化学特征与背景区有显著不同,这就是地球化学异常。
如果用数值来表达异常的特征,则该值叫地球化学异常值。
其对应的地区称为地球化学异常区,简称异常区。
3)地球化学异常的分类:地球化学异常可分为在基岩中形成的异常-原生地球化学异常(原生异常)和由岩石、矿石遭表生风化破坏后,在现代疏松沉积物、水及生物中形成的异常-次生地球化学异常(次生异常)。
根据规模大小,又可将地球化学异常分为三类:地球化学省、区域地球化学异常(区域异常)和局部地球化学异常(局部异常)。
4)地球化学测量方法分类:根据地球化学找矿取样介质的不同可以分为下列五类:岩石地球化学测量、土壤地球化学测量、水系沉积物地球化学测量(即分散流测量)、水化学测量、气体地球化学测量。
上述各类地球化学找矿方法中,以前三种最常用,比较成熟且找矿效果也较好。
(2)地球化学测量法的工作方法1)定点及编号:将采样点的位置准确地标定在相应的图件上称为定点。
测区用规则测网采样时,将测量结果换算成坐标落在图件上就行了。
采样点的误差最好不超过点线距的1/20-1/10。
若用不规则测网采样时,定点的误差要大些,一般要求定点的误差在相应图中不超过1mm。
地球化学异常下限确定方法
1.基于地质背景的比较法:将同一地质背景下的样品进行对比,通过统计方法确定地球化学元素的异常范围。
例如,研究同一矿床中的矿石样品,对比它们的地球化学元素含量,可以判断是否存在异常变化。
2.统计方法:通过对大量地球化学数据进行统计分析,确定不同地质区域或不同地质元件的异常范围。
例如,可以通过对全球岩石样品的地球化学数据进行聚类和聚类分析,找出不同地质元件的正常范围,进而确定异常下限。
3.地球化学地球化学背景值方法:地球化学背景值是指在特定区域特定地质背景下,其中一种地球化学元素的正常含量范围。
通过研究地质背景下的典型样品,确定该地区该元素的地球化学背景值,并以此作为判断异常的依据。
4.地球化学地质模型法:利用地球化学地质模型,将地理背景、地质作用过程与地球化学元素含量进行综合分析,确定异常下限。
例如,通过研究其中一种地质元件在不同成因作用过程中地球化学元素的变化规律,可以建立对应的地质模型,据此判断地球化学异常的下限。
5.地球化学地质地球化学区带范围法:根据研究区域地质特征,将其划分为不同的地质地球化学区带,并分别确定每个区带内地球化学元素的正常范围。
通过对比不同区带内地球化学元素的异常范围,可以确定地球化学异常的下限。
总之,确定地球化学异常的下限需要综合考虑地质背景、统计分析、地球化学背景值、地球化学地质模型和地球化学地质地球化学区带范围等
因素。
以上所提到的方法均可应用于地球化学异常的确定,具体应根据研究目的和实际情况进行选择和结合。
确定地球化学背景值与异常下限的方法有很多种。
早期采用简单的统计方法求平均值与标准偏差;用直方图法确定的众值或中位数作为地球化学背景值。
以后又发展到用概率格纸求背景值与异常下限等。
随着对地球化学背景认识的加深,采用求趋势面或求移动平均值等方法来确定背景值和异常下限,70年代以来,多元回归法、稳健多元线性回归分析法、克立格法、马氏距离识别离散点群法等多种方法常作来研究地球化学的背景值和异常下限。
考虑到方法的实用性、有效性、易操作,通过几种方法在工作区的试验对比,迭代法确定的背景值及异常下限较低,更有利于突出弱异常。
因此,工作区背景值和异常下限的确定选用迭代法。
迭代法处理的步骤:①计算全区各元素原始数据的均值(X1)和标准偏差(Sd1);②按X1+ nSdl的条件剔除一批高值后获得一个新数据集,再计算此数据集的均值(X2)和标准偏差(Sd2);③重复第二步,直至无特高值点存在,求出最终数据集的均值(X)和标准偏差(Sd),则X做为背景值CO, X+nSd(n根据情况选1.5或2, 3)做为异常下限Ca,采用迭代法求出工作区各地球化学元素特征值及各参数(见表1)。
表1工作区元素地球化学特征值及参数表化探数据是以多元素或多变量为特征的。
化探数据处理既研究元素之间的相互关系,又研究样品之间的相互关系,前者叫做R方式分析,后者叫做Q方式分析。
分析结果是将数据按变量或按样品划分成若干类,使各类内部性质相似而各类之间性质相异。
如果参加分析的数据含有已知类别(如矿或非矿的作用)能起训练组作用时,数据处理的结果可给出明确的地质解释,否则所做的地质解释就含有较大程度的推测性。
在特定情况下地球化学数据可能只反映单一的地质过程,这样的化探数据是所谓来自一个母体”的。
一般情况是几种地质过程作用在同一地区,他们相互重叠或部分重叠,这反映在地球化学数据上就具有多个母体”的特征。
化探数据处理需要鉴别和分离这些母体,即对化探数据值进行分解,确定出不同母体的影响在数据中所产生的分量。
地球化学测量法(1)地球化学测量法的基本原理:地球化学测量主要是通过发现异常、解释评价异常的过程来进行找矿的,而地球化学异常又是相对于地球化学背景而言的。
所以说研究地球化学异常是化学探矿的最基本问题。
1)地球化学背景与背景含量:在无矿或未受矿化影响的地区,区内的地质体和天然物质没有特殊的地球化学特征,且元素含量正常,这种现象称为地球化学背景,简称背景。
正常含量也叫背景含量。
元素呈正常含量的地区称背景区。
背景区内,元素的分布是不均匀的,故背景含量不是一个确定的值,而是在一定范围内变动的值。
背景含量的平均值为背景值。
背景含量的最高值称为背景上限值,或称背景上限。
高于背景上限值的含量就属于异常含量。
因此,也可以称背景上限值为异常下限。
2)地球化学异常与异常值:在广大背景区中,往往有一部分天然物质及地球化学特征与背景区有显著不同,这就是地球化学异常。
如果用数值来表达异常的特征,则该值叫地球化学异常值。
其对应的地区称为地球化学异常区,简称异常区。
3)地球化学异常的分类:地球化学异常可分为在基岩中形成的异常-原生地球化学异常(原生异常)和由岩石、矿石遭表生风化破坏后,在现代疏松沉积物、水及生物中形成的异常-次生地球化学异常(次生异常)。
根据规模大小,又可将地球化学异常分为三类:地球化学省、区域地球化学异常(区域异常)和局部地球化学异常(局部异常)。
4)地球化学测量方法分类:根据地球化学找矿取样介质的不同可以分为下列五类:岩石地球化学测量、土壤地球化学测量、水系沉积物地球化学测量(即分散流测量)、水化学测量、气体地球化学测量。
上述各类地球化学找矿方法中,以前三种最常用,比较成熟且找矿效果也较好。
(2)地球化学测量法的工作方法1)定点及编号:将采样点的位置准确地标定在相应的图件上称为定点。
测区用规则测网采样时,将测量结果换算成坐标落在图件上就行了。
采样点的误差最好不超过点线距的1/20-1/10。
若用不规则测网采样时,定点的误差要大些,一般要求定点的误差在相应图中不超过1mm。
用计算法确定地球化学背景值及异常下限值的一些认识(原创版)目录1.引言2.确定地球化学背景值及异常下限值的重要性3.计算法确定地球化学背景值及异常下限值的基本原理4.计算法在确定地球化学背景值及异常下限值时的应用实例5.计算法确定地球化学背景值及异常下限值的优缺点6.结论正文地球化学背景值和异常下限值是地球化学勘探中非常重要的概念。
地球化学背景值是指特定地质环境中,元素的正常含量范围,而异常下限值则是指在地球化学背景值以下的含量,可以认为是地球化学异常的起始值。
正确确定地球化学背景值及异常下限值对于地质勘探、矿产资源勘查以及环境监测等方面具有重要意义。
计算法是确定地球化学背景值及异常下限值的常用方法之一,其基本原理是根据大量地球化学样品的分析数据,运用统计学方法计算出元素的平均值和标准差,从而确定地球化学背景值和异常下限值。
计算法主要包括简单平均法、加权平均法、中值法等。
在实际应用中,计算法可以用于确定不同地质环境中地球化学背景值及异常下限值。
例如,在既有正异常又有负异常分布的同一地区,可以通过计算法求出总体元素背景值和异常下限。
这种方法具有较高的准确性和可靠性,可以为地质勘探提供有效的数据支持。
然而,计算法在确定地球化学背景值及异常下限值时也存在一定的局限性。
首先,计算法依赖于大量的分析数据,当样品数量有限或样品分布不均时,计算结果可能存在偏差。
其次,计算法忽略了地质环境中元素分布的非均匀性,可能导致异常下限值的确定不准确。
因此,在实际应用中,需要结合其他方法,如地质法、地球物理法等,对计算结果进行校正和补充。
总之,计算法在确定地球化学背景值及异常下限值方面具有一定的优势,可以为地质勘探提供有效的数据支持。
实验二地球化学背景及异常下限的确定
一实验目的与要求
通过实验,进一步理解地球化学背景及异常下限的基本概念,初步掌握地球化学背景及异常下限确定的几种方法
二实验方法与步骤:
(一)长剖面法
长剖面法是建立在地质剖面观察基础上,以对比剖面地质观察和样品分析结果来确定背景值及背景上限。
确定具体实验方法与步骤:(本练习只作以上2、3两步骤)
1首先,工作时应选择确定一条或几条横穿矿体的有代表性的长剖面,在测制地质剖面的同时,以一定间距采取岩石(或土壤)样品,分析有关元素的含量,并编制地球化学剖面(图1);
2 其次,利用地球化学剖面图来对比剖面地质观察结果和元素含量变化,并根据远离矿体处样品中的元素含量,平行横坐标做一条平均含量线,与纵坐标相交处指示的含量即为该元素在这一地段的背景值,本练习要求将图1中W、B、Be三种元素的背景值确定出来;
3 根据远离矿体处样品中元素含量的波动范围,由波动上限处平行横坐标做直线,与纵坐标相交处指示的含量即为该元素在这一地段的背景上限。
本练习要求将图1中W、B、Be三种元素的背景上限值确定出来。
图1 内蒙古某地地球化学异常检查剖面图
(二) 直方图解法
直方图解法确定背景值及背景上限的基本前提是,元素在地质体中呈正态分布或对数正态分布。
应用这种方法时,首先统计绘制元素各含量的频率直方图;然后根据正态(或对数正态)分布特点确定众值Mo 来代表背景值;以计算的均方根差(离差)σ来确定背景上限(或称异常下限)C a。
其具体步骤如下:
1) 将参加统计的各样品元素含量,由低到高按一定含量(或其对数)间隔分组。
分组数在正常地区一般为5~7个或更多,并统计各组样品的频率(或频数)。
2) 以含量(或其对数)为横坐标,以单组样品频数(或频率)为纵坐标绘制直方图。
3) 在频率(或频数)最大的直方柱中,将左顶角与右邻直方柱相应顶角相连,将右顶角与左邻直方柱相应顶角相连。
两连线的交点在横坐标上投影即为众值Mo,也就是所求的背景值Co(或背景值的对数值)。
4) 通过各直方柱柱面,做一钟形曲线,在众值Mo两侧,曲线基本上相互对称。
5) 由频率或频数的极大值的0.6倍处,做一平行横坐标的直线,与曲线一侧相交,其横坐标长度即为离差σ(或lgσ)。
由众值Mo向高含量方向量取2~3倍的离差σ(一般取2σ),该处所指示的含量(或其对数值)即为背景上限(或其对数值)。
按上述步骤,以表1为例,绘制直方图,用直方图解法求取某地区镍元素的背景值及背景上限。
表1 某地区镍地球化学元素含量分组频率统计
注:样品数=频数;频率=样品数÷样品总数×100%;
(三) 概率格纸图解法
利用概率格纸图解法确定背景值和背景上限,也建立在元素在地质体中呈正态分布或对数正态分布的基础上。
应用这种方法时,首先统计元素各含量的累积频率,并在概率格纸上绘出各含量组累积频率分布点的连线;然后根据其在概率格纸上反映的正态分布(或对数正态分布)特点,确定背景值及背景上限。
其具体做法、步骤如下:
1) 根据适当的含量间隔(或对数含量间隔),将参加统计的各样品含量进行分组(要求同前,分组结果见
表1),并分别统计各含量组中含量出现的频数、频率及累积频率。
2) 根据元素含量分布形式(正态或对数正态分布)选定横坐标(含量或含量的对数值),并根据含量间隔(对数含量间隔)在概率格纸上确定横坐标刻度数值。
将各含量组的累积频率值投点于图上,连接相邻各点,形成累积频率曲线。
3) 与累积频率为50%所对应的横坐标(中位值)即为背景值(或其对数值)。
与累积频率为84.1%(或15.9%)对应的横坐标值与中位值之间的差值即为离差σ(或1gσ)。
累积频率为97.7%对应的横坐标值即为背景上限(或其对数值)。
按上述步骤,以表1为例,在计算组中值、频率与累积频率的基础上,求取某地区镍元素的背景值及背景上限
实验报告要求内容:
一、实验目的与要求;
二、实验方法与步骤;
三、用直方图解法和概率格纸图解法的求解过程;
四、计算过程与相关图解;
五、结论。