2023年九年级数学中考复习《不等式和不等式组》分类专题集训(附答案)
- 格式:docx
- 大小:310.30 KB
- 文档页数:16
知识回顾微专题不等式与不等式组--中考数学必考考点总结+题型专训考点一:不等式与不等式组之定义1.不等式的定义:用不等号“>”“<”“≥”“≤”“≠”连接的式子叫做不等式。
必须满足不等关系。
2.一元一次不等式的定义:只含有一个未知数,且未知数的次数是1的整式不等式叫做一元一次不等式。
3.一元一次不等式组的定义:把含有同一个未知数的几个一元一次不等式组合起来得到不等式组,这样的不等式组叫做一元一次不等式组。
1.(2022•六盘水)如图是某桥洞的限高标志,则能通过此桥洞的车辆高度是()A .6.5mB .6mC .5.5mD .4.5m【分析】根据标志内容为限高5m 可得,能通过此桥洞的车辆高度必须不能超过5m ,【解答】解:由标志内容可得,能通过此桥洞的车辆高度必须不能超过5m ,故选:D .2.(2022•吉林)y 与2的差不大于0,用不等式表示为()A .y ﹣2>0B .y ﹣2<0C .y ﹣2≥0D .y ﹣2≤0【分析】不大于就是小于等于的意思,根据y 与2的差不大于0,可列出不等式.【解答】解:根据题意得:y ﹣2≤0.故选:D .知识回顾微专题考点二:不等式与不等式组之不等式的性质1.不等式的性质:①不等式的性质1:不等号的左右两边都加上(或减去)同一个数(或式子),不等号方向不变。
即若()b a b a ≤≥,则()c b c a c b c a ±≤±±≥±。
②不等式的性质②:不等号左右两边同时乘上(或除以)同一个正数,不等号方向不变。
即:()0>,c b a b a ≤≥,则⎪⎭⎫ ⎝⎛≤≤≥≥c b c a bc ac c b c abc ac ,,。
③不等式的性质③:不等式左右两边同时乘上(或除以)同一个负数,不等号方向改变。
即:()0<,c b a b a ≤≥,则⎪⎭⎫ ⎝⎛≥≥≤≤c b c a bc ac c b c a bc ac ,,。
2024中考数学全国真题分类卷第五讲不等式(组)及不等式的应用命题点1不等式的基本性质1.(2023湘潭·多选题)若a >b ,则下列四个选项中一定成立的是()A.a +2>b +2B.-3a >-3bC.a 4>b 4D.a -1<b -12.(2023杭州)已知a ,b ,c ,d 是实数,若a >b ,c =d ,则()A.a +c >b +dB.a +b >c +dC.a +c >b -dD.a +b >c -d3.(2022苏州)若2x +y =1,且0<y <1,则x 的取值范围为________.命题点2一元一次不等式(组)的解法类型一不等式(组)的解法及解集表示4.(2023甘肃省卷)不等式3x -2>4的解集是()A.x >-2B.x <-2C.x >2D.x <25.(2023益阳)若x =2是下列四个选项中的某个不等式组的一个解,则这个不等式组是()A.<1<-1B.<1>-1 C.>1<-1D.>1>-16.(2023滨州)2x ,≥x -12中每个不等式的解集在同一条数轴上表示出来,正确的为()7.(新趋势)·注重学习过程(2023天津)x ≥x -1,①+1≤3.②请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得________;(Ⅱ)解不等式②,得________;(Ⅲ)把不等式①和②的解集在数轴上表示出来:第7题图(Ⅳ)原不等式组的解集为________.8.(2023宜昌)解不等式x-13≥x-32+1,并在数轴上表示解集.第8题图9.(2023宁波)x-3>9,+x≥0.10.(2023盐城)x+1≥x+2,x-1<12x+4).11.(新趋势)·注重学习过程(2022山西)下面是小明同学解不等式的过程,请认真阅读并完成相应任务.2x-1 3>3x-22-1解:2(2x-1)>3(3x-2)-6第一步4x-2>9x-6-6第二步4x-9x>-6-6+2第三步-5x>-10第四步x>2第五步任务一:填空:①以上解题过程中,第二步是依据________(运算律)进行变形的;②第________步开始出现错误,这一步错误的原因是________;任务二:请直接写出该不等式的正确解集.类型二不等式(组)的特殊解12.(2022张家界)>2,x+1≤7的正整数解为________.13.(2023扬州)-2≤2x,-1<1+2x3,并求出它的所有整数解的和.14.(2023河北)整式3(13-m)的值为P.(1)当m=2时,求P的值;(2)若P的取值范围如图所示,求m的负整数值.第14题图命题点3含参不等式(组)问题15.(2022菏泽)+5<4x-1,>m的解集为x>2,那么m的取值范围是()A.m≤2B.m≥2C.m>2D.m<216.(2023邵阳)关于x -13x>23-x,-1<12(a-2)有且只有三个整数解,则a的最大值是()A.3B.4C.5D.617.(2022呼和浩特)已知关于x 2x-3≥1,1≥a-12无实数解,则a的取值范围是()A.a≥-52B.a≥-2 C.a>-52D.a>-218.(2023重庆B卷)关于x的分式方程3x-ax-3+x+13-x=1的解为正数,且关于y的不等式组2(y+2),1的解集为y≥5,则所有满足条件的整数a的值之和是() A.13 B.15 C.18 D.2019.(2022遂宁)已知关于x,y x+3y=5a,+4y=2a+3满足x-y>0,则a的取值范围是________.20.(2023泸州)若方程x-3x-2+1=32-x的解使关于x的不等式(2-a)x-3>0成立,则实数a的取值范围是________.命题点4不等式的实际应用21.(2023山西)某品牌护眼灯的进价为240元,商店以320元的价格出售.“五一节”期间,商店为让利于顾客,计划以利润率不低于20%的价格降价出售,则该护眼灯最多可降价________元.22.(2023北京)甲工厂将生产的Ⅰ号、Ⅱ号两种产品共打包成5个不同的包裹,编号分别为A,B,C,D,E,每个包裹的重量及包裹中Ⅰ号、Ⅱ号产品的重量如下:包裹编号Ⅰ号产品重量/吨Ⅱ号产品重量/吨包裹的重量/吨A516B325C235D437E358甲工厂准备用一辆载重不超过19.5吨的货车将部分包裹一次运送到乙工厂.(1)如果装运的Ⅰ号产品不少于9吨,且不多于11吨,写出一种满足条件的装运方案________(写出要装运包裹的编号);(2)如果装运的Ⅰ号产品不少于9吨,且不多于11吨,同时装运的Ⅱ号产品最多,写出满足条件的装运方案________(写出要装运包裹的编号).命题点5方程与不等式结合的实际应用23.(2023郴州)为响应乡村振兴号召,在外地创业成功的大学毕业生小姣毅然返乡当起了新农人,创办了果蔬生态种植基地.最近,为给基地蔬菜施肥,她准备购买甲、乙两种有机肥.已知甲种有机肥每吨的价格比乙种有机肥每吨的价格多100元,购买2吨甲种有机肥和1吨乙种有机肥共需1700元.(1)甲、乙两种有机肥每吨各多少元?(2)若小姣准备购买甲、乙两种有机肥共10吨,且总费用不能超过5600元,则小姣最多..能购买甲种有机肥多少吨?24.(2023柳州)习近平总书记在主持召开中央农村工作会议中指出:“坚持中国人的饭碗任何时候都要牢牢端在自己手中,饭碗主要装中国粮.”某粮食生产基地为了落实习近平总书记的重要讲话精神,积极扩大粮食生产规模,计划投入一笔资金购买甲、乙两种农机具,已知1件甲种农机具比1件乙种农机具多1万元,用15万元购买甲种农机具的数量和用10万元购买乙种农机具的数量相同.(1)求购买1件甲种农机具和1件乙种农机具各需多少万元?(2)若该粮食生产基地计划购买甲、乙两种农机具共20件,且购买的总费用不超过46万元,则甲种农机具最多能购买多少件?25.(2023眉山)建设美丽城市,改造老旧小区.某市2019年投入资金1000万元,2022年投入资金1440万元,现假定每年投入资金的增长率相同.(1)求该市改造老旧小区投入资金的年平均增长率;(2)2022年老旧小区改造的平均费用为每个80万元.2023年为提高老旧小区品质,每个小区改造费用增加15%.如果投入资金年增长率保持不变,求该市在2023年最多可以改造多少个老旧小区?26.(2023益阳)在某市组织的农机推广活动中,甲、乙两人分别操控A,B两种型号的收割机参加水稻收割比赛.已知乙每小时收割的亩数比甲少40%,两人各收割6亩水稻,乙则比甲多用0.4小时完成任务;甲、乙在收割过程中对应收稻谷有一定的遗落或破损,损失率分别为3%,2%.(1)甲、乙两人操控A,B型号收割机每小时各能收割多少亩水稻?(2)某水稻种植大户有与比赛中规格相同的100亩待收水稻,邀请甲、乙两人操控原收割机一同前去完成收割任务,要求平均损失率不超过2.4%,则最多安排甲收割多少小时?27.(2023遂宁)某中学为落实《教育部办公厅关于进一步加强中小学生体质管理的通知》文件要求,决定增设篮球、足球两门选修课程,需要购进一批篮球和足球.已知购买2个篮球和3个足球共需费用510元;购买3个篮球和5个足球共需费用810元.(1)求篮球和足球的单价分别是多少元;(2)学校计划采购篮球、足球共50个,并要求篮球不少于30个,且总费用不超过5500元.那么有哪几种购买方案?参考答案与解析1.AC2.A3.0<x <12【解析】由2x +y =1可得y =1-2x ,∵0<y <1,∴0<1-2x <1,∴0<x <12.4.C5.D【解析】>1>-1的解集为x >1,∴x 可以取2.6.C 【解析】x ①≥x -12②,解不等式①,得x >-3,解不等式②,得x ≤5,∴原不等式组的解集为-3<x ≤5,其解集在数轴上表示如选项C 所示.7.(Ⅰ)x ≥-1;(Ⅱ)x ≤2;(Ⅲ)解集在数轴上表示如解图所示;第7题解图(Ⅳ)-1≤x ≤2.8.解:去分母,得2(x -1)≥3(x -3)+6,去括号,得2x -2≥3x -9+6,移项,合并同类项,得-x ≥-1,系数化为1,得x ≤1.解集在数轴上表示如解图所示.第8题解图9.解:x -3>9①+x ≥0②,解不等式①,得x >3,解不等式②,得x ≥-2,∴原不等式组的解集为x >3.10.解:x +1≥x +2①x -1<12(x +4)②,解不等式①,得x ≥1,解不等式②,得x <2,∴原不等式组的解集为1≤x <2.11.解:任务一:①乘法分配律(或分配律);②五;不等式两边都除以-5,不等号的方向没有改变(或不符合不等式的性质3);任务二:x <2.12.3【解析】解不等式2x +1≤7,得x ≤3,∴原不等式组的解集为2<x ≤3,则不等式组的正整数解为3.13.解:解不等式x -2≤2x ,得x ≥-2,解不等式x -1<1+2x3,得x <4,∴原不等式组的解集为-2≤x <4,∴所有整数解的和为-2+(-1)+0+1+2+3=3.14.解:(1)当m =2时,P =3(13-2)=1-6=-5;(2)由题意可知P ≤7,∴3(13-m )≤7,解得m ≥-2,∴m 的负整数值为-2和-1.15.A【解析】解不等式x +5<4x -1,得x >2,∵不等式组的解集为x >2,∴m ≤2.16.C【解析】-13x >23-x ①-1<12(a -2)②,解不等式①,得x >1,解不等式②,得x <a ,∴原不等式组的解集为1<x <a .∵不等式组有且只有三个整数解,整数解只能是x =2,3,4,∴a 的最大值是5.17.D【解析】解不等式-2x -3≥1,得x ≤-2,解不等式x4-1≥a -12,得x ≥2a +2,∵关于x2x -3≥11≥a -12无实数解,∴2a +2>-2,解得a >-2.18.A 【解析】分式方程3x -a x -3+x +13-x =1两边同乘x -3,得3x -a -x -1=x -3,即x =a -2.∵x 为正数,∴a -2>0,∴a >2.∵x -3≠0,∴a -2≠3,∴a ≠5.解不等式组2(y +2)1≥5>a +32.∵原不等式组的解集为y ≥5,∴a +32<5,∴a <7,∴2<a <7且a ≠5,∴a =3,4,6,∴所有满足条件的整数a 的值之和是3+4+6=13.19.a>1【解析】x+3y=5a①+4y=2a+3②,①-②得x-y=3a-3,∵x-y>0,∴3a-3>0,解得a>1.20.a<-1【解析】解方程可得x=1,把x=1代入(2-a)x-3>0,∴2-a-3>0,∴a<-1.21.32【解析】设降价x元,则由题意可知:320-x-240240≥20%,解得x≤32,故最多降32元.22.ABC(答案不唯一);ACE【解析】(1)当选择包裹为ABC时,Ⅰ号产品为5+3+2=10吨,满足不少于9吨但不多于11吨的要求,总重量为6+5+5=16吨,满足总重不超过19.5吨的要求,∴装运方案ABC满足题意;(2)要使得装运Ⅱ号产品最多,则首先必须有包裹E,则剩余的两个包裹需满足以下条件:Ⅰ号产品不少于6吨,不大于8吨,总重不超过11.5吨.在剩余两个包裹方案AB,AC,AD,BC,BD,CD中,AD的Ⅰ号包裹为9吨>8吨,故舍去;BC的Ⅰ号包裹为5吨<6吨,故舍去;BD和CD的总重均为12吨>11.5吨,故舍去;∴只有AB,AC满足要求,比较AB,AC两种方案,在符合其他条件下,AC装运的Ⅱ号包裹更多,因此最合适的装运方案为ACE.23.解:(1)设乙种有机肥每吨x元,则甲种有机肥每吨(x+100)元,由题意得2(x+100)+x=1700,解得x=500,∴x+100=500+100=600(元),答:甲种有机肥每吨600元,乙种有机肥每吨500元;(2)设购买甲种有机肥m吨,则乙种有机肥(10-m)吨.由题意得600m+500(10-m)≤5600,解得m≤6.答:小姣最多能购买甲种有机肥6吨.24.解:(1)设购买1件乙种农机具需x万元,则购买1件甲种农机具需(x+1)万元,根据题意得15x+1=10x,解得x=2,经检验,x=2是原分式方程的解,且符合题意,∴x+1=3(万元).答:购买1件甲种农机具和1件乙种农机具各需3万元和2万元;(2)设购买甲种农机具m件,则购买乙种农机具(20-m)件,根据题意得3m +2(20-m )≤46,解得m ≤6.答:甲种农机具最多能购买6件.25.解:(1)设该市改造老旧小区投入资金的年平均增长率为x ,根据题意,得1000(1+x )2=1440,解得x 1=0.2=20%,x 2=-2.2(不合题意,舍去),答:该市改造老旧小区投入资金的年平均增长率为20%;(2)设该市在2022年可以改造y 个老旧小区,由题意得80×(1+15%)y ≤1440×(1+20%),∴x ≤181823,根据题意x 取18答:该市在2022年最多可以改造18个老旧小区.26.解:(1)设甲操控A 型号收割机每小时收割x 亩水稻,则乙操控B 型号收割机每小时收割(1-40%)x =0.6x 亩水稻.由题意,得6x +0.4=60.6x,解得x =10.经检验,x =10是原分式方程的解,且符合题意,则0.6x =6.答:甲、乙两人操控A ,B 型号收割机每小时各能收割10亩、6亩水稻;(2)设安排甲收割m 小时,由题意,得10m ×3%+(100-10m )×2%≤2.4%×100,解得m ≤4.答:最多安排甲收割4小时.27.解:(1)设篮球的单价为x 元,足球的单价为y 元.x +3y =5105y =810,=120=90.答:篮球的单价为120元,足球的单价为90元;(2)设计划采购篮球m 个,则采购足球(50-m )个.≥30m +90(50-m )≤5500,解得30≤m ≤1003.∵m 为整数,∴m 的值可为:30,31,32,33,∴学校一共有四种购买方案:方案一:采购篮球30个,采购足球20个;方案二:采购篮球31个,采购足球19个;方案三:采购篮球32个,采购足球18个;方案四:采购篮球33个,采购足球17个.。
2023年中考数学第一轮复习卷:不等式(组)及其应用一、选择题1. 已知x =1是不等式2x -b <0的解,b 的值可以是( )A.4B.2C.0D.-22. (2020•镇江模拟)不等式组2x a a 60x 3a 20⎧+++>⎨-+<⎩恒有解,下列a 满足条件的是( ) A.-4≤a ≤-2 B.-3≤a ≤-1 C.-2≤a ≤0 D.-1≤a ≤13. (2020•深圳模拟)不等式组1235a x a x -<<+⎧⎨<<⎩的解集是3<x<a+2,则a 的取值范围是( ) A.a>1 B.a ≤3 C.a<1或a>3 D.1<a ≤34. (2021·聊城)若-3<a ≤3,则关于x 的方程x +a =2解的取值范围为( )A.-1≤x <5B.-1<x ≤1C.-1≤x <1D.-1<x ≤55. (2020•衢州)不等式组的解集在数轴上表示正确的是( ) A. B. C. D.6. (2022·四川绵阳·中考模拟)为了美化校园,学校决定利用现有的2660盆甲种花卉和3000盆乙种花卉搭配A 、B 两种园艺造型共50个摆放在校园内,已知搭配一个A 种造型需甲种花卉70盆,乙种花卉30盆,搭配一个B 种造型需甲种花卉40盆,乙种花卉80盆.则符合要求的搭配方案有几种( )A.2B.3C.4D.57. (2021·北部湾经济区)定义一种运算:a*b =⎩⎪⎨⎪⎧a ,a ≥b b ,a <b ,则不等式(2x +1)*(2-x)>3的解集是( )A.x >1或x <13B.-1<x <13C.x >1或x <-1D.x >13或x <-1 8. (2022·四川眉山·一模)红星商店计划用不超过4200元的资金,购进甲、乙两种单价分别为60元、100元的商品共50件,据市场行情,销售甲、乙商品各一件分别可获利10元、20元,两种商品均售完.若所获利润大于750元,则该店进货方案有( )A.3种B.4种C.5种D.6种9. (2022·山东济南·二模)定义:平面直角坐标系中,点P(x,y)的横坐标x 的绝对值表示为|x|,纵坐标y 的绝对值表示为|y|,我们把点P(x,y)的横坐标与纵坐标的绝对值之和叫做点P(x,y)的折线距离,记为|M|=|x|+|y|(其中的“+”是四则运算中的加法),若抛物线y=ax 2+bx+1与直线y=x 只有一个交点M,已知点M 在第一象限,且2≤|M|≤4,令t=2b 2-4a+2022,则t 的取值范围为( )A.2018≤t ≤2019B.2019≤t ≤2020C.2020≤t ≤2021D.2021≤t ≤202210. (2022·北京十一学校一分校)设m 是非零实数,给出下列四个命题:①若-1<m<0,则1m <m<2m ;②若m>1,则1m <2m <m;③若m<1m <2m ,则m<0;④2m <m<1m,则0<m<1.其中命题成立的序号是( )A.①③B.①④C.②③D.③④二、填空题11. (2020·辽宁沈阳·初三一模)不等式组341025143x x x x +≤+⎧⎪+⎨-<⎪⎩的解集是_____. 12. (2021·荆门模拟)不等式组:⎩⎪⎨⎪⎧2x +3>-x 3-12x >2 的解集为____. 13. (2021·眉山中考)若关于x 的不等式x +m <1只有3个正整数解,则m 的取值范围是____.14. (2020•攀枝花)世纪公园的门票是每人5元,一次购门票满40张,每张门票可少1元.若少于40人时,一个团队至少要有 人进公园,买40张门票反而合算.15. (2022·黑龙江绥化·一模)某电脑经销商计划购进一批电脑机箱和液晶显示器,若购进电脑机箱10台和液晶显示器8台,共需要资金7000元;若购进电脑机箱2台和液晶显示器5台,共需要资金4120元.该经销商购进这两种商品共50台,购进电脑机箱不超过26台,而可用于购买这两种商品的资金不超过22240元,则该经销商有________种进货方案.16. (2022·重庆八中一模)某新建商场设有百货部、服装部和家电部三个经营部,共有若干名售货员,平时全商场日营业额(指每日卖出商品所收到的总金额)为60万元,由于营业性质不同,分配到三个经营部的售货员的人数不等,所得利润也不同.根据经验,百货部、服装部、家电部各类商品每1万元营业额所需售货员人数依次为5人、4人、2人;所得利润占各自营业额的占比依次为310、12、15.临近妇女节人流量增加,商场决定将原百货部和家电部的售货员人数减少都调整到服装部,同时节日期间各类商品所得利润与各自营业额的占比依次变为25、35、310,这样节日期间商场每日获得的利润比平时增加,且差价超过7万元,但不超过8万元.若百货部、服装部和家电部的营业额始终是整数,则节日期间从百货部调整到服装部的售货员共_____人.三、解答题17. (2021·西安模拟)习近平总书记说:“读书可以让人保持思想活力,让人得到智慧启发,让人滋养浩然之气”.某校为提高学生的阅读品味,现决定购买《艾青诗选》和《格列佛游记》两种书共50本.已知购买2本《艾青诗选》和1本《格列佛游记》需100元;购买6本《艾青诗选》与购买7本《格列佛游记》的价格相同.(1)求这两种书的单价.(2)若购买《艾青诗选》的数量不少于所购买《格列佛游记》数量的一半,且购买两种书的总价不超过1 600元.请问有哪几种购买方案?18. (2021·玉林)某市垃圾处理厂利用焚烧垃圾产生的热能发电,有A,B 两个焚烧炉,每个焚烧炉每天焚烧垃圾均为100吨,每焚烧一吨垃圾,A 焚烧炉比B 焚烧炉多发电50度,A,B 焚烧炉每天共发电55000度.(1)求焚烧一吨垃圾,A 焚烧炉和B 焚烧炉各发电多少度;(2)若经过改进工艺,与改进工艺之前相比每焚烧一吨垃圾,A 焚烧炉和B 焚烧炉的发电量分别增加a%和2a%,则A,B 焚烧炉每天共发电至少增加(5+a)%,求a 的最小值.19. (2020•广西)某市为创建“全国文明城市”,计划购买甲、乙两种树苗绿化城区,购买50棵甲种树苗和20棵乙种树苗需要5000元,购买30棵甲种树苗和10棵乙种树苗需要2800元.(1)求购买的甲、乙两种树苗每棵各需要多少元.(2)经市绿化部门研究,决定用不超过42000元的费用购买甲、乙两种树苗共500棵,其中乙种树苗的数量不少于甲种树苗数量的,求甲种树苗数量的取值范围.(3)在(2)的条件下,如何购买树苗才能使总费用最低?20. (2021•北碚区校级模拟)每年3-6月都是草莓、樱桃、枇杷销售的旺季,水果批发商都会大量采购,为了获得最大利润,批发商需要统计数据,更好地囤货.4月份某水果批发商统计前半个月销量后发现,草莓、樱桃销量相同,枇杷销量比草莓多,随着气温升高,后半个月水果总销量将在前半个月基础上有所增加,后半个月樱桃与枇杷的销量之比为3:2,4月份樱桃总销量与4月份枇杷总销量之比为51:44,但草莓由于已过销售旺季,后半个月与前半个月相比,销量有所减少,后半个月草莓减少的量与后半个月三种水果的总销量之比为1:14,则樱桃后半个月新增的销量与后半个月三种水果的总销量之比为多少?.21.(2021•江北区校级模拟)“绿水青山,就是金山银山”,为改善区域生态状况,促进经济社会可持续发展,实现人与自然和谐共生,某地启动了国家湿地公园建设试点项目,通过补植补造、自然封育、人工管护等一系列措施,改善生态环境,打造休闲旅游好去处.该湿地项目根据湿地地形,决定补植补造草皮、灌木、乔木(不混种)以增强观赏性.经过一段时间,补植补造草皮、灌木、乔木的面积之比为2:3:4,根据规划方案,将把余下湿地留足10%作为观赏步道后,剩下湿地继续补植补造草皮、灌木、乔木,经测算若将剩下湿地的补造草皮,则草皮的面积将达到前后补植补造的这三种植被总面积的.为了使前后补植灌木总面积与补植乔木总面积达到9:13,则该湿地项目前后补植的灌木总面积与该湿地项目全部(含观赏步道)总面积之比是多少?.答案一、选择题(本大题共10小题,每小题5分,满分50分)(本大题共10道小题)1. 【答案】A2. 【答案】故选:D.3. 【答案】故选:D.4. 【答案】A5. 【答案】C【解析】分别解两个不等式,然后求它们的公共部分即可得到原不等式组的解集,再在数轴上表示出来即可求解.,由①得x ≤1;由②得x >﹣1;故不等式组的解集为﹣1<x ≤1,在数轴上表示出来为:.6. 【答案】B7. 【答案】C8. 【答案】C9. 【答案】C10. 【答案】B二、填空题11. 【答案】15<x ≤3. 【详解】341025143x x x x ++⎧⎪⎨+-<⎪⎩①② ,由①得,x ≤3,由②得,x >15,原不等式组的解集为15<x ≤3,故答案为15<x ≤3.12. 【答案】-1<x <213. 【答案】-3≤m <-214. 【答案】33.【解析】设x 人进公园,若购满40张票则需要:40×(5﹣1)=40×4=160(元),故5x >160时,解得:x >32,则当有32人时,购买32张票和40张票的价格相同,则再多1人时买40张票较合算;32+1=33(人).则至少要有33人去世纪公园,买40张票反而合算.15. 【答案】316. 【答案】20三、解答题17. 【答案】(1)设购买《艾青诗选》的单价为x 元,《格列佛游记》的单价为y 元,由题意得:⎩⎪⎨⎪⎧2x +y =1006x =7y ,解得⎩⎪⎨⎪⎧x =35y =30 , 答:购买《艾青诗选》的单价为35元,《格列佛游记》的单价为30元.(2)设购买《艾青诗选》的数量为n 本,则购买《格列佛游记》的数量为(50-n)本,根据题意得⎩⎪⎨⎪⎧n ≥12(50-n )35n +30(50-n )≤1600,解得:1623 ≤n ≤20, 则n 可以取17、18、19、20,当n =17时,50-n =33,共花费17×35+33×30=1 585(元);当n=18时,50-n=32,共花费18×35+32×30=1 590(元);当n=19时,50-n=31,共花费19×35+31×30=1 595(元);当n=20时,50-n=30,共花费20×35+30×30=1 600(元);所以,共有4种购买方案分别为:购买《艾青诗选》和《格列佛游记》的数量分别为17本和33本,购买《艾青诗选》和《格列佛游记》的数量分别为18本和32本,购买《艾青诗选》和《格列佛游记》的数量分别为19本和31本,购买《艾青诗选》和《格列佛游记》的数量分别为20本和30本.18. 【答案】解:(1)设焚烧一吨垃圾,B焚烧炉发电x度,则A焚烧炉发电(x+50)度.根据题意,得100(x+50)+100x=55000.解得x=250.∴x+50=300.答:焚烧一吨垃圾,A焚烧炉发电300度,B焚烧炉发电250度.(2)改进工艺后,焚烧一吨垃圾,A焚烧炉和B焚烧炉的发电量分别为300(1+a%)吨和250(1+2a%)吨.根据题意,得100×300(1+a%)+100×250(1+2a%)≥55000+55000×(5+a)%.解得a≥11.答:a的最小值为11.19. 【答案】解:(1)设购买的甲种树苗的单价为x元,乙种树苗的单价为y元.依题意得:,解这个方程组得:,答:购买的甲种树苗的单价是60元,乙种树苗的单价是100元;(2)设购买的甲种树苗a棵,则购买乙种树苗(500﹣a)棵,由题意得,,解得,200≤a≤400.∴甲种树苗数量a的取值范围是200≤a≤400.(3)设购买的甲种树苗a棵,则购买乙种树苗(500﹣a)棵,总费用为W,∴W=60a+100(500﹣a)=50000﹣40a.∵﹣40<0,∴W值随a值的增大而减小,∵200≤a≤400,∴当x=400时,W取最小值,最小值为50000﹣40×400=34000元.即购买的甲种树苗400棵,购买乙种树苗100棵,总费用最低.20. 【答案】解:∵前半个月草莓、樱桃销量相同,枇杷销量比草莓多,∴设前半个月草莓、樱桃销量为x,则枇杷销量为(1+)x=x,∵后半个月樱桃与枇杷的销量之比为3:2,∴设后半个月樱桃销量为3y,则后半个月枇杷的销量2y,设后半个月草莓销量为z,∵4月份樱桃总销量与4月份枇杷总销量之比为51:44,∴=,变形化简得y=x,∵后半个月草莓减少的量与后半个月三种水果的总销量之比为1:14,∴=,变形化简得z=x-y,∴z=x-×x=x,∴樱桃后半个月新增的销量与后半个月三种水果的总销量之比为==,故答案为:.21. 【答案】解:设湿地总面积为a,第一次补植补造草皮、灌木、乔木的面积分别为2x、3x、4x,则余下湿地面积是a-9x,观赏步道的面积为10%•(a-9x)=a-x,∵前后补植灌木总面积与补植乔木总面积达到9:13,∴设前后补植灌木总面积为9z,则前后补植乔木总面积为13z,∵剩下湿地继续补植补造草皮、灌木、乔木,经测算若将剩下湿地的补造草皮,则草皮的面积将达到前后补植补造的这三种植被总面积的,∴[(a-9x)-(a-x)]×+2x=[a-(a-x)]×,化简得3a=47x,即x=a①,而前后补植补造草皮、灌木、乔木总面积为[(a-9x)-(a-x)]×+2x+9z+13z,∴[(a-9x)-(a-x)]×+2x+9z+13z=a-(a-x),化简得3a=110z-8x②,将①代入②得3a=110z-8×a,解得:z=a,∴湿地项目前后补植的灌木总面积与该湿地项目全部(含观赏步道)总面积之比是=,故答案为:.。
中考数学不等式与不等式祖专题训练含答案一、单选题1.已知a <0, -1<b <0.则a ,ab ,ab 2 由小到大的排列顺序是( ). A .a <ab <ab 2B .ab 2<ab <aC .a <ab 2<abD .ab <a <ab 22.据气象台预报,2020年5月某日大埔最高气温27℃,最低气温21℃,则当天气温t (℃)的变化范围是( ) A .t >21B .t ≤27C .21<t <27D .21≤t ≤273.若a >b ,则下列不等式正确的是( ) A .2a <2b B .ac >bc C .-a+1>-b+1D .3a +1>3b +14.不等式123x x +>-的最大整数解为:( ) A .1B .2C .3D .45.我国从2011年5月1日起在公众场所实行“禁烟”.为配合“禁烟”行动,某校组织开展了“吸烟有害健康”的知识竞赛,共有20道题.答对一题记10分,答错(或不答)一题记5-分.小明参加本次竞赛得分要超过100分,他至少要答对多少道题( ). A .13B .14C .15D .166.如果不等式(a -2)x>a -2的解集是x<1,那么a 必须满足( ) A .a<0B .a>1C .a>2D .a<27.不等式组1020x x +>⎧⎨-≥⎩的解集在数轴上表示正确的是( )A .B .C .D .8.如果成立,则实数的取值范围是( ) A .B .C .D .9.如果 x > y ,那么下列结论错误的是( ) A .x + 2 > y + 2B .x - 2 > y - 2C .2x > 2 yD .-2x > -2 y10.下列不等式中是一元一次不等式的是( )A .3y x +≥B .3-4<0C .2241x -≥D .24x -≤11.把不等式组30322x x -<⎧⎪⎨+≥⎪⎩的解集表示在数轴上,正确的是( )A .B .C .D .12.若关于x 的不等式()11a x ->的解集是11x a <-,则a 的取值范围是( ) A .1a >B .1a <C .1a ≠D .1a <且0a ≠13.如果a >b ,那么下列不等式中一定成立的是( ) A .a +m <b +mB .am <bmC .am 2>bm 2D .m ﹣a <m ﹣b14.函数12y x =+-,当4m x ≤≤,对应y 的取值范围为23y -≤≤,则m 的取值范围为( ) A .1m =-B .1m ≤-C .61m -≤≤-D .14m -≤<15.若关于x 的不等式组023115x ax x -⎧>⎪⎪⎨+⎪≥-⎪⎩有解,且关于y 的方程2433a y a y y -=---的解是正数,则所有满足条件的整数a 的值之和是( ) A .﹣8B .﹣4C .﹣3D .﹣116.将一箱苹果分给若干个学生,每个学生都分到苹果.若每个学生分5个苹果,则还剩12个苹果;若每位学生分8个苹果,则有一个学生所分苹果不足8个.若学生的人数为x ,则列式正确的是( ) A .05128(1)8x x ≤+--< B .05128(1)8x x <+--≤ C .15128(1)8x x ≤+--< D .15128(1)8x x <+--≤17.下列各式中正确的是( ) A .若a >b ,则a ﹣1<b ﹣1 B .若a >b ,则a 2>b 2 C .若a >b ,则ac >bcD .若a c >bc,则a >b18.某商品的进价是1000元,标价为1500元,商店要求以利润不低于5%的售价打折出售,售货员最低可以打( )折出售此商品. A .9B .8C .7D .619.不等式组()11{?22213x x -<++≥的解集是( ) A .﹣1<x≤3 B .1≤x <3 C .﹣1≤x <3 D .1<x≤320.不等式2x 97x ≤-的解集在数轴上表示出来,正确的是( ) A . B . C .D .二、填空题21.若(1)30k k x -+≥是关于x 的一元一次不等式,则k 的值为______. 22.满足一元一次不等式组101203x x -≤⎧⎪⎨->⎪⎩的最大整数值为___.23.有10名菜农,每人可种甲种蔬菜3公顷或乙种蔬菜2公顷,已知甲种蔬菜每公顷可收入0.5万元,乙种蔬菜每公顷可收入0.8万元,若要使总收入不低于15.6万元,则至多安排______人种甲种蔬菜.24.若不等式组1>125x ax x -⎧⎨-≥-⎩的解为1<2x ≤-,则a 的取值是_____________25.不等式组10324x x x ->⎧⎨>-⎩所有整数解的和为_____.26.不等式2x <4x ﹣6的最小整数解为_____.27.x 的3倍与15的差不小于8,用不等式表示为 ________28.小明去商店购买A 、B 两种玩具,共用了10元钱,A 种玩具每件1元,B 种玩具每件2元.若每种玩具至少买一件,且A 种玩具的数量多于B 种玩具的数量.则小明的购买方案有 _____种.29.不等式组23348x x ⎧>-⎪⎨⎪-≤⎩的最小整数解为_____.30.一辆公共汽车上原有(54)a -名乘客,到某一车站有(92)a -名乘客下车,车上原来可能有_____名乘客.31.已知实数x ,y ,a 满足x +3y +a =4,x ﹣y ﹣3a =0.若﹣1≤a ≤1,则2x +y 的取值范围是_____.32.已知将直线y kx =向上平移2个单位后,恰好经过点(1,0)-,则不等式42x kx -<+的解集为_____.33.不等式2x-6≥0的解集为________.34.为了方便同学们进行丰富阅读,南开中学图书馆订购了A ,B ,C 三类新书,共900本,其中A 类数量是B 类数量的4倍,C 类数量不超过A 类数量的5528倍,且A 类数量不超过400本.新书开始借阅后,深受同学欢迎,图书管理员提供了两种方案来增订这三类书若干本(两种方案增订的图书总量相同),方案一:按2:3:5的比例增订A ,B ,C 三类书;方案二:按4:1:5的比例增订A ,B ,C 三类书,经计算,若按方案一增订,则增订后A ,B 两类书总数量之比为7:2,那么按方案二增订时,增订后A ,C 两类书总数量之比为______.35.不等式了()133x m m ->-的解集为5x >,则m 的值为_______. 36.已知一次函数(2) 3y m x m =-+-的图象经过第一、二、四象限,则化简=__________.37.若关于x 的不等式组324x a x a <+⎧⎨>+⎩无解,则a 的取值范围是__.38.弟弟上午八点钟出发步行去郊游,速度为每小时4千米;哥哥上午十点钟从同一地点骑自行车去追弟弟.如果哥哥要在上午十点四十分之前追上弟弟,那么哥哥的速度至少是__________. 39.若关于x 的不等式组123354413x x xa x a恰有两个整数解,则a 的取值范围是_____.三、解答题 40.解不等式(组) (1)()2332x x +≥+ (2)12323x x -+< (3)2130x x >⎧⎨-<⎩(4)273(1)423133x x x x -<-⎧⎪⎨+≥-⎪⎩41.某商品经销店计划购进A ,B 两种纪念品,若购进A 种纪念品7件,B 种纪念品8件共需380元;若购进A 种纪念品10件,B 种纪念品6件共需380元. (1)求A ,B 两种纪念品每件的进价分别为多少元;(2)若该商店每销售1件A 种纪念品可获利5元,每销售1件B 种纪念品可获利7元,该商店准备购进A ,B 两种纪念品共40件,且这两种纪念品全部售出后总获利不低于216元,求该商店最多可以购进A 种纪念品多少件.42.根据下列语句列不等式并求出解集:x 与4的和不小于6与x 的差.43.某文具店王老板用240元购进一批笔记本,很快售完;王老板又用600元购进第二批笔记本,所购本数是第一批的2倍,但进价比第一批每本多了2元. (1)第一批笔记本每本进价多少元?(2)王老板以每本12元的价格销售第二批笔记本,售出60%后,为了尽快售完,决定打折促销,要使第二批笔记本的销售总利润不少于48元,剩余的笔记本每本售价最低打几折?44.解不等式组()()3151124x x x x ⎧-<+⎪⎨-≥-⎪⎩并求它的所有的非负整数解.45.如图甲所示的A 型(11⨯)正方形板材和B 型(31⨯)长方形板材,可用于制作成图乙所示的竖式和横式两种无盖箱子.已知板材每平方米20元.(1)若用2860元的资金去购买A 、B 两种型号板材,并全部制作竖式箱子,问可以制作竖式箱子多少只?(2)若有A 型板材67张、B 型板材135张,用这批板材制作两种类型的箱子共40只.问有哪几种制作方案? 46.计算(1)解不等式组312(1)212x x x +≥-⎧⎪⎨-<⎪⎩(2)解方程:53.212x x =-+ 47.飞盘运动由于门槛低、限制少,且具有较强的团体性和趣味性,在全国各地悄然兴起,深受年轻人喜爱.某商家购进了海绵和橡胶两种飞盘进行销售,已知一个橡胶飞盘比一个海绵飞盘的进价多30元,其中购买海绵飞盘花费4000元,购买橡胶飞盘花费3200元,且购买海绵飞盘的数量是购买橡胶飞盘数量的2倍.(1)求一个海绵飞盘的进价是多少元;(2)商家第一次购进的飞盘很快售完,决定再次购进同种类型的海绵和橡胶两种飞盘共80个,但海绵飞盘的进价比第一次购买时提高了16%,而橡胶飞盘的进价在第一次购买时进价的基础上打9折,如果商家此次购买海绵和橡胶两种飞盘的总费用不超过4800元,那么此次最多可购买多少个橡胶飞盘?48.在“母亲节”到来之际,某校九年级团支部组织全体团员到敬老院慰问.为筹集慰问金,团员们利用课余期间去卖鲜花.已知团员们从花店按每支1.5元的价格买进鲜花共支,并按每支5元的价格全部卖出,若从花店购买鲜花的同时,还用去50元购买包装材料.(1)求所筹集的慰问金y(元)与x(支)之间的函数表达式;(2)若要筹集不少于650元的慰问金,则至少要卖出鲜花多少支?49.为了抓住文化艺术节的商机,某商店决定购进A、B两种艺术节纪念品.若购进A 种纪念品8件,B种纪念品3件,需要950元;若购进A种纪念品5件,B种纪念品6件,需要800元.(1)求购进A、B两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,那么该商店至少要购进A种纪念品多少件?参考答案:1.C【分析】根据:不等式的两边都乘(或都除以)同一个负数,必须把不等号的方向改变,所得到的不等式成立.两边同时乘以负数a,得到:0>ab2>a,据此即可求得各数的大小关系.【详解】℃a<0,b<0,℃ab>0,℃−1<b<0,℃b2<1;℃a<ab2<ab.故选C.【点睛】不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.2.D【分析】变化范围是指在最低值和最高值之间,且包含最高值和最低值,根据题意用不等式表示.【详解】最高气温27℃,最低气温21℃,则t的变化范围为:21≤t≤27.故选D.【点睛】本题考查不等式表示生活中的应用,知道这个量的最大值和最小值,便可确定变量的变化范围,从而可用不等式表示,理解题意是解题的关键.3.D【分析】根据不等式的性质,逐项判断即可.【详解】解:℃a>b,℃2a>2b,℃选项A不符合题意;℃a>b,c<0时,ac<bc,℃选项B不符合题意;℃a>b,℃-a <-b , ℃-a +1<-b +1, ℃选项C 不符合题意; ℃a >b , ℃3a >3b ,℃3a +1>3b+1,℃选项D 符合题意. 故选:D .【点睛】此题主要考查了不等式的基本性质:(1)不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;(2)不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;(3)不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变. 4.C【分析】首先利用不等式的基本性质解不等式,再从不等式的解集中找出最大整数解即可.【详解】解:123x x +>- 移项得231x x ->-- 合并同类项得4x ->- 系数化为1得4x <故该不等式的最大整数解为3,故选C.【点睛】本题考查一元一次不等式的整数解.解本题注意在第三步系数化为1时需改变不等号的方向. 5.B【分析】竞赛得分=10×答对的题数+(-5)×未答对(不答)的题数,根据本次竞赛得分要超过100分,列出不等式求解即可. 【详解】解:设要答对x 道. 10x+(-5)×(20-x )>100, 10x-100+5x >100, 15x >200,解得x >403=1133,他至少要答对14道题, 故选B .【点睛】本题考查一元一次不等式的应用,得到得分的关系式是解决本题的关键. 6.D【详解】试题分析:根据两边同时除以(a -2),不等号的方向改变,可得(a -2)<0,解得a <2.考点:解一元一次不等式 7.B【分析】先分别求出各不等式的解集,再求其公共解集,然后把解集在数轴上表示出来即可.【详解】解:解10x +>得x >−1, 解20x -≥得x≤2,℃不等式组的解集为−1<x≤2, 在数轴上表示解集为:故选:B .【点睛】本题考查了解一元一次不等式组以及在数轴上表示不等式组的解集,在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.求不等式组的解集应遵循“同大取较大,同小取较小,小大大小中间找,大大小小解不了”的原则. 8.C 【详解】如果成立那么必须30,30,0mm m m-〉-≥≥可得9.D【分析】根据不等式的基本性质来分别判断求解.【详解】解:A .因为x y >,在不等边两边同时加上2,不等式方向不变,故原选项正确,此项不符合题意;B .因为x y >,在不等边两边同时减去2,不等式方向不变,故原选项正确,此项不符合题意;C.因为x y>,在不等边两边同时乘2,不等式方向不变,故原选项正确,此项不符合题意;D.因为x y>,在不等边两边同时除以-2,不等式方向要改变,故原选项错误,此项符合题意.故选:D.【点睛】本题主要考查了等式的基本性质,理解等式的基本性质是解答关键.不等式两边同时加上或减去同一个整式,不等号方向不变;不等式两边同时乘以(或除以)同一个大于0的整式,不等号方向不变;不等式两边同时乘以(或除以)同一个小于0的整式,不等号方向改变.10.D【分析】利用一元一次不等式的定义判断即可.【详解】下列不等式中是一元一次不等式的是2-x≤4,故选D.【点睛】此题考查了一元一次不等式的定义,熟练掌握一元一次不等式的定义是解本题的关键.11.A【分析】先求出不等式组的解集,再根据解集画图即可.【详解】解:30322xx-<⎧⎪⎨+≥⎪⎩①②,由℃得,x<3,由℃得,x≥-2,故不等式组的解集为-2≤x<3.故选:A.【点睛】本题考查了解一元一次不等式组和在数轴上表示不等式的解集,每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.12.B【分析】根据不等式()11a x ->的解集是11x a <-,得出关于a 的不等式,求出a 的取值范围即可. 【详解】解:℃原不等式两边同时除以1a -,不等号方向改变,℃10a -<,解得1a <,故B 正确.故答案选:B .【点睛】本题考查的是解一元一次不等式,熟知不等式的基本性质,是解答此题的关键. 13.D【分析】根据不等式的基本性质,对每个选项分别进行判断,即可得到答案.【详解】解:A .℃a >b ,℃a +m >b +m ,故本选项不合题意;B .如果a >b ,m >0,则am >bm ,故本选项不合题意;C .如果a >b ,m =0,则am 2=bm 2,故本选项不合题意;D ..℃a >b ,℃﹣a <﹣b ,℃m ﹣a <m ﹣b ,故本选项符合题意;故选:D .【点睛】本题考查了不等式的基本性质,解题的关键是掌握不等式的基本性质进行判断. 14.C【分析】求出当y =3和y =-2时的x 的值,根据函数图像即可求出m 的取值. 【详解】解:画出函数12y x =+-图象如图所示.把3y =代入12y x =+-得312x =+-,解得4x =或6-,把=2y -代入12y x =+-得212x -=+-,解得=1x -,当4m x ≤≤,对应y 的取值范围为23y -≤≤,=由图可知61m -≤≤-.故选:C .【点睛】本题主要考查了带绝对值的一次函数的图像和性质,熟练掌握一次函数图像上点的坐标特征是解题的关键.15.B【分析】先解不等式组,根据关于x 的不等式组023115x a x x -⎧>⎪⎪⎨+⎪≥-⎪⎩有解,可得a 的取值范围,再解分式方程,关于y 的方程2433a y a y y-=---的解是正数,可得a 的取值范围,进一步求和即可.【详解】解: 023115x a x x -⎧>⎪⎪⎨+⎪≥-⎪⎩①②, 解不等式℃得,x a >,解不等式℃得,3x ≤,关于x 的不等式组023115x a x x -⎧>⎪⎪⎨+⎪≥-⎪⎩有解, 3a ∴<,解分式方程 2433a y a y y-=---, 去分母得,24(3)a y y a =-+-, 解得:3125a y +=, 关于y 的方程2433a y a y y-=---的解是正数, y ∴>0且3y ≠,31205a +∴>且31235a +≠, 解得4a ->,且1a ≠,43a ∴-<<且1a ≠,∴满足条件的整数a 的值:32102---、、、、;3(2)(1)024-+-+-++=-,故选:B .【点睛】本题考查了分式方程的解,和解一元一次不等式组,熟练掌握解不等式组的方法以及解分式方程的步骤是解题的关键.16.C【分析】根据每位小朋友分5个苹果,则还剩12个苹果;若每位小朋友分8个苹果,则有一个小朋友所分苹果不到8个.由此得出不等式组.【详解】解:根据小朋友的人数为x ,根据题意可得:15128(1)8x x ≤+--<,故选:C .【点睛】此题主要考查了一元一次不等式的应用,根据题意找出不等式的取值范围是解决问题的关键.17.D【详解】A 、不等式的两边都减1,不等号的方向不变,故A 错误;B 、当a=-1,b=-2时,a 2<b 2,故B 错误;C 、当c=0时,ac=bc ,故C 错误;D 、不等式两边乘(或除以)同一个正数,不等号的方向不变,故D 正确;故选D .18.C【分析】设售货员可以打x 折出售此商品,利用利润=售价-进价,结合利润率不低于5%,即可得出关于x 的一元一次不等式,解之取其中的最小值即可得出结论.【详解】解:设售货员可以打x 折出售此商品,依题意得:1500×10x -1000≥1000×5%, 解得:x ≥7,℃售货员最低可以打7折出售此商品.故选:C .【点睛】本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.19.C【详解】分析:分别求出每一个不等式的解集,然后再确定不等式组的解集即可. 详解:解不等式112x -<,得:x <3, 解不等式2(x+2)+1≥3,得:x≥﹣1,℃不等式组的解集为﹣1≤x <3,故选C .点睛:本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键. 20.C【分析】先利用不等式的性质求出原不等式的解集,再把它的解集在数轴上表示出来即可.【详解】2x 97x ≤-,2x 7x 9+≤,9x 9≤,x 1≤.在数轴上表示如下图所示:故选C .【点睛】本题考查解一元一次不等式、在数轴上表示不等式的解集,关键是明确解不等式的方法,会在数轴上表示不等式的解集.21.1- 【分析】根据一元一次不等式的定义可得1k =且10k -≠,分别进行求解即可.【详解】解:℃(1)30k k x -+≥是关于x 的一元一次不等式, ℃1k =且10k -≠,解得:1k =-,故答案为:1-.【点睛】本题主要考查一元一次不等式定义的“未知数的最高次数为1次”这一条件;还要注意,未知数的系数不能是0,掌握一元一次不等式的定义是解题的关键.22.1【分析】根据解不等式组的方法可以求得原不等式组的解集,从而可以求得满足不等式组的整数解.【详解】解:由不等式x ﹣1≤0,得x ≤1,由不等式2﹣13x >0,得x <6, 故原不等式组的解集是x ≤1,℃最大整数x =1,故答案为:1.【点睛】本题主要考查了解一元一次不等式组,熟练掌握解不等式组的基本步骤是解题的关键.23.4【分析】设最多安排x 人种甲种蔬菜,根据有10名菜农,每人可种甲种蔬菜3公顷或乙种蔬菜2公顷,已知甲种蔬菜每公顷可收入0.5万元,乙种蔬菜每公顷可收入0.8万元,若要使收入不低于15.6万元,可列不等式求解.【详解】解:设安排x 人种甲种蔬菜,3x ×0.5+2(10﹣x )×0.8≥15.6,解得:x ≤4.所以最多安排4人.故答案为:4.【点睛】本题考查了一元一次不等式的应用,关键设出种植甲的人数,以总收入作为不等量关系列不等式求解.24.2-【分析】先解不等式组得出12a a +≤<,然后根据不等式组的解集为1<2x ≤-,列出关于a 的方程,是解题的关键.【详解】解:解不等式组1>125x a x x -⎧⎨-≥-⎩得:12x a x ≤>+⎧⎨⎩, ℃不等式组的解集为1<2x ≤-,℃11a +=-,解得:2a =-.故答案为:2-.【点睛】本题主要考查了解不等式组,解题的关键是根据不等式组的解集列出关于a 的方程,是解题的关键.25.﹣6【分析】根据一元一次不等式组求出不等式组的解集,进而即可得到所有整数解的和.【详解】解:解不等式10x ->,得:1x <解不等式324x x >-,得:4x >-则不等式组的解集为41x -<<其整数解得和为32106---+=-,故答案为:6-.【点睛】本题主要考查了一元一次不等式组的解,熟练掌握相关计算技巧是解决本题的关键.26.4【详解】移项,合并同类项,系数化成1,即可求出不等式的解集,即可得出答案.解:℃2x<4x-6,℃2x-4x<-6,℃-2x<-6,℃x>3,℃不等式2x<4x-6的最小整数解为4,故答案为4.27.3x﹣15≥8【分析】首先表示“x的3倍”为3x,再表示“与15的差”为3x-15,最后再表示“不小于8”为3x-15≥8.【详解】由题意可知:3x-15≥8故答案为:3x-15≥8.28.3【分析】设购买A种玩具x件,则购买B种玩具102x-⎛⎫⎪⎝⎭件.根据题意即可列出关于x的一元一次不等式组,解出x的解集,再根据x为整数,102x-为整数,即得出答案.【详解】设购买A种玩具x件,则购买A种玩具用x元,℃购买B种玩具用(10-x)元,℃购买B种玩具102x-⎛⎫⎪⎝⎭件,根据题意可知11012102xxxx⎧⎪≥⎪-⎪≥⎨⎪-⎪>⎪⎩,解得:1383x<≤.℃x为整数,102x-为整数,℃x的值为4或6或8,即可购买A种玩具4件,B种玩具3件,可购买A种玩具6件,B种玩具2件,可购买A种玩具8件,B种玩具1件.故小明的购买方案有3种.故答案为:3.【点睛】本题考查一元一次不等式组的应用.正确的用x表示出购买B种玩具的数量和正确的列出不等式组是解题关键.29.0【分析】先根据一元一次不等式组解出x的取值,根据x是整数解得出x的可能取值,进而得出最小整数解.【详解】解:23348xx⎧>-⎪⎨⎪-≤⎩①②,解℃得x>23 -,解℃得3x<12,即x≤4,由上可得23-<x≤4,℃x为整数,故x可取0、1、2、3、4,℃最小整数解为0.故答案为:0.【点睛】此题考查的是一元一次不等式的解法和一元一次方程的解,根据x的取值范围,得出x的整数解,求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.30.6,11,16【分析】关系式为:车上人数、下车人数一定都是非负整数,因而就可以得到一个关于a 的不等式组,求出a的范围,再根据车上人数、下车人数一定都是整数,则a一定是整数,从而求出a的值.【详解】解:根据题意,得5a−4≥9−2a解得a≥137,又℃540920aa-≥⎧⎨-≥⎩,解得:4952a≤≤,℃139 72a≤≤因为a为整数,所以a=2,3,45a−4分别为6,11,16即客车上原有乘客6人或11人或16人.故答案为:6,11,16【点睛】解决本题的关键是理解所有的人数均为自然数.根据这一条件求出a的范围.31.0≤2x +y ≤6【分析】把a 当作参数,联立方程组求出x ,y 的值,然后用x 表示出2x +y ,利用不等式的性质求解.【详解】联立方程组3430x y a x y a ++=⎧⎨--=⎩①②,将a 作为参数解得:121x a y a =+⎧⎨=-⎩, ℃﹣1≤a ≤1,℃2x +y =3a +3,可得:0≤2x +y ≤6.故答案为0≤2x +y ≤6.【点睛】本题主要考查不等式的性质和解二元一次方程组,解题时要把a 当作参数,联立方程组求出x ,y 的值,然后利用不等式的性质求解.32.6x >-【分析】根据题意,先求出k 值,然后解不等式即可.【详解】直线y kx =向上平移2个单位后,解析式为2y kx =+,℃过点(1,0)-,℃20k -+=,解得:2k =,则不等式为:422x x -<+,解得:6x >-,故答案为:6x >-.【点睛】本题主要考查一次函数图象的平移,根据题意准确求出平移之后的解析式是解题关键.33.x≥3【分析】先移项,再将不等式的两边同时除以2,就可得到不等式的解集.【详解】解: 2x-6≥02x≥6解之:x≥3故答案为x≥3【点睛】考核知识点:解一元一次不等式.34.1825【分析】先按照方案一结合题意求解出增订前的各类书的数量,并求出增订的总数量,再按照方案二的比例分别解出按照方案二增订后的各类书的总量,进而求解比例即可.【详解】设原本有A 类新书4x 本,B 类新书x 本,则C 类新书有(900-5x )本, 由题意:4400559005428x x x ≤⎧⎪⎨-≤⨯⎪⎩,解得:70100x ≤≤, 设两种方案都增订m 本书,方案一:增订A 类15m 本,B 类310m 本,C 类12m 本, 则增订后共计:A 类145x m +本,B 类310x m +本,C 类190052x m ⎛⎫-+ ⎪⎝⎭本, 按方案一增订,则增订后A ,B 两类书总数量之比为7:2, 可得:1475=3210x m x m ++,解得:1710x m =,即:10=17m x , 由70100x ≤≤,且m 和x 均为正整数,得x =85,m =50,℃求得增订前:A 类340本,B 类85本,C 类475本,方案二:增订A 类2205m =本,B 类1510m =本,C 类1252m =本, 则增订后共计:A 类360本,B 类90本,C 类500本,增订后A ,C 两类书总数量之比为36018=50025, 故答案为:1825. 【点睛】本题考查列方程及不等式解决问题,解题关键在于根据题意建立不等式,求解出范围中符合题意的数据.35.2【分析】解一元一次不等式如下步骤:℃去分母;℃去括号;℃移项;℃合并同类项;℃化系数为1.以上步骤中,只有℃去分母和℃化系数为1可能用到性质3,即可能变不等号方向,其他都不会改变不等号方向. 【详解】解:解不等式()133x m m ->- ℃x-m >9-3m℃x >9-2m ,℃解集为x >5,℃9-2m=5,解得m=2,故答案为2.【点睛】本题考查了解一元一次不等式,熟练解一元一次不等式是解题的关键. 36.5-2m【分析】首先根据一次函数y=(m-2)x+3-m 的图象不经过第三象限,可得m-2<0,30m ->,进而得到m <2,再根据二次根式的性质进行计算即可.【详解】方法一:一次函数(2)3y m x m =-+-的图象经过第一、二、四象限,℃2030m m -<⎧⎨->⎩,23m m =-+-52m =-.故答案为:52m -.方法二:(2)3y m x m =-+-的图象经过第一、二、四象限,℃2030m m -<⎧⎨->⎩解得23m m <⎧⎨<⎩, ℃2m <,|2||3|m m =-+-23m m =-+-52m =-故答案为52m -.【点睛】本题考查了一次函数图象与系数的关系,以及二次根式的化简,关键是掌握:℃k >0,b >0⇔y=kx+b 的图象在一、二、三象限;℃k >0,b <0⇔y=kx+b 的图象在一、三、四象限;℃k <0,b >0⇔y=kx+b 的图象在一、二、四象限;℃k <0,b <0⇔y=kx+b 的图象在二、三、四象限.37.1a.【分析】把a当作已知条件,根据不等式组无解求出a的取值范围即可.【详解】解:324x ax a<+⎧⎨>+⎩①②,不等式组无解,432a a∴++.解得:1a故答案为1a【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的法则是解答此题的关键.38.16千米/时【详解】设哥哥的速度至少为x千米/时,根据题意可得:40404206060x-⨯≥,解得:16x≥.答:哥哥的速度至少是16千米/时.故答案为16千米/时.39.1a1 2<【分析】先求出不等式组的解集,再根据不等式组有且只有两个整数解,求出实数a的取值范围.【详解】解:123354413x xx a x a①②,由℃得:25 x>-,由℃得:2x a<,不等式组的解集为:225x a -<<,不等式组只有两个整数解为0、1,122a,∴1a1 2<.故答案为1a 12<. 【点睛】此题考查的是一元一次不等式的解法和特殊解,求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.40.(1)3x ≤-(2)9x >- (3)132x << (4)1x ≥-【分析】(1)按照去括号、移项、合并同类项、系数化为1的步骤解一元一次不等式; (2)按照去分母、去括号、移项、合并同类项、系数化为1的步骤解一元一次不等式; (3)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集;(4)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【详解】(1)去括号得:2x +3≥3x +6,移项得:2x -3x ≥6-3,合并同类项得:-x ≥3,系数化1得:x ≤-3;(2)去分母得:3(x -1)<2(2x +3),去括号得:3x -3<4x +6,移项得:3x -4x <6+3,合并同类项得:-x <9,系数化1得:x >-9;(3)解第一个不等式得:x >12,解第二个不等式得:x <3, 所以不等组得解集为:12<x <3;(4)解第一个不等式得:x >-4,解第二个不等式得:x ≥-1,。
专题08不等式(组)及其应用一、单选题1.(2023·内蒙古·统考中考真题)关于x 的一元一次不等式1x m 的解集在数轴上的表示如图所示,则m 的值为()A .3B .2C .1D .0【答案】B 【分析】先求出不等式的解集,然后对比数轴求解即可.【详解】解:1x m 解得1x m ,由数轴得:13m ,解得:2m ,故选:B .【点睛】题目主要考查求不等式的解集及参数,熟练掌握求不等式解集的方法是解题关键.2.(2023·湖南常德·统考中考真题)不等式组32312x x x的解集是()A .5x B .15x C .15x D .1x 【答案】C【分析】分别求出各不等式的解集,再求出其公共解集即可.【详解】32312x x x ①②解不等式①,移项,合并同类项得,5x ;解不等式②,移项,合并同类项得,1x 故不等式组的解集为:15x .故选:C .【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.3.(2023·湖北·统考中考真题)不等式组311442x x x x 的解集是()【答案】D【分析】按去分母、去括号、移项、合并同类项,未知数系数化为1的步骤求出解集,再把解集在数轴上表示出来,注意包含端点值用实心圆点,不包含端点值用空心圆点,即可求解.【详解】解:1433x x 4331x x 4x ,解集在数轴上表示为故选:D .【点睛】本题考查了一元一次不等式的解法及解集在数轴上的表示方法,掌握解法及表示方法是解题的关键.6.(2023·浙江宁波·统考中考真题)不等式组1010x x的解在数轴上表示正确的是()A .B .C .D .【答案】C【分析】根据一元一次不等式组的解法先求出不等式组的解集,再在数轴上表示即可得到答案.【详解】解:1010x x①②,由①得1x ;由②得1x ;原不等式组的解集为11x ,在数轴上表示该不等式组的解集如图所示:,故选:C .【点睛】本题考查一元一次不等式组解集的求法及在数轴上的表示,熟练掌握不等式组解集的求解原则“同大取大、同小取小、大小小大中间找、大大小小无解了”是解决问题的关键.7.(2023·四川眉山·统考中考真题)关于x 的不等式组35241x m x x 的整数解仅有4个,则m 的取值范围是()A .54m B .54m C .43m D .43m 【答案】A【分析】不等式组整理后,表示出不等式组的解集,根据整数解共有4个,确定出m 的范围即可.【详解】解:35241x m x x①②,由②得:3x ,解集为33m x ,由不等式组的整数解只有4个,得到整数解为2,1,0,1 ,∴231m ,∴54m ;故选:A .【点睛】本题主要考查解一元一次不等式组,一元一次不等式组的整数解等知识点的理解和掌握,能根据不等式组的解集得到231m 是解此题的关键.8.(2023·四川遂宁·统考中考真题)若关于x 的不等式组 4131532x x x x a的解集为3x ,则a 的取值范围是()A .3a B .3a C .3a D .3a 【答案】D【分析】分别求出各不等式的解集,再根据不等式组的解集是3x 求出a 的取值范围即可.【详解】解: 4131532x x x x a ①②解不等式①得:3x ,解不等式②得:x a ,∵关于x 的不等式组 4131532x x x x a的解集为3x ,∴3a ,故选:D .【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.二、填空题9.(2023·全国·统考中考真题)不等式480x 的解集为__________.【答案】2x 【分析】根据移项、化系数为1,的步骤解一元一次不等式即可求解.【详解】解:480x 48x 解得:2x ,故答案为:2x .【点睛】本题考查了求一元一次不等式的解集,熟练掌握不等式的性质是解题的关键.10.(2023·辽宁大连·统考中考真题)93x 的解集为_______________.【答案】3x 【分析】根据不等式的性质解不等式即可求解.【详解】解:93x ,解得:3x ,故答案为:3x .【点睛】本题考查了求不等式的解集,熟练掌握不等式的性质是解题的关键.11.(2023·四川乐山·统考中考真题)不等式10x 的解集是__________.【答案】1x 【分析】直接移项即可得解.【详解】解:∵10x ,∴1x ,故答案为:1x .【点睛】本题主要考查了解一元一次不等式,熟练掌握解一元一次不等式的步骤是解答本题的关键.12.(2023·黑龙江·统考中考真题)关于x 的不等式组501x x m有3个整数解,则实数m 的取值范围是__________.【答案】32m /23m故答案为:2或1 .【点睛】本题考查了含参数的一元一次不等式组的整数解问题,掌握一元一次不等式组的解法,理解参数的意义是解题的关键.【答案】不等式组的解集为:22.画图见解析x【分析】先解不等式组中的两个不等式,再在数轴上表示两个不等式的解集,从而可得答案.∴不等式组的解集为:22.x【点睛】本题考查的是一元一次不等式组的解法,在数轴上表示不等式组的解集,掌握不等式组的解法与步骤是解本题的关键.23.(2023·山东·统考中考真题)解不等式组:(4)原不等式组的解集是________.x【答案】(1)326x 3x .故答案为:3x .(2)解:32x x ,22x 1x .故答案为:1x .(3)解:把不等式①和②的解集在数轴上表示出来:(4)解:由图可知原不等式组的解集是13x .故答案为:13x .【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集和在数轴上表示不等式的解集是解答本题的关键.26.(2023·浙江·统考中考真题)解一元一次不等式组:23215x x.【答案】13x 【分析】根据不等式的性质,解一元一次不等式,然后求出两个解集的公共部分即可.【详解】解:23215x x ①②解不等式①,得1x ,解不等式②,得3x ,∴原不等式组的解是13x .【点睛】本题主要考查解一元一次不等式组,掌握不等式的性质,解一元一次不等式的方法是解题的关键.27.(2023·湖南永州·统考中考真题)解关于x 的不等式组 2203172x x x【答案】12x 【分析】分别解不等式组的两个不等式,再取两个不等式的解集的公共部分,即为不等式组的解集.【详解】解: 2203172x x x①②,则不等式组的解集为:答:A 、B 玩具的单价分别为50元、75元;(2)设A 玩具购置y 个,则B 玩具购置2y 个,由题意可得:5075220000y y ,解得:100y ,∴最多购置100个A 玩具.【点睛】本题考查一元一次方程和一元一次不等式的应用,属于中考常规考题,解题的关键在于读懂题目,找准题目中的等量关系或不等关系.37.(2023·河南·统考中考真题)某健身器材专卖店推出两种优惠活动,并规定购物时只能选择其中一种.活动一:所购商品按原价打八折;活动二:所购商品按原价每满..300元减80元.(如:所购商品原价为300元,可减80元,需付款220元;所购商品原价为770元,可减160元,需付款610元)(1)购买一件原价为450元的健身器材时,选择哪种活动更合算?请说明理由.(2)购买一件原价在500元以下的健身器材时,若选择活动一和选择活动二的付款金额相等,求一件这种健身器材的原价.(3)购买一件原价在900元以下的健身器材时,原价在什么范围内,选择活动二比选择活动一更合算?设一件这种健身器材的原价为a 元,请直接写出a 的取值范围.【答案】(1)活动一更合算;(2)400元;(3)当300400a 或600800a 时,活动二更合算【分析】(1)分别计算出两个活动需要付款价格,进行比较即可;(2)设这种健身器材的原价是x 元,根据“选择活动一和选择活动二的付款金额相等”列方程求解即可;(3)由题意得活动一所需付款为0.8a 元,活动二当0300a 时,所需付款为a 元,当300600a 时,所需付款为 80a 元,当600900a 时,所需付款为 160a 元,然后根据题意列出不等式即可求解.【详解】(1)解:购买一件原价为450元的健身器材时,活动一需付款:4500.8360 元,活动二需付款:45080370 元,∴活动一更合算;(2)设这种健身器材的原价是x 元,则0.880x x ,解得400x ,答:这种健身器材的原价是400元,(3)这种健身器材的原价为a 元,(2)一个人数不足50人的旅游团,当游客人数最低为多少人时,购买B种门票比购买A种门票节省?【答案】(1)甲团人数有58人,乙团人数有44人;(2)当游客人数最低为46人时,购买B种门票比购买A 种门票节省【分析】(1)设甲团人数有x人,乙团人数有y人,根据“甲、乙两个旅游团共102人,把两团联合作为一个团体购票会比两团分别各自购票节省730元”列方程组求解即可;(2)设游客人数为a人时,购买B种门票比购买A种门票节省,根据“人数不足50人,购买B种门票比购买A种门票节省”列不等式求解即可.【详解】(1)解:设甲团人数有x人,乙团人数有y人,由题意得:102 455010240730 x yx y,解得:5844 xy,答:甲团人数有58人,乙团人数有44人;(2)解:设游客人数为a人时,购买B种门票比购买A种门票节省,由题意得:4551a,解得:45.9a ,∵a为整数,∴当游客人数最低为46人时,购买B种门票比购买A种门票节省.【点睛】本题考查了二元一次方程组的应用和一元一次不等式的应用,找出合适的等量关系和不等关系列出方程组和不等式是解题的关键.40.(2023·湖南·统考中考真题)低碳生活已是如今社会的一种潮流形式,人们的环保观念也在逐渐加深.“低碳环保,绿色出行”成为大家的生活理念,不少人选择自行车出行.某公司销售甲、乙两种型号的自行车,其中甲型自行车进货价格为每台500元,乙型自行车进货价格为每台800元.该公司销售3台甲型自行车和2台乙型自行车,可获利650元,销售1台甲型自行车和2台乙型自行车,可获利350元.(1)该公司销售一台甲型、一台乙型自行车的利润各是多少元?(2)为满足大众需求,该公司准备加购甲、乙两种型号的自行车共20台,且资金不超过13000元,最少需要购买甲型自行车多少台?【答案】(1)该公司销售一台甲型、一台乙型自行车的利润分别为150,100元;(2)最少需要购买甲型自行车10台【分析】(1)该公司销售一台甲型、一台乙型自行车的利润分别为,x y 元,根据题意列出二元一次方程组,解方程组即可求解;(2)设需要购买甲型自行车a 台,则购买乙型自行车 20a 台,依题意列出不等式,解不等式求最小整数解,即可求解.【详解】(1)解:该公司销售一台甲型、一台乙型自行车的利润分别为,x y 元,根据题意得,326502350x y x y,解得:150100x y,答:该公司销售一台甲型、一台乙型自行车的利润分别为150,100元;(2)设需要购买甲型自行车a 台,则购买乙型自行车 20a 台,依题意得,5008002013000a a ,解得:10a ,∵a 为正整数,∴a 的最小值为10,答:最少需要购买甲型自行车10台.【点睛】本题考查了二元一次方程组的应用,一元一次不等式的应用,根据题意列出方程组以及不等式是解题的关键.41.(2023·山西·统考中考真题)风陵渡黄河公路大桥是连接山西、陕西、河南三省的交通要塞.该大桥限重标志牌显示,载重后总质量超过30吨的车辆禁止通行.现有一辆自重8吨的卡车,要运输若干套某种设备,每套设备由1个A 部件和3个B 部件组成,这种设备必须成套运输.已知1个A 部件和2个B 部件的总质量为2.8吨,2个A 部件和3个B 部件的质量相等.(1)求1个A 部件和1个B 部件的质量各是多少;(2)卡车一次最多可运输多少套这种设备通过此大桥?【答案】(1)一个A 部件的质量为1.2吨,一个B 部件的质量为【分析】(1)设一个A 部件的质量为x 吨,一个B 部件的质量为个B 部件的总质量为2.8吨”和“2个A 部件和3个B (2)设该卡车一次可运输m 套这种设备通过此大桥.根据等式再结合m 为整数求解即可.【详解】(1)解:设一个A 部件的质量为x 吨,一个根据题意,得2 2.823x y x y,解得 1.20.8x y .答:一个A 部件的质量为1.2吨,一个B 部件的质量为(2)解:设该卡车一次可运输m 套这种设备通过此大桥.根据题意,得 1.20.83830m .解得559m .因为m 为整数,m 取最大值,所以6m .答:该卡车一次最多可运输6套这种设备通过此大桥.【点睛】本题主要考查了二元一次方程组的应用、一元一次不等式的应用等知识点,正确列出二元一次方程组和不等式是解答本题的关键.42.(2023·天津·统考中考真题)解不等式组211412x x x x ①②请结合题意填空,完成本题的解答.(1)解不等式①,得________________;(2)解不等式②,得________________;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为________________.【答案】(1)2x (2)1x (3)见解析(4)21x 【分析】分别解两个不等式,然后根据公共部分确定不等式组的解集,再利用数轴表示解集即可.【详解】(1)解:解不等式①,得2x ,故答案为:2x ;(2)解:解不等式②,得1x ,故答案为:1x ;(3)解:把不等式①和②的解集在数轴上表示出来:(4)解:原不等式组的解集为21x ,故答案为:21x .【点睛】本题考查了解一元一次不等式组并把解集在数轴上表示,熟练掌握一元一次不等式的解法是解决本题的关键.43.(2023·湖南怀化·统考中考真题)某中学组织学生研学,原计划租用可坐乘客45人的A 种客车若干辆,则有30人没有座位;若租用可坐乘客60人的B 种客车,则可少租6辆,且恰好坐满.(1)求原计划租用A 种客车多少辆?这次研学去了多少人?(2)若该校计划租用A 、B 两种客车共25辆,要求B 种客车不超过7辆,且每人都有座位,则有哪几种租车方案?(3)在(2)的条件下,若A 种客车租金为每辆220元,B 种客车租金每辆300元,应该怎样租车才最合算?【答案】(1)原计划租用A 种客车26辆,这次研学去了1200人(2)共有3种租车方案,方案一:租用A 种客车18辆,则租用B 种客车7辆;方案二:租用A 种客车19辆,则租用B 种客车6辆;方案三:租用A 种客车20辆,则租用B 种客车5辆,(3)租用A 种客车20辆,则租用B 种客车5辆才最合算【分析】(1)设原计划租用A 种客车x 辆,根据题意列出一元一次方程,解方程即可求解;(2)设租用A 种客车a 辆,则租用B 种客车 25a 辆,根据题意列出一元一次不等式组,解不等式组即可求解;(3)分别求得三种方案的费用,进而即可求解.【详解】(1)解:设原计划租用A 种客车x 辆,根据题意得,4530606x x ,解得:26x 所以 602661200 (人)答:原计划租用A 种客车26辆,这次研学去了1200人;(2)解:设租用A 种客车a 辆,则租用B 种客车 25a 辆,根据题意,得2574560251200a a a 解得:1820a ,∵a 为正整数,则18,19,20a ,∴共有3种租车方案,方案一:租用A 种客车18辆,则租用B 种客车7辆,方案二:租用A 种客车19辆,则租用B 种客车6辆,方案三:租用A 种客车20辆,则租用B 种客车5辆,(3)∵A 种客车租金为每辆220元,B 种客车租金每辆300元,∴B 种客车越少,费用越低,方案一:租用A 种客车18辆,则租用B 种客车7辆,费用为1822073006060 元,方案二:租用A 种客车19辆,则租用B 种客车6辆,费用为1922063005980 元,方案三:租用A 种客车20辆,则租用B 种客车5辆,费用为2022053005900 元,∴租用A 种客车20辆,则租用B 种客车5辆才最合算.【点睛】本题考查了一元一次方程的应用,一元一次不等式组的应用,根据题意列出一元一次方程与不等式组是解题的关键.44.(2023·江西·统考中考真题)今年植树节,某班同学共同种植一批树苗,如果每人种3棵,则剩余20棵;如果每人种4棵,则还缺25棵.(1)求该班的学生人数;(2)这批树苗只有甲、乙两种,其中甲树苗每棵30元,乙树苗每棵40元.购买这批树苗的总费用没有超过5400元,请问至少购买了甲树苗多少棵?【答案】(1)该班的学生人数为45人;(2)至少购买了甲树苗80棵【分析】(1)设该班的学生人数为x 人,根据两种方案下树苗的总数不变列出方程求解即可;(2)根据(1)所求求出树苗的总数为155棵,设购买了甲树苗m 棵,则购买了乙树苗 155m 棵树苗,再根据总费用不超过5400元列出不等式求解即可.【详解】(1)解:设该班的学生人数为x 人,由题意得,320425x x ,解得45x ,∴该班的学生人数为45人;(2)解:由(1)得一共购买了34520155 棵树苗,设购买了甲树苗m 棵,则购买了乙树苗 155m 棵树苗,由题意得, 30401555400m m ,解得80m ,∴m 得最小值为80,∴至少购买了甲树苗80棵,答:至少购买了甲树苗80棵.【点睛】本题主要考查了一元一次方程的实际应用,一元一次不等式的实际应用,正确理解题意找到等量关系列出方程,找到不等关系列出不等式是解题的关键.45.(2023·云南·统考中考真题)蓝天白云下,青山绿水间,支一顶帐篷,邀亲朋好友,听蝉鸣,闻清风,话家常,好不惬意.某景区为响应文化和旅游部《关于推动露营旅游休闲健康有序发展的指导意见》精神,(2)若学校决定购买以上两种书的总费用不超过3200元,那么该校最多可以购买甲种书多少本?【答案】(1)甲种书的单价为35元,乙种书的单价为30元;(2)该校最多可以购买甲种书40本【分析】(1)设甲种书的单价为x 元,乙种书的单价为y 元,利用2本甲种书的价格 1本乙种书的价格100 ;3本甲种书的价格 2本乙种书的价格165 ,列方程解答即可;(2)设购买甲种书a 本,则购买乙种书 100a 本,根据购买甲种书的总价 购买乙种书的总价3200 ,列不等式解答即可.【详解】(1)解:设甲种书的单价为x 元,乙种书的单价为y 元,可得方程210032165x y x y,解得3530x y, 原方程的解为3530x y,答:甲种书的单价为35元,乙种书的单价为30元.(2)解:设购买甲种书a 本,则购买乙种书 100a 本,根据题意可得 35301003200a a ,解得40a ,故该校最多可以购买甲种书40本,答:该校最多可以购买甲种书40本.【点睛】本题考查了二元一次方程的实际应用,一元一次不等式的实际应用,列出正确的等量关系和不等关系是解题的关键.47.(2023·四川凉山·统考中考真题)凉山州雷波县是全国少有的优质脐橙最适生态区.经过近20年的发展,雷波脐橙多次在中国西部农业博览会上获得金奖,雷波县也被誉名为“中国优质脐橙第一县”,某水果商为了解雷波脐橙的市场销售情况,购进了雷波脐橙和资中血橙进行试销.在试销中,水果商将两种水果搭配销售,若购买雷波脐橙3千克,资中血橙2千克,共需78元人民币;若购买雷波脐橙2千克,资中血橙3千克,共需72元人民币.(1)求雷波脐橙和资中血橙每千克各多少元?(2)一顾客用不超过1440元购买这两种水果共100千克,要求雷波脐橙尽量多,他最多能购买雷波脐橙多少千克?【答案】(1)雷波脐橙和资中血橙每千克分别为18元,12元;(2)最多能购买雷波脐橙40千克.【分析】(1)设雷波脐橙和资中血橙每千克分别为x 元,y 元,购买雷波脐橙3千克,资中血橙2千克,共需78元人民币;若购买雷波脐橙2千克,资中血橙3千克,共需72元人民币,再建立方程组即可;(2)设最多能购买雷波脐橙m 千克,根据顾客用不超过1440元购买这两种水果共100千克,再建立不等式即可.【详解】(1)解:设雷波脐橙和资中血橙每千克分别为x 元,y 元,则32782372x y x y①②,①+②得;55150x y ,则30x y ③把③代入①得:18x ,把③代入②得:12y ,∴方程组的解为:1812x y,答:雷波脐橙和资中血橙每千克分别为18元,12元.(2)设最多能购买雷波脐橙m 千克,则181********m m ,∴6240m ,解得:40m ,答:最多能购买雷波脐橙40千克.【点睛】本题考查的是二元一次方程组的应用,一元一次不等式的应用,确定相等关系是解本题的关键.48.(2023·四川广安·统考中考真题)“广安盐皮蛋”是小平故里的名优特产,某超市销售A B 、两种品牌的盐皮蛋,若购买9箱A 种盐皮蛋和6箱B 种盐皮蛋共需390元;若购买5箱A 种盐皮蛋和8箱B 种盐皮蛋共需310元.(1)A 种盐皮蛋、B 种盐皮蛋每箱价格分别是多少元?(2)若某公司购买A B 、两种盐皮蛋共30箱,且A 种的数量至少比B 种的数量多5箱,又不超过B 种的2倍,怎样购买才能使总费用最少?并求出最少费用.【答案】(1)A 种盐皮蛋每箱价格是30元,B 种盐皮蛋每箱价格是20元;(2)购买A 种盐皮蛋18箱,B 种盐皮蛋12箱才能使总费用最少,最少费用为780元。
试卷第1页,共4页九年级中考数学复习:不等式与不等式组训练附答案一、单选题1.若关于x 的一元一次不等式组322(2)25x x a x -≥+⎧⎨-<-⎩的解集为6x ≥,且关于y 的分式方程283211y a y y y +--=--的解是正整数,则所有满足条件的整数a 的个数是()A .3B .4C .5D .62.若关于x 的一元二次方程2(1)210m x x --+=有两个不相等的实数根,则m 的取值范围是()A .2m <且1m ≠B .m>2C .2m <-D .2m <3.若关于x 的不等式组(42)231223x a x x --≤⎧⎪-+⎨<⎪⎩的解集为4x a ≤,且关于y 、z 的二元一次方程组245224y z a y z a +=+⎧⎨+=+⎩的解满足1y z +≥-,则满足条件的所有整数a 的和为()A .3-B .2-C .0D .34.若关于x 的一元一次不等式组0215x m x -≥⎧⎨+<⎩无解,关于y 的一元一次方程()230y m -+=的解为非负整数,则满足所有条件的整数m 的和为()A .10B .12C .18D .205.若关于x 的一元一次不等式组122123512x k x x ⎧⎛⎫+≤+ ⎪⎪⎪⎝⎭⎨-⎪+>⎪⎩的解集是x k ≤,且关于y 的方程23y k =+有正整数解,则符合条件的所有整数k 的和为()A .5B .8C .9D .156.点()5P a a -,关于y 轴的对称点在第二象限,则a 的取值范围是().A .a<0B .05a <<C .50a -<<D .5a >7.若abc <<,则关于x 的不等式组x a x b x c >⎧⎪<⎨⎪<⎩的解集是()A .a x b <<B .a x c <<C .b x c <<D .无解试卷第2页,共4页8.已知不等式组122123x a x x -≥⎧⎪+-⎨>⎪⎩的解集如图所示(点没标出,数轴单位长度为1),则a 的取值为()A .2B .3C .4D .5二、填空题9.关于x 的分式方程233x m x x=+--的解为正数,则m 的取值范围是____________10.关于x 的分式方程331122ax x x x --+=--的解为正数,且使关于y 的一元一次不等式组32122y y y a-⎧≤-⎪⎨⎪+>⎩有解,则所有满足条件的整数a 的值之和是______.11.已知关于x 的不等式组123x a x b -≥⎧⎨-<⎩的解集为35x ≤<,则a b +=_____.12.一个三角形的三边长均为整数.已知其中两边长为4和7,第三边长x 是不等式组2323516213x x x x ⎧-≤+⎪⎨⎪->+⎩的正整数解.则第三边的长为___________.13.已知点(5,21)M m --关于原点对称的点在第四象限,那么m 的取值范围是___________.14.不等式组1103215x x -<⎧⎨+≥⎩的最大整数解与最小整数解的和是______.15.不等式组2132132x x -<⎧⎪+⎨≥⎪⎩的正整数解是________.16.同时满足不等式649x x >+和不等式85420x x -<+的x 的整数值为_________.三、解答题17.解不等式:(1)31152x x -+-≤(2)211132x x +--<(3)31225436x x +--≥试卷第3页,共4页18.在购买某场足球赛门票时,设购买门票数为x (张),总费用为y (元),现有两种购买方案:方案一:若单位赞助广告费10000元,则该单位所购买门票的价格为每张60元(总费用=广告费+门票费);方案二:购买门票方式如图所示.解答下列问题:(1)方案一中,y 与x 的函数关系式为___________;(2)方案二中,当0≤x ≤100时,y 与x 的函数关系式为___________;当x >100时,y 与x 的函数关系式为___________;(3)该单位应采用那种购买门票方案更划算.19.某中学准备购进A 、B 两种教学用具共40件,A 种每件价格比B 种每件贵6元,同时购进3件A 种教学用具和2件B 种教学用具恰好用去113元.(1)A 和B 两种教学用具的单价分别是多少元?(2)学校准备用不超过850元的金额购买A 、B 两种教学用具,问至多能购买多少件A 种教学用具?20.一家水果店以每斤12元的价格购进某种水果若干斤,然后以每斤14元的价格出售,每天可售出100斤,通过调查发现,这种水果每斤的售价每降低0.1元,每天可多售出20斤.(1)若将这种水果每斤的售价降低x元,则每天的销售量是多少斤(用含x的代数式表示)(2)销售这种水果要想每天盈利300元,且保证每天至少售出260斤,那么水果店需将每斤的售价降低多少元?试卷第4页,共4页答案第1页,共1页参考答案:1.B2.A3.A4.D5.B6.B7.A8.C9.6m >-且3m =-10.4-11.912.1013.12m >14.1515.116.5和617.(1)7x ≥-;(2)1x <;(3)1x ≥-18.(1)6010000y x =+(2)100y x =,802000y x =+(3)当0400x <<时,选择方案二更划算;当400x =时,方案一、二均可;400x >时,选择方案一更划算19.(1)A 种教学用具的单价为25元,B 种教学用具的单价为19元(2)15件20.(1)(100200)x +(2)降价1元答案第2页,共1页。
2023年中考数学----不等式与不等式组之解与解集知识回顾与专项练习题(含答案解析)知识回顾1. 不等式的解:使不等式左右两边不等关系成立的未知数的值叫做不等式的解。
不等式的解有无数个。
2. 不等式的解集:一个含有未知数的不等式的所有解组成这个不等式的解集。
3. 不等式组的解集:不等式组中所有不等式的解集的公共部分构成不等式组的解集。
4. 在数轴上表示解集:步骤:①确定边界是实心圆还是空心圈。
若有等于(即≥或≤)则是实心圆,若无等于(即>或<)则是空心圈。
②确定解集的方向:大于向右,小于向左。
5. 不等式组解集公共部分的确定:若b a >①同大取大。
当⎩⎨⎧≥b x a x >时,则解集为a x ≥。
②同小取小。
当⎩⎨⎧≤bx a x <时,则解集为b x <。
③大小小大去中间。
当⎩⎨⎧≥a x b x <时,则解集为a x b <≤。
④大大小小无解答。
当⎩⎨⎧≥bx a x <时,则无解。
专项练习题(含答案解析)1.(2022•梧州)不等式组⎩⎨⎧−21<>x x 的解集在数轴上表示为( ) A .B .C .D .【分析】求出两个不等式的公共解,并将解集在数轴上表示出来即可.【解答】解:所以不等式组的解集为﹣1<x <2,在数轴上表示为:,故选:C .2.(2022•十堰)关于x 的不等式组中的两个不等式的解集如图所示,则该不等式组的解集为 .【分析】读懂数轴上的信息,然后用不等号连接起来.界点处是实点,应该用大于等于或小于等于.【解答】解:该不等式组的解集为:0≤x <1.故答案为:0≤x <1.。
;2023年湖南省中考数学真题分类汇编:二元一次方程组、不等式与不等式组一、选择题1.(2023·衡阳)《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何.”设有x只鸡,y只兔.依题意,可列方程组为( )A.x+y=35,4x+2y=94B.x+y=94,4x+2y=35C.x+y=35,2x+4y=94D.x+y=94,2x+4y=352.(2023·长沙)不等式组2x+4>0x―1≤0的解集在数轴上表示正确的是( )A.B.C.D.3.(2023·常德)不等式组x―3<23x+1≥2x的解集是( )A.x<5B.1≤x<5C.―1≤x<5D.x≤―14.(2023·郴州)一元一次不等式组3―x≥0x+1>0的解集在数轴上表示正确的是( )A.B.C.D.5.(2023·邵阳)不等式组x―1<0―2x≤4的解集在数轴上可表示为( )A.B.C.D.二、填空题6.(2023·株洲)关于x的不等式12x―1>0的解集为 .三、计算题7.(2023·衡阳)解不等式组:x―4≤0①2(x+1)<3x②8.(2023·常德)解方程组:x―2y=1①3x+4y=23②9.(2023·岳阳)解不等式组:2x+1>x+3,①2x―4<x.②四、综合题10.(2023·长沙)为提升学生身体素质,落实教育部门“在校学生每天锻炼时间不少于1小时”的文件精神.某校利用课后服务时间,在八年级开展“体育赋能,助力成长”班级篮球赛,共16个班级参加.(1)比赛积分规定:每场比赛都要分出胜负,胜一场积3分,负一场积1分.某班级在15场比赛中获得总积分为41分,问该班级胜负场数分别是多少?(2)投篮得分规则:在3分线外投篮,投中一球可得3分,在3分线内(含3分线)投篮,投中一球可得2分,某班级在其中一场比赛中,共投中26个球(只有2分球和3分球),所得总分不少于56分,问该班级这场比赛中至少投中了多少个3分球?11.(2023·张家界)为拓展学生视野,某中学组织八年级师生开展研学活动,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出三辆车,且其余客车恰好坐满.现有甲、乙两种客车,它们的载客量和租金如下表所示:甲型客车乙型客车载客量(人/辆)4560租金(元/辆)200300(1)参加此次研学活动的师生人数是多少?原计划租用多少辆45座客车?(2)若租用同一种客车,要使每位师生都有座位,应该怎样租用才合算?12.(2023·常德)“六一”儿童节将至,张老板计划购买A型玩具和B型玩具进行销售,若用1200元购买A型玩具的数量比用1500元购买B型玩具的数量多20个,且一个B型玩具的进价是一个A型玩具进价的1.5倍.(1)求A型玩具和B型玩具的进价分别是多少?(2)若A型玩具的售价为12元/个,B型玩具的售价为20元/个,张老板购进A,B型玩具共75个,要使总利润不低于300元,则A型玩具最多购进多少个?13.(2023·郴州)随旅游旺季的到来,某景区游客人数逐月增加,2月份游客人数为1.6万人,4月份游客人数为2.5万人.(1)求这两个月中该景区游客人数的月平均增长率;(2)预计5月份该景区游客人数会继续增长,但增长率不会超过前两个月的月平均增长率.已知该景区5月1日至5月21日已接待游客2.125万人,则5月份后10天日均接待游客人数最多是多少万人?14.(2023·邵阳)低碳生活已是如今社会的一种潮流形式,人们的环保观念也在逐渐加深.“低碳环保,绿色出行”成为大家的生活理念,不少人选择自行车出行.某公司销售甲、乙两种型号的自行车,其中甲型自行车进货价格为每台500元,乙型自行车进货价格为每台800元.该公司销售3台甲型自行车和2台乙型自行车,可获利650元,销售1台甲型自行车和2台乙型自行车,可获利350元.(1)该公司销售一台甲型、一台乙型自行车的利润各是多少元?(2)为满足大众需求,该公司准备加购甲、乙两种型号的自行车共20台,且资金不超过13000元,最少需要购买甲型自行车多少台?15.(2023·怀化)某中学组织学生研学,原计划租用可坐乘客45人的A种客车若干辆,则有30人没有座位;若租用可坐乘客60人的B种客车,则可少租6辆,且恰好坐满.(1)求原计划租用A种客车多少辆?这次研学去了多少人?(2)若该校计划租用A、B两种客车共25辆,要求B种客车不超过7辆,且每人都有座位,则有哪几种租车方案?(3)在(2)的条件下,若A种客车租金为每辆220元,B种客车租金每辆300元,应该怎样租车才最合算?答案解析部分1.【答案】C2.【答案】A3.【答案】C4.【答案】C5.【答案】A6.【答案】x>27.【答案】解:x―4≤0①2(x+1)<3x②解不等式①得:x≤4解不等式②得:x>2∴不等式组的解集为:2<x≤48.【答案】解:将①×2得:2x―4y=2③②+③得:x=5将x=5代入①得:y=2所以x=5y=2是原方程组的解.9.【答案】解:∵2x+1>x+3,①2x―4<x.②,解①的解集为x>2;解②的解集为x<4,∴原不等式组的解集为2<x<4.10.【答案】(1)解:设胜了x场,负了y场,根据题意得:x+y=153x+y=41,解得x=13 y=2,答:该班级胜负场数分别是13场和2场;(2)解:设班级这场比赛中投中了m个3分球,则投中了(26―m)个2分球,根据题意得:3m+2(26―m)≥56,解得m≥4,答:该班级这场比赛中至少投中了4个3分球.11.【答案】(1)解:设参加此次研学活动的师生有x人,原计划租用45座客车y辆依题意得45y+15=x 60(y―3)=x解得:x=600 y=13,答:参加此次研学活动的师生有600人,原计划租用45座客车13辆;(2)解:∵要使每位师生都有座位,∴租45座客车14辆,则租60座客车10辆,14×200=2800,10×300=3000,∵2800<3000∴租14辆45座客车较合算.12.【答案】(1)解:设A型玩具的单价为x元/件.由题意得:1200x―15001.5x=20,解得:x=10经检验,x=10是原方程的解B型玩具的单价为10×1.5=15元/个∴A型,B型玩具的单价分别是10元/个,15元/个.(2)解:设购进A型玩具m个.(12―10)m+(20―15)(75―m)≥300解得:m≤25∴最多可购进A型玩具25个.13.【答案】(1)解:设这两个月中该景区游客人数的月平均增长率为x,由题意,得:1.6(1+x)2=2.5,解得:x=0.25=25%(负值已舍掉);答:这两个月中该景区游客人数的月平均增长率为25%;(2)解:设5月份后10天日均接待游客人数是y万人,由题意,得:2.125+y≤2.5(1+25%),解得:y≤1;∴5月份后10天日均接待游客人数最多是1万人.14.【答案】(1)解:该公司销售一台甲型、一台乙型自行车的利润分别为x,y元,根据题意得,3x+2y=650x+2y=350,解得:x=150 y=100,答:该公司销售一台甲型、一台乙型自行车的利润分别为150,100元;(2)解:设需要购买甲型自行车a台,则购买乙型自行车(20―a)台,依题意得,500a+800(20―a)≤13000,解得:a≥10,∵a为正整数,∴a的最小值为10,答:最少需要购买甲型自行车10台.15.【答案】(1)解:设原计划租用A种客车x辆,根据题意得,45x+30=60(x―6),解得:x=26所以60×(26―6)=1200(人)答:原计划租用A种客车26辆,这次研学去了1200人;(2)解:设租用A种客车a辆,则租用B种客车(25―a)辆,根据题意,得25―a≤745a+60(25―a)≥1200解得:18≤a≤20,∵a为正整数,则a=18,19,20,∴共有3种租车方案,方案一:租用A种客车18辆,则租用B种客车7辆,方案二:租用A种客车19辆,则租用B种客车6辆,方案三:租用A种客车20辆,则租用B种客车5辆,(3)解:∵A种客车租金为每辆220元,B种客车租金每辆300元,∴B种客车越少,费用越低,方案一:租用A种客车18辆,则租用B种客车7辆,费用为18×220+7×300=6060元,方案二:租用A种客车19辆,则租用B种客车6辆,费用为19×220+6×300=5980元,方案三:租用A种客车20辆,则租用B种客车5辆,费用为20×220+5×300=5900元,∴租用A种客车20辆,则租用B种客车5辆才最合算.。
【必刷题】2024九年级数学上册不等式与不等式组专项专题训练(含答案)试题部分一、选择题:1. 若不等式3x 5 > 2的解集是x > a,则a的值为()A. 3B. 7/3C. 1D. 5/32. 下列不等式中,解集为全体实数的是()A. x + 1 > 0B. x 1 < 0C. x^2 1 > 0D. x^2 + 1 < 03. 不等式2(x 3) ≤ 3 4x的解集是()A. x ≤ 3B. x ≥ 3C. x ≤ 9/5D. x ≥ 9/54. 不等式组$$ \begin{cases} x 2 > 0 \\ 2x + 1 < 5\end{cases} $$的解集是()A. x > 2B. x < 2C. 1 < x < 2D. 2 < x < 35. 若不等式组$$ \begin{cases} x a > 0 \\ x + a < 0\end{cases} $$无解,则a的取值范围是()A. a > 0B. a < 0C. a = 0D. a ≠ 06. 不等式$$ \frac{2x 3}{5} $$ > $$ \frac{x + 1}{2} $$的解集是()A. x > 5B. x < 5C. x > 11/3D. x < 11/37. 若不等式组$$ \begin{cases} 3x 2y > 6 \\ 2x + 3y < 12 \end{cases} $$的解集为空集,则x的取值范围是()A. x > 4B. x < 4C. x > 2D. x < 28. 不等式3(x 1) 2(x + 2) ≤ 0的解集是()A. x ≤ 1B. x ≥ 1C. x ≤ 7D. x ≥ 79. 若不等式$$ \frac{1}{2} $$x 3 > a的解集是x > 6,则a 的值为()A. 3B. 3C. 6D. 610. 不等式组$$ \begin{cases} x 4 > 0 \\ 2x + 3 < 7\end{cases} $$的解集是()A. x > 4B. x < 4C. 1 < x < 2D. 2 < x < 3二、判断题:1. 不等式2x 3 > 0的解集是x > 3/2。
不等式(组)精讲精练学校:___________姓名: ___________班级: ___________考号: ___________知识点精讲一、不等式的有关概念和性质1.不等式的定义: 用不等号“>”、“≥”、“<”、“≤”或“≠”表示不等关系的式子, 叫作不等式。
2.不等式的解:使不等式成立的未知数的值, 叫作不等式的解。
3、不等式的解集:对于一个含有未知数的不等式, 它的所有解的集合叫做这个不等式的解的集合。
它可以在数轴上直观地表示出来, 是数形结合的具体表现。
4.解不等式的概念: 求不等式的解集的过程叫作解不等式。
5、数轴表示不等式的解集: 不等式的解集用数轴表示有以下四种情况:【易错点】用数轴表示不等式的解集: 大于向右, 小于向左, 有等号画实心圆点, 无等号画空心圆图。
6.不等式的性质:基本性质1:不等式两边同时加或减去同一个整式, 不等号方向不变, 即若a>b, 则a+c>b+c, a-c>b-c。
基本性质2:不等式两边同时乘以(或除以)同一个大于0的整式, 不等号方向不变, 即若a>b,c>0, 则ac>bc(或aa>aa)基本性质3(易错): 不等式两边同时乘以(或除以)同一个小于0的整式, 不等号方向改变, 即若a>b,c<0, 则ac<bc(或aa<aa)基本性质4:若a>b, 则b<a。
基本性质5: 若a>b>c, 则a>c。
基本性质6:如果, , 那么.【注意】1)不等式变形时, 要注意性质2和3的区别, 需先判断要乘(或除以)的数的正负, 若负注意不等号方向发生改变。
2)不等号方向发生改变就是指原来的不等号方向变成其相反方向。
【总结】1.一元一次不等式的概念:不等式的左右两边都是整式, 只含有一个未知数并且未知数的最高次数是1, 像这样的不等式叫一元一次不等式。
一元一次不等式的一般形式为: 或。
九年级数学下册2023年中考专题培优训练:不等式与不等式组一、单选题1.下列说法不正确的是( )A .不等式的解集是B .不等式的整数解有无数个32x ->5x >3x <C .不等式的整数解是0D .是不等式的一个解33x +<0x =23x <2.已知,则下列结论成立的是( )x y <A .B .C .D .77x y ->-55x y ->-2121x y +>+22x y >3.一元一次不等式x+1>2的解在数轴上表示为( )A .B .C .D .4.关于 的不等式 的非负整数解共有( )个x 1230x ->A .3B .4C .5D .65.若关于x 的不等式2x+a≤0只有两个正整数解,则a 的取值范围是( )A .﹣6≤a≤﹣4B .﹣6<a≤﹣4C .﹣6≤a <﹣4D .﹣6<a <﹣46.若a <b ,则下列各式正确的是( )A .3a >3bB .﹣3a >﹣3bC .a﹣3>b﹣3D .33a b >7.如图表示的是关于 的不等式 ≤ 的解集,则 的取值是( )x 2x a --1a A . ≤-1B . ≤-2C . =-1D . =-2a a a a 8.甲种蔬菜保鲜适宜的温度是1℃~5℃,乙种蔬菜保鲜适宜的温度是3℃~8℃,将这两种蔬菜放在一起同时保鲜,适宜的温度是( )A .1℃~3℃B .3℃~5℃C .5℃~8℃D .1℃~8℃9.不等式组 的解集在数轴上表示为( )21112x x -≤⎧⎨+>-⎩A .B .C.D.10.若 是关于x 的不等式 的一个解,则a 的取值范围是( )3x =2()x x a >-A .B .C .D .32a <32a >32a ≤32a ≥11.关于x 的一元一次不等式3x>6的解都能满足下列哪一个不等式的解( )A .4x-9<xB .-3x+2<0C .2x+4<0D .122x <12.老张从一个鱼摊上买了三条鱼,平均每条a 元,又从另一个鱼摊上买了两条鱼,平均每条b 元,后来他又以每条 元的价格把鱼全部卖给了乙,结果发现赔了钱,原因是( )2a b+A .a >b B .a <bC .a =bD .与a 和b 的大小无关二、填空题13.不等式组 的解集为 .23x x >-⎧⎨≤⎩14.若不等式(a+1)x >a+1的解集是x <1,则a 的取值范围是 .15.a >b ,且c 为实数,则ac 2 bc 2.(用数学符号填空)16.不等式3x﹣2≥4(x﹣1)的所有非负整数解的和为 .17.对于任意实数m 、n ,定义一种运运算m ※n=mn﹣m﹣n+3,等式的右边是通常的加减和乘法运算,例如:3※5=3×5﹣3﹣5+3=10.请根据上述定义解决问题:若a <2※x <7,且解集中有两个整数解,则a 的取值范围是 三、解答题18.解不等式组 ,并求它的整数解.64325213x x x x +≥-⎧⎪+⎨->-⎪⎩19.今年中考期间,我县部分乡镇学校的九年级考生选择在一中、二中的学生宿舍住宿,某学校将若干间宿舍分配给该校九年级一班的女生住宿,已知该班女生少于25人,若每个房间住4人,则剩下3人没处住;若每个房间住6人,则空一间房,并且还有一间房有人住但住不满。
2023年人教版数学九年级中考复习:不等式与不等式组解答题姓名:得分:日期:1、大学生小刘回乡创办小微企业,初期购得原材料若干吨,每天生产相同件数的某种产品,单件产品所耗费的原材料相同.当生产6天后剩余原材料36吨,当生产10天后剩余原材料30吨.若剩余原材料数量小于或等于3吨,则需补充原材料以保证正常生产.(1)求初期购得的原材料吨数与每天所耗费的原材料吨数;(2)若生产16天后,根据市场需求每天产量提高20%,则最多再生产多少天后必须补充原材料?2、某商场销售A,B两种品牌的教学设备,这两种教学设备的进价和售价如表所示A B进价(万元/套) 1.5 1.2售价(万元/套) 1.65 1.4该商场计划购进两种教学设备若干套,共需66万元,全部销售后可获毛利润9万元.(1)该商场计划购进A,B两种品牌的教学设备各多少套?(2)通过市场调研,该商场决定在原计划的基础上,减少A种设备的购进数量,增加B种设备的购进数量,已知B 种设备增加的数量是A种设备减少的数量的1.5倍.若用于购进这两种教学设备的总资金不超过69万元,问A种设备购进数量至多减少多少套?3、湖湘公园、杨梅洲公园、雨湖公园以及菊花塘公园四个公园免费书吧的开放,让市民朋友们毫不费劲就能阅读到自己钟爱的书籍.现免费书吧准备补充少儿读物和经典国学两个类别的书籍共20套,已知少儿读物每套100元,经典国学每套200元,若购书总费用不超过3100元,不低于2920元,且购买的国学经典如果超过10套,则国学经典全部打9折,问有哪几种购买方案?哪种购买方案费用最低?4、某次篮球联赛初赛阶段,每队有10场比赛,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分,积(1)已知甲队在初赛阶段的积分为18分,求甲队初赛阶段胜、负各多少场;(2)如果乙队要获得参加决赛资格,那么乙队在初赛阶段至少要胜多少场?5、某蔬菜经营户从蔬菜批发市场批发蔬菜进行零售,部分蔬菜批发价格与零售价格如下表:请解答下列问题:(1)第一天,该经营户批发西红柿和西兰花两种蔬菜共300 kg,用去了1 520元钱,这两种蔬菜当天全部售完后一共能赚多少元钱?(2)第二天,该经营户用1 520元钱仍然批发西红柿和西兰花,要想当天全部售完后所赚钱数不少于1 050元,则该经营户最多能批发西红柿多少kg?6、为了保护环境,某生物化工厂一期工程完成后,购买了甲型和乙型污水处理设备共5台,每台甲型设备的价格比每台乙型设备价格高25%,且购买甲型污水处理设备共花费资金30万元,购买乙型污水处理设备共花费资金16万元,实际运行发现,每台甲型设备每月能处理污水180吨,每台乙型设备每月能处理污水150吨.此外,每年用于每台甲型、乙型设备的各种维修费分别为1万元和1.5万元.今年该厂二期工程即将完成,产生的污水将大大增加.于是该厂决定再购买甲、乙两型设备共8台,用于二期工程的污水处理,预算本次购买资金不超过74万元.预计二期工程完成后每月将产生不少于1250吨的污水.(1)请你计算,每台甲型设备和每台乙型设备的价格各是多少万元?(2)在(1)的基础上,如果今年要求两种设备都要购买,那么今年用于二期工程污水处理的设备购买方案共有多少种?(3)若两种设备的使用年限都为10年,请你在(2)的基础上,说明今年哪种购买方案对于二期工程10年用于治理污水的总费用最少?最少费用是多少?(总费用=设备购买费+各种维护费)7、某工厂为贯彻落实“绿水青山就是金山银山“的发展理念,投资组建了日废水处理量为m吨的废水处理车间,对该厂工业废水进行无害化处理.但随着工厂生产规模的扩大,该车间经常无法完成当天工业废水的处理任务,需要将超出日废水处理量的废水交给第三方企业处理.已知该车间处理废水,每天需固定成本30元,并且每处理一吨废水还需其他费用8元;将废水交给第三方企业处理,每吨需支付12元.根据记录,5月21日,该厂产生工业废水35吨,共花费废水处理费370元.(1)求该车间的日废水处理量m;(2)为实现可持续发展,走绿色发展之路,工厂合理控制了生产规模,使得每天废水处理的平均费用不超过10元/吨,试计算该厂一天产生的工业废水量的范围.8、某单位给某乡中小学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.(1)求饮用水和蔬菜各有多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.则运输部门安排甲、乙两种货车时有几种方案?请你帮助设计出来;(3)在(2)的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?9、某职业高中机电班共有学生42人,其中男生人数比女生人数的2倍少3人.(1)该班男生和女生各有多少人?(2)某工厂决定到该班招录30名学生,经测试,该班男、女生每天能加工的零件数分别为50个和45个,为保证他们每天加工的零件总数不少于1460个,那么至少要招录多少名男学生?10、如图,长青农产品加工厂与A,B两地有公路、铁路相连,这家工厂从A地购买一批原料甲运回工厂,经过加工后制成产品乙运B地,其中原料甲和产品乙的重量都是正整数.运价为2元/(吨•千米),公路运价为8元/(吨•千米).(1)若由A到B的两次运输中,原料甲比产品乙多9吨,工厂计划支出铁路运费超过5700元,公路运费不超过9680元,问购买原料甲有哪几种方案,分别是多少吨?(2)由于国家出台惠农政策,对运输农产品的车辆免收高速通行费,并给予一定的财政补贴,综合惠农政策后公路运输价格下降m(0<m<4且m为整数)元,若由A到B的两次运输中,铁路运费为5760元,公路运费为5100元,求m的值.11、甲、乙两商场以同样价格出售同样的商品:并且又各自推出不同的优惠方案,在甲商场累计购物超过100元后,超出100元的部分按90%收费;在乙商场累计购物超过50元后,超出50元的部分按95%收费.顾客到哪家商场购物花费少?12、为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.(1)求足球和篮球的单价各是多少元?(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550元,学校最多可以购买多少个足球?13、某厂准备生产甲、乙两种商品共8万件销往“一带一路”沿线国家和地区.已知2件甲种商品与3件乙种商品的销售收入相同,3件甲种商品比2件乙种商品的销售收入多1500元.(1)甲种商品与乙种商品的销售单价各多少元?(2)若甲、乙两种商品的销售总收入不低于5400万元,则至少销售甲种商品多少万件?14、小张去书店购买图书,看好书店有A,B,C三种不同价格的图书,分别是A种图书每本1元,B种图书每本2元,C种图书每本5元.(1)若小张同时购买A,C两种不同图书的6本,用去18元,求购买两种图书的本数;(2)若小张同时购买两种不同的图书10本,用去18元,请你设计他的购书方案;(3)若小张同时购进A,B,C三种不同图书10本,用去18元,请你设计他的购买方案.15、为提高饮水质量,越来越多的居民选购家用净水器.一商场抓住商机,从厂家购进了A、B两种型号家用净水器共160台,A型号家用净水器进价是150元/台,B型号家用净水器进价是350元/台,购进两种型号的家用净水器共用去36000元.(1)求A、B两种型号家用净水器各购进了多少台;(2)为使每台B型号家用净水器的毛利润是A型号的2倍,且保证售完这160台家用净水器的毛利润不低于11000元,求每台A型号家用净水器的售价至少是多少元.(注:毛利润=售价-进价)16、凉山州在邛海“空列”项目考察座谈会上与多方达成初步合作意向,决定共同出资60.8亿元,建设40千米的邛海空中列车.据测算,将有24千米的“空列”轨道架设在水上,其余架设在陆地上,并且每千米水上建设费用比陆地建设费用多0.2亿元.(1)求每千米“空列”轨道的水上建设费用和陆地建设费用各需多少亿元?(2)预计在某段“空列”轨道的建设中,每天至少需要运送沙石1600m3,施工方准备租用大、小两种运输车共10辆,已知每辆大车每天运送沙石200m3,每辆小车每天运送沙石120m3,大、小车每天每辆租车费用分别为1000元、700元,且要求每天租车的总费用不超过9300元,问施工方有几种租车方案?哪种租车方案费用最低,最低费用是多少?17、某中学为打造书香校园,计划购进甲、乙两种规格的书柜放置新购进的图书,调查发现,若购买甲种书柜3个、乙种书柜2个,共需资金1020元;若购买甲种书柜4个,乙种书柜3个,共需资金1440元.(1)甲、乙两种书柜每个的价格分别是多少元?(2)若该校计划购进这两种规格的书柜共20个,其中乙种书柜的数量不少于甲种书柜的数量,学校至多能够提供资金4320元,请设计几种购买方案供这个学校选择.。
第四讲 不等式(组)专项一 不等式的性质知识清单1. 不等式:一般地,用符号“<”(或“≤”),“>”(或“≥”),“≠”连接的式子,叫做 ;能使不等式成立的未知数的值叫做不等式的 ;一个含有未知数的不等式的所有的解,组成这个不等式的 ;求不等式的解集的过程叫做 .2. 不等式的性质:(1)性质1:不等式两边都加(或减)同一个 ,不等号的方向不变,即如果a>b ,那么a±c>b±c.(2)性质2:不等式两边都乘(或除以)同一个 ,不等号的方向不变,即如果a>b ,c>0,那么ac>bc a b c c ⎛⎫> ⎪⎝⎭或. (3)性质3:不等式两边都乘(或除以)同一个 ,不等号的方向改变,即如果a>b ,c<0,那么ac<bc a b c c ⎛⎫< ⎪⎝⎭或. 考点例析例 已知a>b ,下列结论:①a 2>ab ;②a 2>b 2;③若b<0,则a+b<2b ;④若b>0,则ba 11<.其中一定正确的个数是( )A. 1B. 2C. 3D. 4 分析:先判断各个结论中不等式的两边是对原不等式的两边作了怎样的变形,再根据不等式的性质作出判断即可.归纳:不等式的性质是解不等式的依据.运用不等式的性质对不等式变形时,一定要注意在不等式两边都乘(或除以)同一个负数时,不等号的方向要改变.跟踪训练1.若-3a>1,两边都除以-3,得( ) A. a<13- B. a>13- C. a<-3 D. a>-32.若a>b ,则下列不等式不一定成立的是( )A. a-5>b-5B. -5a<-5bC. a c >b cD. a+c>b+c3.已知a>b ,则一定有-4a -4b ,“ ”中应填的符号是( )A. >B. <C. ≥D. =专项二 一元一次不等式的解法及解集表示知识清单 1. 只含有 未知数,并且未知数的次数是 的不等式叫做一元一次不等式.2. 解一元一次不等式的一般步骤:去分母、 、 、 、系数化为1.3. 不等式的解集在数轴上的表示:大于向 画,小于向 画,有等号画 ,无等号画 .考点例析例 解不等式:7132184x x --->. 分析:按去分母、去括号、移项、合并同类项、系数化为1的步骤解不等式即可.解:归纳:解一元一次不等式与解一元一次方程的步骤相同,区别在于将不等式两边同乘(或除以)一个负数时,不等号的方向要改变.跟踪训练1.不等式3x-1>5的解集是( )A. x>2B. x<2C. x>43D. x<43 2.不等式113x x -<+的解集在数轴上表示正确的是( )A B C D3.一个不等式的解在数轴上表示如图所示,则这个不等式可以是( )A. x+2>0B. x-2<0C. 2x ≥4D. 2-x<0第3题图 4.关于x 的不等式13x-1>12的解集是 . 5.不等式2(y+1)<y+3的解集是 .6.解不等式:4233-1+-<-x x x . 7.下面是小明同学解不等式的过程,请认真阅读并完成相应任务.1223312-->-x x 解:2(2x-1)>3(3x-2)-6………………第一步4x-2>9x-6-6…………………………………第二步4x-9x>-6-6+2……………………………… 第三步-5x>-10………………………………………第四步x>2………………………………………… 第五步 任务一:填空:①以上解题过程中,第二步是依据 (运算律)进行变形的; ②第 步开始出现错误.这一步错误的原因是 ;任务二:请直接写出该不等式的正确解集.解:________________专项三 一元一次不等式组的解法及解集表示知识清单1. 一般地,关于同一个未知数的几个一元一次不等式合在一起,就组成一个一元一次不等式组.2. 一元一次不等式组中各个不等式解集的 ,叫做这个不等式组的解集.3. 一元一次不等式组解集的确定:不等式组(a<b ) 数轴表示 解 集 口 诀x a x b ≥⎧⎨≥⎩, ________ 同大取大⎩⎨⎧≤≤bx a x , ________ 同小取小 ⎩⎨⎧≤≥b x a x , ________大小小大中间找 ⎩⎨⎧≥≤b x a x ,________ 大大小小无处找 注:①口诀中“大”“小”各自的含义不同;②可以将图形和口诀结合起来记忆.考点例析例解不等式组21 410 1.x x x x ≥-⎧⎨+>+⎩,①②请按下列步骤完成解答.(1)解不等式①,得 ;(2)解不等式②,得 ;(3)把不等式①和②的解集在数轴上表示出来;(4)原不等式组的解集是 .分析:先求出每个不等式的解集,再利用数轴确定解集的公共部分,进而写出不等式组的解集.解:归纳:解一元一次不等式是解一元一次不等式组的基础,利用数轴的直观性确定各不等式解集的公共部分,进而写出不等式组的解集.跟踪训练1.不等式组1<2x-3<x+1的解集是( )A. 1<x<2B. 2<x<3C. 2<x<4D. 4<x<52.不等式组⎪⎩⎪⎨⎧-≥->-12102x x ,的解集在数轴上表示正确的是( )A B C D3.不等式组()21511325131x x x x -+⎧-≤⎪⎨⎪-<+⎩,的解集为 .4.解不等式组:581223x x x x ≥+⎧⎪⎨+>-⎪⎩, ①,②并把解集在数轴上表示出来. 5.以下是圆圆解不等式组()()2111 2 x x +>-⎧⎪⎨-->-⎪⎩,①②的解答过程:解:由①,得2+x>-1,所以x>-3.由②,得1-x>2,所以-x>1.所以x>-1. 所以原不等式组的解集是x>-1.圆圆的解答过程是否有错误?如果有错误,请写出正确的解答过程.专项四 不等式(组)的特殊解知识清单求不等式(组)的特殊解(整数解、非负数解等)的一般步骤:先求出不等式(组)的解集,再在解集内确定其特殊解.利用数轴的直观性可快速、准确地找出其特殊解.考点例析例下列数值不是不等式组51341233x x x x ->-⎧⎪⎨-≤-⎪⎩,的整数解的是( ) A. -2 B. -1 C. 0 D. 1分析:先分别求出不等式组中两个不等式的解集,然后再确定解集的公共部分,即为不等式组的解集,对各选项逐一判断,找出不等式组的解集范围内的即可.归纳:求不等式(组)的特殊解时,要注意解集的界点,如求整数解时,实心圆点所表示的实数如果是整数,则该点也为解之一,如果不是整数,则要从解集中离该点最近的整数点开始算起;空心圆圈所表示的点如果是整数,则整数解取不到该点,如果不是整数,则要从解集中离该点最近的整数点开始算起.若求最大整数解,则找数轴上解集中最右边的整数解,若求最小整数解,则找数轴上解集中最左边的整数解.跟踪训练1.在一元一次不等式组21050xx+>⎧⎨-≤⎩,的解集中,整数解的个数是()A. 4B. 5C. 6D. 72.不等式组2217xx>⎧⎨+≤⎩,的整数解为.3.当x取何正整数时,代数式32x+与213x-之差大于1?4.解不等式组105212xxx-<⎧⎪⎨+≥-⎪⎩,,并写出满足不等式组的所有整数解.专项五一元一次不等式的应用知识清单列一元一次不等式解应用题,可分为审题、设未知数、找不等关系、列不等式、解不等式、写答案等步骤,需要注意求得的解要符合实际.考点例析例1小明用30元购买铅笔和签字笔,已知铅笔和签字笔的单价分别是2元和5元,他买了2支铅笔后,最多还能买几支签字笔?设小明还能买x支签字笔,则下列不等关系正确的是()A. 5×2+2x≥30B. 5×2+2x≤30C. 2×2+2x≥30D. 2×2+5x≤30分析:设小明还能买x支签字笔,利用总价=单价×数量,结合总价不超过30元,即可得出关于x的一元一次不等式.例2某市公交公司为落实“绿色出行,低碳环保”的城市发展理念,计划购买A,B两种型号的新型公交车.已知购买1辆A型公交车和2辆B型公交车需要165万元;2辆A型公交车和3辆B型公交车需要270万元.(1)求A型公交车和B型公交车每辆各多少万元?(2)公交公司计划购买A型公交车和B型公交车共140辆,且购买A型公交车的总费用不高于B型公交车的总费用,那么该公司最多购买多少辆A型公交车?分析:(1)设A型公交车每辆x万元,B型公交车每辆y万元,根据题目中给的等量关系,列出关于x,y的二元一次方程组并解答;(2)设该公司购买m辆A型公交车,则购买(140-m)辆B型公交车,根据购买A型公交车的总费用不高于B型公交车的总费用列出关于m的一元一次不等式并解答.解:归纳:列不等式解应用题的关键是找出不等关系,并根据题目中的一些关键词语选择恰当的不等号,如“至少”“最多”“超过”“不低于”“不高于”等.跟踪训练1.某学校计划为“建党百年,铭记党史”演讲比赛购买奖品.已知购买2个A种奖品和4个B种奖品共需100元;购买5个A种奖品和2个B种奖品共需130元.学校准备购买A,B两种奖品共20个,且A种奖品的数量不小于B种奖品数量的25,则在购买方案中最少费用是元.2.民生无小事,枝叶总关情,广东在“我为群众办实事”实践活动中推出“粤菜师傅”“广东技工”“南粤家政”三项培训工程,今年计划新增加培训共100万人次.(1)若“广东技工”今年计划新增加培训31万人次,“粤菜师傅”今年计划新增加培训人次是“南粤家政”的2倍,求“南粤家政”今年计划新增加的培训人次;(2)“粤菜师傅”工程开展以来,已累计带动33.6万人次创业就业,据报道,经过“粤菜师傅”项目培训的人员工资稳定提升,已知李某去年的年工资收入为9.6万元,预计李某今年的年工资收入不低于12.48万元,则李某的年工资收入增长率至少要达到多少?3.为了改善湘西北地区的交通,我省正在修建长(沙)—益(阳)—常(德)高铁,其中长益段将于2021年底建成. 开通后的长益高铁比现在运行的长益城际铁路全长缩短了40千米,运行时间为16分钟;现乘坐某次长益城际列车全程需要60分钟,平均速度是开通后的高铁的13 30.(1)求长益段高铁与长益城际铁路全长各为多少千米?(2)甲、乙两个工程队同时对长益段高铁全线某个配套项目进行施工,每天对其施工的长度比为7∶9,计划40天完成.施工5天后,工程指挥部要求甲工程队提高工效,以确保整个工程提早3天以上(含3天)完成,那么甲工程队后期每天至少施工多少千米?4.为进一步落实“德、智、体、美、劳”五育并举工作,某中学以体育为突破口,准备从体育用品商场一次性购买若干个足球和篮球,用于学校球类比赛活动.每个足球的价格都相同,每个篮球的价格也相同.已知篮球的单价比足球单价的2倍少30元,用1200元购买足球的数量是用900元购买篮球数量的2倍.(1)足球和篮球的单价各是多少元?(2)根据学校实际情况,需一次性购买足球和篮球共200个,但要求足球和篮球的总费用不超过15 500元,学校最多可以购买多少个篮球?专项六利用数形结合确定不等式(组)中字母的取值知识清单已知一个不等式(组)的解集求其中字母的取值,是中考常涉及的问题,这类问题综合性强、灵活性高,可以借助数轴,利用数形结合思想直观求解.考点例析例若关于x的不等式组2312xx a+>⎧⎨-≤⎩,恰有3个整数解,则实数a的取值范围是()A. 7<a<8B. 7<a≤8C. 7≤a<8D. 7≤a≤8分析:解2x+3>12,得x>4.5;解x-a≤0,得x≤a.因为原不等式组有且只有3个整数解,所以其整数解为5,6,7,画出图形如图所示:由图可知,若a等于7,则有x≤7,原不等式组的解集为4.5<x≤7,正好有3个整数解5,6,7,符合题意;若a等于8,则有x≤8,原不等式组的解集为4.5<x≤8,就有4个整数解5,6,7,8,不符合题意.所以7≤a<8. 归纳:解此类问题的方法是根据不等式(组)的解集情况重新确定一个关于字母的不等式,从而求出字母的取值范围.易错之处是两个临界点能不能重合(即能不能取“=”号),如例题中应先确认a介于何值之间,再对是否能取到临界值进行分析.跟踪训练1.如果不等式组541x xx m+<-⎧⎨>⎩,的解集为x>2,那么m的取值范围是()A. m≤2B. m≥2C. m>2D. m<22.若关于x的不等式x+m<1只有3个正整数解,则m的取值范围是.3.关于x的不等式组23023xx a->⎧⎨-<⎩,恰好有2个整数解,则实数a的取值范围是.4.若关于x的不等式组12420x ax⎧->⎪⎨⎪-≥⎩,无解,则a的取值范围为.参考答案专项一不等式的性质例 A1. A2. C3. B专项二一元一次不等式的解法及解集表示例去分母,得8-(7x-1)>2(3x-2).去括号,得8-7x+1>6x-4.移项,得-7x-6x>-4-8-1.合并同类项,得-13x>-13.系数化为1,得x<1.1. A2. B3. B4. x>925. y<16. 解:去分母,得4(1-x)-12<3×12-3(x+2).去括号,得4-4x-12<36-3x-6.移项,得-4x+3x<36-6-4+12.合并同类项,得-x<38.系数化为1,得x>-38.7. 任务一:①乘法分配律(或分配率)五不等式两边都除以-5,不等号的方向没有改变任务二:x<2专项三一元一次不等式组的解法及解集表示例(1)x≥-1 (2)x>-3 (3)(4)x≥-1 1. C 2. C3. -1≤x<24. 解:解不等式①,得x≥2.解不等式②,得x<7.所以不等式组的解集在数轴上表示如图所示:所以原不等式组的解集为2≤x<7.5. 解:圆圆的解答过程有错误.正确的解答过程:由①,得2+2x>-1,所以x>3 2 -.由②,得-1+x>-2,所以x>-1.所以原不等式组的解集是x>-1.专项四不等式(组)的特殊解例 A1. C2. 33. 解:根据题意,得32x+-213x->1.去分母,得3(x+3)-2(2x-1)>6.去括号,得3x+9-4x+2>6.移项、合并同类项,得-x>-5.系数化为1,得x<5.因为x为正整数,所以x可取1,2,3,4.4. 解:解不等式x-1<0,得x<1.解不等式522x+≥x-1,得x≥43-.所以原不等式组的解集为43-≤x<1.所以不等式组的整数解为-1,0.专项五一元一次不等式的应用例1 D例2(1)设A型公交车每辆x万元,B型公交车每辆y万元.根据题意,得216523270x yx y+=⎧⎨+=⎩,.解得4560xy=⎧⎨=⎩,.答:A型公交车每辆45万元,B型公交车每辆60万元.(2)设该公司购买m辆A型公交车,则购买(140-m)辆B型公交车.根据题意,得45m≤60(140-m),解得m≤80.答:该公司最多购买80辆A型公交车.1. 3302. 解:(1)设“南粤家政”今年计划新增加培训x万人次,则“粤菜师傅”今年计划新增加培训2x万人次. 根据题意,得31+2x+x=100,解得x=23.答:“南粤家政”今年计划新增加培训23万人次.(2)设李某的年工资收入增长率为m,根据题意,得9.6(1+m)≥12.48,解得:m≥0.3=30%.答:李某的年工资收入增长率至少要达到30%.3. 解:(1)设长益段高铁全长为x 千米,长益城际铁路全长为y千米.根据题意,得4013.601630y xy x=+⎧⎪⎨=⨯⎪⎩,解得64104.xy=⎧⎨=⎩,答:长益段高铁全长为64千米,长益城际铁路全长为104千米. (2)设甲队后期每天施工a千米.甲原来每天的施工长度为64÷40×716=0.7(千米),乙每天的施工长度为64÷40×916=0.9(千米).根据题意,得0.7×5+0.9×(40-3)+(40-3-5)a≥64,解得a≥0.85.答:甲工程队后期每天至少施工0.85千米,可确保工程提早3天以上(含3天)完成.4. 解:(1)设每个足球x元,则每个篮球(2x-30)元.根据题意,得12009002230x x=⨯-,解得x=60.经检验,x=60是分式方程的根,且符合题意. 2x-30=90.答:每个足球60元,每个篮球90元.(2)设买篮球m个,则买足球(200-m)个.根据题意,得90m+60(200-m)≤15 500,解得m≤2 1163.因为m为正整数,所以最多购进篮球116个.专项六利用数形结合确定不等式(组)中字母的取值例C1. A2. -3≤m<-23. 0<a≤0.54. a≥1第11页。
九年级数学中考一轮复习《不等式与不等式组》自主复习达标测评1.若点P(2m﹣3,﹣m)在第四象限,则m的取值范围是()A.0<m<B.m>0C.m>D.m<02.若关于x的一元一次不等式组的解集为x>1,则a的取值范围是()A.a<1B.a≤1C.a>1D.a≥13.如果关于x,y的方程组的解是正数,那么a的取值范围是()A.﹣4<a<5B.﹣5<a<4C.a<﹣4D.a>54.已知x=4是关于x的方程kx+b=0(k≠0,b>0)的解,则关于x的不等式k(x﹣3)+2b>0的解集是()A.x>11B.x<11C.x>7D.x<75.把一些笔分给几名学生,如果每人分5支,那么余7支;如果前面的学生每人分6支,那么最后一名学生能分到笔但分到的少于3支,则共有学生()A.11人B.12人C.11或12人D.13人6.不等式组的解集是()A.x<1B.x>1C.x<﹣1D.x≥07.已知关于x的不等式3x﹣2a<4﹣5x有且仅有三个正整数解,则满足条件的整数a的个数是()A.3个B.4个C.5个D.6个8.某商店计划用不超过2000元的资金,购进甲、乙两种单价分别为30元、60元的商品共50件,据市场行情,销售甲、乙商品各一件分别可获利5元、15元,两种商品均售完.若所获利润大于380元,则该店进货方案有()A.3种B.4种C.5种D.6种9.不等式组的非负整数解有()A.4个B.5个C.6个D.7个10.若关于x的不等式组的整数解共有3个,则m的取值范围是()A.5<m<6B.5≤m<6C.5≤m≤6D.5<m≤611.不等式组有解且解集是2<x<m+7,则m的取值范围为.12.已知关于x、y的二元一次方程组的解满足x>y,且关于x的不等式组无解,那么所有符合条件的整数a的个数为.13.一种苹果的进价是每千克1.9元,销售中估计有5%的苹果正常损耗,商家把售价至少定为元,才能避免亏本.14.如果点P(3﹣m,1)在第二象限,则关于x的不等式(2﹣m)x+2>m的解集是.15.已知关于x的不等式x﹣a<0的最大整数解为3a+6,则a=.16.若不等式组的解集是0<x<,则(a+b)2020=.17.若不等式>﹣x﹣的解都能使不等式(m﹣6)x<2m+1成立,则实数m的取值范围是.18.已知关于x的不等式组其中a,b在数轴上的对应点如图所示,则这个不等式组的解集为.19.若关于x的不等式组只有4个整数解,则a的取值范围是.20.已知实数x、y满足2x﹣3y=4,且x>﹣1,y≤2,设k=x﹣y,则k的取值范围是.21.关于x、y的方程组的解为非负数,求m的取值范围.22.已知关于x、y的方程组的解都小于1,关于x的不等式组没有实数解.(1)分别求出m与n的取值范围;(2)化简:.23.为响应阳光体育运动的号召,学校决定从体育用品商店购买一批篮球和足球.按标价若购买2个篮球和3个足球需600元,若购买3个篮球和1个足球需550元.(1)求篮球、足球每个分别是多少元?(2)由于购买数量较多,商店决定给予一定的优惠,篮球每个优惠20%,足球每个优惠10%,若学校决定买两种球共40个,在购买资金不超过4500元时,则购买篮球至多是多少个?24.2020年春节前夕,突如其来的新型冠状病毒肺炎疫情造成口罩紧缺,为满足社会需求,某一工厂现需购买A、B两种材料,用来生产甲、乙两种口罩,已知生产一件甲型口罩需A种材料30千克;B种材料10千克;生产一件乙型口罩需A、B两种材料各20千克;A种材料每千克15元,B种材料每千克25元.(1)若生产甲型口罩的数量比生产乙型口罩的数量多10件时,两种口罩需购买材料的资金相同,求生产甲、乙两种口罩各多少件?(2)若工厂用于购买A、B两种材料的资金不超过385000元,且需生产两种口罩共500件,求至少能生产甲种口罩多少件?25.入汛以来,我国南方地区发生多轮降雨,造成的多地发生较重洪涝灾害.某爱心机构将为一受灾严重地区捐赠的物资打包成件,其中帐篷和食品共320件,帐篷比食品多80件.(1)求打包成件的帐篷和食品各多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批帐篷和食品全部运往受灾地区.已知甲种货车最多可装帐篷40件和食品10件,乙种货车最多可装帐篷和食品各20件.安排甲、乙两种货车时有几种方案?请你帮助设计出来;(3)在第(2)问的条件下,如果甲种货车每辆需付运输费2000元,乙种货车每辆需付运输费1800元,应选择哪种方案可使运输费最少?最少运输费是多少元?参考答案1.解:∵点P(2m﹣3,﹣m)在第四象限,∴,解不等式①,得:m>,解不等式②,得:m>0,则m>,故选:C.2.解:解不等式x﹣a≥0,得:x≥a,解不等式2x+1>3,得:x>1,∵不等式组的解集为x>1,∴a≤1,故选:B.3.解:解方程组得:,∵关于x,y的方程组的解是正数,∴,解得:﹣5<a<4,故选:B.4.解:∵x=4是关于x的方程kx+b=0(k≠0,b>0)的解,∴4k+b=0,即b=﹣4k>0,∴k<0,∵k(x﹣3)+2b>0,∴kx﹣3k﹣8k>0,∴kx>11k,∴x<11,故选:B.5.解:假设共有学生x人,根据题意得出:,解得:10<x≤12.因为x是正整数,所以符合条件的x的值是11或12.观察选项,选项C符合题意.故选:C.6.解:,解不等式①,得x<2,解不等式②,得x<1,所以这个不等式组的解集为x<1,故选:A.7.解:解不等式3x﹣2a<4﹣5x得:x<,∵关于x的不等式3x﹣2a<4﹣5x有且仅有三个正整数解,是1,2,3,∴3<≤4,解得:10<a≤14,∴整数a可以是11,12,13,14,共4个,故选:B.8.解:设该店购进甲种商品x件,则购进乙种商品(50﹣x)件,根据题意,得:,解得:≤x<37,∵x为整数,∴x=34、35、36,∴该店进货方案有3种,故选:A.9.解:,解不等式①得:x>﹣2.5,解不等式②得:x≤4,∴不等式组的解集为:﹣2.5<x≤4,∴不等式组的所有非负整数解是:0,1,2,3,4,共5个,故选:B.10.解:,∵不等式②的解集是x≥3,∴不等式组的解集是3≤<m,又∵关于x的不等式组的整数解共有3个,是3,4,5,∴5<m≤6,故选:D.11.解:∵不等式组的解集是2<x<m+7,∴m+1≤2且m+7≤6且m+7>2,解得:﹣5<m≤﹣1,故答案是:﹣5<m≤﹣1.12.解:解方程组得:,∵关于x、y的二元一次方程组的的解满足x>y,∴2a+1>a﹣2,解得:a>﹣3,,∵解不等式①得:x<a﹣,解不等式②得:x≥,又∵关于x的不等式组无解,∴≥a﹣,解得:a≤4,即﹣3<a≤4,∴所有符合条件的整数a的个数为7个(﹣2,﹣1,0,1,2,3,4,共7个),故答案是:7.13.解:设商家把售价应该定为每千克x元,根据题意得:x(1﹣5%)≥1.9,解得,x≥2,故为避免亏本,商家把售价应该至少定为每千克2元.故答案为:2.14.解:∵点P(3﹣m,1)在第二象限,∴3﹣m<0,解得:m>3,∵(2﹣m)x+2>m,∴(2﹣m)x>m﹣2,∵m>3,∴2﹣m<0,∴x<﹣1,故答案为:x<﹣1.15.解:解不等式x﹣a<0得:x<a,∵关于x的不等式x﹣a<0的最大整数解为3a+6,∴3a+6<a≤3a+7,解得:﹣3.5≤a<﹣3,∵3a+6为整数,设m=3a+6,则a=m﹣2,即﹣3.5≤m﹣2<﹣3,解得:﹣4.5≤m<﹣3,∵m为整数,∴m=﹣4,即a=(﹣4)﹣2=﹣,故答案为:﹣.16.解:,∵解不等式①得:x>2+a,解不等式②得:x<,∴不等式组的解集是2+a,∵不等式组的解集是0<x<,∴2+a=0,=,解得:a=﹣2,b=3,∴(a+b)2020=(﹣2+3)2020=1,故答案为:1.17.解:解不等式>﹣x﹣得x>﹣4,∵x>﹣4都能使不等式(m﹣6)x<2m+1成立,①当m﹣6=0,即m=6时,则x>﹣4都能使0•x<13恒成立;②当m﹣6≠0,则不等式(m﹣6)x<2m+1的解要改变方向,∴m﹣6<0,即m<6,∴不等式(m﹣6)x<2m+1的解集为x>,∵x>﹣4都能使x>成立,∴﹣4≥,∴﹣4m+24≤2m+1,∴m≥,综上所述,m的取值范围是≤m≤6.故答案为:≤m≤6.18.解:∵b<0<a,∴关于x的不等式组的解集为:x>a,故答案为:x>a.19.解:,由①去括号得:x+9>2x﹣6,解得:x<15,由②去分母得:2(x+1)<3x+3a,去括号得:2x+2<3x+3a,解得:x>2﹣3a,∴不等式组的解集为2﹣3a<x<15,∵不等式组只有4个整数解,∴其整数解为11,12,13,14,则10≤2﹣3a<11,可化为:,由③解得:a≤﹣;由④解得:a>﹣3,则a的范围为﹣3<a≤﹣.故答案为:﹣3<a≤﹣.20.解:∵2x﹣3y=4,∴y=(2x﹣4),∵y≤2,∴(2x﹣4)≤2,解得x≤5,又∵x>﹣1,∴﹣1<x≤5,∵k=x﹣(2x﹣4)=x+,当x=﹣1时,k=×(﹣1)+=1;当x=5时,k=×5+=3,∴1<k≤3.故答案为:1<k≤3.21.解:解方程组得,根据题意,得,解得﹣2≤m≤1.22.(1)解方程关于x、y的方程组得,∵方程组的解都小于1,∴,解得:﹣3<m<1,解不等式组得x≥﹣5,且x≤2n﹣1,∵不等式组没有实数解,∴2n﹣1<﹣5,解得:n<﹣2;(2)∵﹣3<m<1,n<﹣2,∴=m+3+|1﹣m|﹣n﹣2=m+3+1﹣m﹣n﹣2=2﹣n.23.解:(1)设篮球的单价是x元,足球的单价是y元.根据题意,得,解得.答:篮球的单价为150元,足球单价为100元;(2)优惠后篮球单价150×(1﹣20%)=120,足球单价100×(1﹣10%)=90,设购买z个篮球,则购买(40﹣z)个足球,根据题意,得120z+90×(40﹣z)≤4500,解得:z≤30,答:该校最多可以购买30个篮球.24.解:(1)设生产甲种口罩x件,乙种口罩y件,根据题意,得.解得.答:生产甲种口罩80件,乙种口罩70件.(2)设能生产甲种口罩m件,根据题意,得15×30m+25×10m+20×(15+25)(500﹣m)≤385000.解得m≥150.答:至少能生产甲种口罩150件.25.解:(1)设食品x件,则帐篷(x+80)件,由题意得:x+(x+80)=320,解得:x=120.∴帐篷有120+80=200件.答:食品120件,则帐篷200件;(2)设租用甲种货车a辆,则乙种货车(8﹣a)辆,由题意得:,解得:2≤a≤4.又∵a为整数,∴a=2或3或4.∴乙种货车为:6或5或4.∴方案共有3种:方案一:甲车2辆,乙车6辆;方案二:甲车3辆,乙车5辆;方案三:甲车4辆,乙车4辆;(3)3种方案的运费分别为:方案一:2×2000+6×1800=14800(元);方案二:3×2000+5×1800=15000(元);方案三:4×2000+4×1800=15200(元).∵14800<15000<15200∴方案一运费最少,最少运费是14800元。
2023年中考数学考前专项分类提高练习:不等式与不等式组一、选择题:(本题共8小题,共40分.)1.(2022·广东深圳)一元一次不等式组102x x -≥⎧⎨<⎩的解集为( ) A . B .C .D .2.(2021·山东临沂市·中考真题)已知a b >,下列结论:①2a ab >;②22a b >;③若0b <,则2a b b +<;④若>0b ,则11<a b,其中正确的个数是( ) A .1 B .2 C .3D .4 3.下列哪个数是不等式2(x ﹣1)+3<0的一个解( )A .﹣3B .−12C .13D .2 4.若不等式253x +1≤2x 的解集中x 的每一个值,都能使关于x 的不等式3(x 1)+5>5x +2(m +x )成立,则m 的取值范围是( ) A .m >35 B .m <15 C .m <35 D .m >155.当0<x <1时,x 2、x 、x1的大小顺序是( ) A.x x x 12<< B.21x x x << C.x x x <<21 D.xx x 12<< 6.若整数a 使关于x 的不等式组1112341x x x a x -+⎧≤⎪⎨⎪->+⎩,有且只有45个整数解,且使关于y 的方程2260111y a y y+++=++的解为非正数,则a 的值为( ) A .61-或58- B .61-或59- C .60-或59- D .61-或60-或59-7.若关于x 的不等式32x a +≤只有2个正整数解,则a 的取值范围为( )A .74a -<<-B .74a -≤≤-C .74a -≤<-D .74a -<≤-8.若关于x 的一元一次不等式组11(42)423122x a x x ⎧--≤⎪⎪⎨-⎪<+⎪⎩的解集是x ≤a ,且关于y 的分式方程24111y a y y y---=--有非负整数解,则符合条件的所有整数a 的和为( ) A .0 B .1 C .4 D .6二、填空题:(本题共5小题,共15分.)9.不等式组{x +3≥0,x −1<0的解集是 . 10.(2021·湖南益阳)已知x 满足不等式组120x x >-⎧⎨-≤⎩,写出一个符合条件的x 的值________. 11.已知关于x 的不等式组{x >a ,x >b ,其中a ,b 在数轴上的对应点如图所示,则这个不等式组的解集为 .12.世纪公园的门票是每人5元,一次购门票满40张,每张门票可少1元.若少于40人时,一个团队至少要有________人进公园,买40张门票反而合算.13.若关于x 的不等式组{x−24<x−132x −m ≤2−x 有且只有三个整数解,则m 的取值范围是 . 三、解答题:(本题共3题,共45分.)14.解不等式组423(1)5132x x x x -≥-⎧⎪⎨-+>-⎪⎩,并把解集在数轴上表示出来15.解不等式组:{10x >7x +6,x −1<x+73.16.(2022·湖南怀化)去年防洪期间,某部门从超市购买了一批数量相等的雨衣(单位:件)和雨鞋(单位:双),其中购买雨衣用了400元,购买雨鞋用了350元,已知每件雨衣比每双雨鞋贵5元.(1)求每件雨衣和每双雨鞋各多少元?(2)为支持今年防洪工作,该超市今年的雨衣和雨鞋单价在去年的基础上均下降了20%,并按套(即一件雨衣和一双雨鞋为一套)优惠销售.优惠方案为:若一次购买不超过5套,则每套打九折:若一次购买超过5套,则前5套打九折,超过部分每套打八折.设今年该部门购买了a套,购买费用为W元,请写出W关于a的函数关系式.(3)在(2)的情况下,今年该部门购买费用不超过320元时最多可购买多少套?参考答案:1.D2.A3.A4.C5.A6.B7.D8.B9.﹣3≤x<110.1(答案不唯一)11.x>a12.3313.1≤m<414.解:423(1)5132x xxx-≥-⎧⎪⎨-+>-⎪⎩①②由①得:x≥−1;由②得:x<3;∴原不等式组的解集为−1≤x<3,在坐标轴上表示:.15.2<x<516.(1)每件雨衣40元,每双雨鞋35元(2)。
2023年中考数学二轮专题复习不等式与不等式组一、选择题(共10小题)1.(2022秋•渌口区期末)若a>b,下列不等式一定成立的是( )A.a﹣b<0B.C.2a<2b D.1﹣a<1﹣b 2.(2022秋•娄星区期末)下列不等式的解集中,不包括﹣3的是( )A.x≤﹣3B.x≥﹣3C.x≤﹣4D.x>﹣4 3.(2023•沙坪坝区校级开学)下列判断不正确的是( )A.若a>b,则a+2>b+2B.若a>b,则﹣a<﹣bC.若a>b,则2a>2b D.若a>b,则ac2>bc24.(2022秋•天元区校级期末)已知两个不等式的解集在数轴上如图表示,那么这个解集为( )A.x>11B.x≥﹣1C.﹣3<x≤﹣1D.x>﹣3 5.(2022秋•湘潭县期末)一次知识竞赛共有20道选择题,答对一题得5分;答错或不答,每题扣1分.要使总得分不少于88分,则至少要答对几道题?若设答对x道题,可列出的不等式为( )A.5x﹣(20﹣x)>88B.5x﹣(20﹣x)<88C.5x﹣(20﹣x)≤88D.5x﹣(20﹣x)≥886.(2022秋•隆回县期末)不等式2﹣3x>2x﹣8的正整数解有( )A.1个B.2个C.3个D.4个7.(2022秋•双峰县期末)不等式组的解集在数轴上表示正确的是( )A.B.C.D.8.(2022秋•沙坪坝区期末)将多项式a2﹣ab﹣6b2记为f(a,b),即f(a,b)=a2﹣ab﹣6b2.例如:若a=2,b=1,则f(2,1)=22﹣2×1﹣6×12=﹣4.下列判断:①f(a,0)=a2;②若f(a,1)=0,则a=﹣2或3;③若f(1,b)≤m恒成立,则m的取值范围是m≥.其中正确个数为( )A.0B.1C.2D.39.(2022秋•零陵区期末)若关于x的不等式组有解,则m的取值范围是( )A.m≤4B.m<4C.m≥4D.m>410.(2023•沙坪坝区校级开学)若关于x的一元一次不等式组的所有整数解的和是﹣9,则m的取值范围是( )A.﹣2<m≤﹣1B.1<m<2C.﹣2<m<﹣1或1<m<2D.﹣2<m≤﹣1或1<m≤2二、填空题(共8小题)11.(2022秋•隆回县期末)若不等式组的解集为1<x<3,则a= .12.(2022秋•鄞州区期末)“a的一半与3的和小于2”用不等式表示为 .13.(2022秋•渌口区期末)x的2倍与1的差不小于3,列出不等式为 .14.(2022秋•常德期末)关于x的不等式组有且只有三个整数解,求a的最大值是 .15.(2022秋•温州期末)“a的3倍与2的差小于9”用不等式表示为 .16.(2022秋•岳阳县期末)若关于x的一元一次不等式组的解集为,则ab= .17.(2023•沙坪坝区校级开学)不等式的非负整数解共有 个.18.(2023•瑞安市校级开学)不等式组的解是 .三、解答题(共3小题)19.(2022秋•岳阳县期末)解不等式组,并把解集在数轴上表示出来.20.(2023•桐乡市校级开学)解一元一次不等式组.21.(2022秋•宁波期末)为了响应习主席提出的“足球进校园”的号召,开设了“足球大课间活动”,某中学购买A种品牌的足球50个,B种品牌的足球25个,共花费4500元,已知B种品牌足球的单价比A种品牌足球的单价高30元.(1)求A、B两种品牌足球的单价各多少元?(2)根据需要,学校决定再次购进A、B两种品牌的足球50个,正逢体育用品商店“优惠促销”活动,A种品牌的足球单价优惠4元,B种品牌的足球单价打8折.如果此次学校购买A、B两种品牌足球的总费用不超过2750元,且购买B种品牌的足球不少于23个,则有几种购买方案?为了节约资金,学校应选择哪种方案?2023年中考数学二轮复习之不等式与不等式组参考答案与试题解析一、选择题(共10小题)1.(2022秋•渌口区期末)若a>b,下列不等式一定成立的是( )A.a﹣b<0B.C.2a<2b D.1﹣a<1﹣b 【考点】不等式的性质.【专题】整式;推理能力.【分析】根据不等式的性质解答即可.【解答】解:A、∵a>b,∴a﹣b>0,故A不符合题意;B、∵a>b,∴,故B不符合题意;C、∵a>b,∴2a>2b,故C不符合题意;D、∵a>b,∴﹣a<﹣b,∴1﹣a<1﹣b,故D符合题意;故选:D.【点评】本题考查了不等式的性质,熟练掌握不等式的性质是解题的关键.2.(2022秋•娄星区期末)下列不等式的解集中,不包括﹣3的是( )A.x≤﹣3B.x≥﹣3C.x≤﹣4D.x>﹣4【考点】不等式的解集.【专题】一元一次不等式(组)及应用;符号意识.【分析】不包括﹣3即﹣3不在解集内,由此可得出答案.【解答】解:根据题意,不包括﹣3即﹣3不在解集内,只有C选项,x≤﹣3,不包括﹣3.故选:C.【点评】本题考查不等式的解集,比较基础,观察各选项即可.3.(2023•沙坪坝区校级开学)下列判断不正确的是( )A.若a>b,则a+2>b+2B.若a>b,则﹣a<﹣bC.若a>b,则2a>2b D.若a>b,则ac2>bc2【考点】不等式的性质.【专题】整式;推理能力.【分析】根据不等式的基本性质进行判断.【解答】解:A、在不等式a>b的两边同时加2,不等式仍成立,即a+2>b+2,正确,不符合题意;B、在不等式a>b的两边同时乘以﹣1,不等号方向改变,即﹣a<﹣b,正确,不符合题意;C、在不等式a>b的两边同时乘以2,不等式仍成立,即2a>2b,正确,不符合题意;D、当c=0时,ac2=bc2,原变形错误,符合题意.故选:D.【点评】本题考查的是不等式的基本性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.4.(2022秋•天元区校级期末)已知两个不等式的解集在数轴上如图表示,那么这个解集为( )A.x>11B.x≥﹣1C.﹣3<x≤﹣1D.x>﹣3【考点】在数轴上表示不等式的解集.【专题】数形结合;运算能力.【分析】根据数轴得出不等式组的解集即可.【解答】解:从数轴可知:解集是x≥﹣1,故选:B.【点评】本题考查了在数轴上表示不等式的解集,能根据数轴得出正确信息是解此题的关键.5.(2022秋•湘潭县期末)一次知识竞赛共有20道选择题,答对一题得5分;答错或不答,每题扣1分.要使总得分不少于88分,则至少要答对几道题?若设答对x道题,可列出的不等式为( )A.5x﹣(20﹣x)>88B.5x﹣(20﹣x)<88C.5x﹣(20﹣x)≤88D.5x﹣(20﹣x)≥88【考点】由实际问题抽象出一元一次不等式.【专题】一元一次不等式(组)及应用;应用意识.【分析】设答对的题数为x道,则答错或不答的题数为(20﹣x)道,根据总分=5×答对题数﹣1×答错或不答题数,结合总得分不少于88分,即可得出关于x的一元一次不等式.【解答】解:设答对x道题,则答错或不答的题数为(20﹣x)道,则5x﹣(20﹣x)≥88.故选:D.【点评】本题考查了由实际问题抽象出一元一次不等式的知识,解答本题的关键是找到不等关系.6.(2022秋•隆回县期末)不等式2﹣3x>2x﹣8的正整数解有( )A.1个B.2个C.3个D.4个【考点】一元一次不等式的整数解.【专题】一元一次不等式(组)及应用;运算能力.【分析】根据解一元一次不等式基本步骤:移项、合并同类项、系数化为1可得答案.【解答】解:∵2﹣3x>2x﹣8,∴﹣3x﹣2x>﹣8﹣2,﹣5x>﹣10,则x<2,∴其正整数解为1,故选:A.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.7.(2022秋•双峰县期末)不等式组的解集在数轴上表示正确的是( )A.B.C.D.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【专题】一元一次不等式(组)及应用;运算能力.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:由1﹣5x≤11得:x≥﹣2,由2x<﹣10得x<﹣5,故选:D.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.8.(2022秋•沙坪坝区期末)将多项式a2﹣ab﹣6b2记为f(a,b),即f(a,b)=a2﹣ab﹣6b2.例如:若a=2,b=1,则f(2,1)=22﹣2×1﹣6×12=﹣4.下列判断:①f(a,0)=a2;②若f(a,1)=0,则a=﹣2或3;③若f(1,b)≤m恒成立,则m的取值范围是m≥.其中正确个数为( )A.0B.1C.2D.3【考点】解一元一次不等式;有理数的混合运算.【专题】新定义;整式;运算能力.【分析】运用题目的定义运算对各语句进行逐一计算、辨别.【解答】解:∵f(a,0)=a2﹣a×0﹣6×02=a2,∴语句①判断正确;∵f(a,1)=a2﹣a×1﹣6×12=a2﹣a﹣6=0,解得a=﹣2或3,∴语句②判断正确;③∵f(1,b)=12﹣1×b﹣6×b2=1﹣b﹣6b2=﹣6(b2﹣+)++1=﹣6(b﹣)2+≤,∴若f(1,b)≤m恒成立,则m的取值范围是m≥∴语句③判断正确,故选:D.【点评】此题考查了整式定义新定义的运算能力,关键是能准确理解并运用该定义和整式的运算法则进行计算求解.9.(2022秋•零陵区期末)若关于x的不等式组有解,则m的取值范围是( )A.m≤4B.m<4C.m≥4D.m>4【考点】解一元一次不等式组.【专题】一元一次不等式(组)及应用;运算能力.【分析】先根据不等式的性质求出不等式的解集,再根据不等式组有解得出3﹣m<,再求出不等式的解集即可.【解答】解:,解不等式①,得x<3﹣m,解不等式②,得x>,∵关于x的不等式组有解,∴3﹣m>,解得:m>4,故选:D.【点评】本题考查了解一元一次不等式组和解一元一次不等式,能得出关于m的不等式是解此题的关键.10.(2023•沙坪坝区校级开学)若关于x的一元一次不等式组的所有整数解的和是﹣9,则m的取值范围是( )A.﹣2<m≤﹣1B.1<m<2C.﹣2<m<﹣1或1<m<2D.﹣2<m≤﹣1或1<m≤2【考点】一元一次不等式组的整数解;解一元一次不等式组.【专题】一元一次不等式(组)及应用;运算能力.【分析】解不等式组可得﹣4≤x<m,由所有整数解的和是﹣9,且﹣4﹣3﹣2=﹣9或﹣4﹣3﹣2﹣1+0+1=﹣9,即可得到答案.【解答】解:,解不等式①得x≥﹣4,解不等式②得x<m,∴﹣4≤x<m,∵所有整数解的和是﹣9,且﹣4﹣3﹣2=﹣9或﹣4﹣3﹣2﹣1+0+1=﹣9,∴﹣2<m≤﹣1或1<m≤2,故选:D.【点评】本题考查一元一次不等式的整数解,解题的关键是根据题意列出关于m的不等式.二、填空题(共8小题)11.(2022秋•隆回县期末)若不等式组的解集为1<x<3,则a= 2 .【考点】解一元一次不等式组.【专题】一元一次不等式(组)及应用;运算能力.【分析】分别求出每一个不等式的解集,根据不等式组的解集可得关于a的方程,解之即可.【解答】解:由6﹣2x>0得x<3,又1<x<3,∴a﹣1=1,解得a=2,故答案为:2.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.12.(2022秋•鄞州区期末)“a的一半与3的和小于2”用不等式表示为 a+3<2 .【考点】由实际问题抽象出一元一次不等式.【专题】一元一次不等式(组)及应用.【分析】根据题意,可以用含a的不等式表示“a的一半与3的和小于2”.【解答】解:“a的一半与3的和小于2”用不等式表示为:a+3<2,故答案为:a+3<2.【点评】本题考查由实际问题抽象出一元一次不等式,解答本题的关键是明确题意,写出相应的不等式.13.(2022秋•渌口区期末)x的2倍与1的差不小于3,列出不等式为 2x﹣1≥3 .【考点】由实际问题抽象出一元一次不等式.【专题】一元一次不等式(组)及应用;应用意识.【分析】根据x的2倍与1的差不小于3,列一元一次不等式即可.【解答】解:根据题意,得2x﹣1≥3,故答案为:2x﹣1≥3.【点评】本题考查了由实际问题抽象出一元一次不等式,理解题意是解题的关键.14.(2022秋•常德期末)关于x的不等式组有且只有三个整数解,求a的最大值是 5 .【考点】一元一次不等式组的整数解.【专题】一元一次不等式(组)及应用;运算能力.【分析】先解两个不等式得到x>1,x<a,由于不等式组有解,则1<x<a,由不等式组有且只有三个整数解,所以4<a≤5,然后即可得出答案.【解答】解:,解①得x>1,解②得,x<a,依题意得不等式组的解集为1<x<a,又∵此不等式组有且只有三个整数解,整数解只能是x=2,3,4,∴4<a≤5,∴a的最大值为5,故答案为:5.【点评】本题考查一元一次不等式组的整数解,正确理解题意是解题的关键.15.(2022秋•温州期末)“a的3倍与2的差小于9”用不等式表示为 3a﹣2<9 .【考点】由实际问题抽象出一元一次不等式.【专题】一元一次不等式(组)及应用;符号意识.【分析】先表示a的3倍,再表示“差”,最后由“<9”可得答案.【解答】解:“a的3倍与2的差小于9”用不等式表示为3a﹣2<9,故答案为:3a﹣2<9.【点评】本题主要考查由实际问题抽象出一元一次不等式,用不等式表示不等关系时,要抓住题目中的关键词,如“大于(小于)、不超过(不低于)、是正数(负数)”“至少”、“最多”等等,正确选择不等号.16.(2022秋•岳阳县期末)若关于x的一元一次不等式组的解集为,则ab= ﹣6 .【考点】解一元一次不等式组.【专题】一次方程(组)及应用;一元一次不等式(组)及应用;运算能力.【分析】根据不等式组的解集情况列方程求a,b的值,从而求解.【解答】解:关于x的一元一次不等式组的解集为:b﹣1≤x<,又∵该不等式组的解集为﹣3≤x<,∴b﹣1=﹣3,,解得:b=﹣2,a=3,∴ab=3×(﹣2)=﹣6,故答案为:﹣6.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.17.(2023•沙坪坝区校级开学)不等式的非负整数解共有 6 个.【考点】一元一次不等式的整数解.【专题】一元一次不等式(组)及应用;运算能力.【分析】不等式去分母.合并后,将x系数化为1求出解集,找出解集中的非负整数解即可.【解答】解:﹣5≤0,2x﹣1﹣10≤0,2x≤11,x≤.∴非负整数有0,1,2,3,4,5共6个,故答案为:6.【点评】此题考查了一元一次不等式的整数解,熟练掌握运算法则是解本题的关键.18.(2023•瑞安市校级开学)不等式组的解是 ﹣2<x≤2 .【考点】解一元一次不等式组.【专题】一元一次不等式(组)及应用;运算能力.【分析】解出每个不等式的解集,再找出公共解集即可.【解答】解:,解不等式①得:x≤2,解不等式②得:x>﹣2,∴不等式组的解集为﹣2<x≤2,故答案为:﹣2<x≤2.【点评】本题考查解不等式组,解题的关键是求出每个不等式的解集,能找出不等式的公共解集.三、解答题(共3小题)19.(2022秋•岳阳县期末)解不等式组,并把解集在数轴上表示出来.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【专题】一元一次不等式(组)及应用;运算能力.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:由5x+1≥3(x+1)得:x≥1,由x<8﹣x得:x<4,则不等式组的解集为1≤x<4,将不等式组的解集表示在数轴上如下:【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.20.(2023•桐乡市校级开学)解一元一次不等式组.【考点】解一元一次不等式组.【专题】一元一次不等式(组)及应用;运算能力.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:由3x﹣2>4x得:x<﹣2,由3﹣5x>3x﹣5得x<1,则不等式组的解集为x<﹣2.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21.(2022秋•宁波期末)为了响应习主席提出的“足球进校园”的号召,开设了“足球大课间活动”,某中学购买A种品牌的足球50个,B种品牌的足球25个,共花费4500元,已知B种品牌足球的单价比A种品牌足球的单价高30元.(1)求A、B两种品牌足球的单价各多少元?(2)根据需要,学校决定再次购进A、B两种品牌的足球50个,正逢体育用品商店“优惠促销”活动,A种品牌的足球单价优惠4元,B种品牌的足球单价打8折.如果此次学校购买A、B两种品牌足球的总费用不超过2750元,且购买B种品牌的足球不少于23个,则有几种购买方案?为了节约资金,学校应选择哪种方案?【考点】一元一次不等式组的应用;二元一次方程组的应用.【专题】一次方程(组)及应用;一元一次不等式(组)及应用;应用意识.【分析】(1)设A种品牌足球的单价是x元,B种品牌足球的单价是y元,根据“购买A 种品牌的足球50个,B种品牌的足球25个,共需4500元,B种品牌足球的单价比A种品牌足球的单价高30元”,可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设购买m个B种品牌的足球,则购买(50﹣m)个A种品牌的足球,根据“此次学校购买A、B两种品牌足球的总费用不超过2750元,且购买B种品牌的足球不少于23个”,可得出关于m的一元一次不等式组,解之即可得出m的取值范围,结合m为正整数,可得出共有3种购买方案,再分别求出各方案所需总费用,比较后即可得出结论.【解答】解:(1)设A种品牌足球的单价是x元,B种品牌足球的单价是y元,根据题意得:,解得:.答:A种品牌足球的单价是50元,B种品牌足球的单价是80元;(2)设购买m个B种品牌的足球,则购买(50﹣m)个A种品牌的足球,根据题意得:,解得:23≤m≤25,又∵m为正整数,∴m可以为23,24,25,∴共有3种购买方案,方案1:购买27个A种品牌的足球,23个B种品牌的足球,总费用为(50﹣4)×27+80×0.8×23=2714(元);方案2:购买26个A种品牌的足球,24个B种品牌的足球,总费用为(50﹣4)×26+80×0.8×24=2732(元);方案3:购买25个A种品牌的足球,25个B种品牌的足球,总费用为(50﹣4)×25+80×0.8×25=2750(元).∵2714<2732<2750,∴为了节约资金,学校应选择购买方案1.【点评】本题考查了二元一次方程组的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组.。
2023年九年级数学中考复习《不等式和不等式组》分类专题集训(一)不等式过关训练➢典例精讲1.如果关于x的不等式(a+2020)x﹣a>2020的解集为x<1,那么a的取值范围是()A.a>﹣2020B.a<﹣2020C.a>2020D.a<20202.已知关于x的不等式(a+3b)x>a﹣b的解集为x<﹣,则关于x的一元一次不等式bx﹣a>0的解集为.3.若关于x的不等式ax<﹣bx+b(a,b≠0)的解集为x>,则关于x的不等式ax>2bx+b的解集是.4.已知关于x的不等式3x﹣2a<4﹣5x有且仅有三个正整数解,则满足条件的整数a的个数是()A.3个B.4个C.5个D.6个5.若关于x的不等式7x+9>2x+a的负整数解为﹣2,﹣1,则a的取值范围是.➢课后训练1.已知关于x的不等式(2﹣a)x>3的解集为,则a的取值范围是()A.a>0B.a<0C.a>2D.a<22.若关于x的不等式(2m﹣n)x﹣m>5n的解集为x<,则关于x的不等式(m﹣n)x>m+n的解集为()A.x<B.x>C.x>5D.x<53.已知关于x的不等式3(a﹣b)x+a﹣5b>0的解集为x<1,则关于x的不等式ax≥4b的解集为.4.若关于x的不等式3x﹣m≤0的正整数解是1,2,3,则m的取值范围是()A.m≥9B.9<m<12C.m<12D.9≤m<125.若关于x的不等式2x﹣m≥0的负整数解为﹣1,﹣2.﹣3.则m的取值范围是.(二)不等式组过关训练➢典例精讲一、两同问题1.若关于x的不等式组的解集为x≥2,则m的取值范围是()A.m≥﹣2B.m≤2C.m<2D.m=22.若关于x的不等式组的解集是x<2,则a的取值范围是()A.a≥2B.a<﹣2C.a>2D.a≤2二、有解、无解问题3.若不等式组有解,则a的取值范围是()A.a≤B.a≤4C.1≤a≤4D.a≥4.若不等式组无解,则m的取值范围为()A.m≤8B.m<8C.m≥8D.m>8三、整数解问题5.关于x的不等式组的解中恰有4个整数解,则a的取值范围是()A.18≤a≤19B.18≤a<19C.18<a≤19D.18<a<196.关于x的不等式组有且只有4个整数解,则常数m的取值范围是.7.若关于x的不等式组的解集中至少有6个整数解,则正数a的最小值是()A.1B.2C.D.8.(2019•沙坪坝区校级二模)若数m使关于x的一元一次不等式组至多有4个整数解,则非负整数m的值之和是()A.6B.10C.15D.219.(2022•渝中区校级模拟)如果关于x的不等式组有且仅有2个奇数解,则符合条件的所有整数m的和是()A.15B.21C.28D.3610.已知关于x的不等式组的所有整数解的和为7,则a的取值范围是.➢课后训练一、两同问题1.不等式组的解集是x>3,则m的取值范围是()A.m>3B.m≥3C.m<3D.m≤32.若关于x的不等式组的解集是x≤a,则a的取值范围是()二、有解、无解问题3.若不等式组有解,则实数a的取值范围是()A.a<﹣36B.a≤﹣36C.a≥﹣36D.a>﹣364.若关于x的不等式组无解,则a的取值范围是.三、整数解问题5.若关于x的不等式组恰好只有2个整数解,则所有满足条件的整数a的值之和是()A.3B.4C.6D.16.关于x的不等式组恰有三个整数解,那么m的取值范围为()A.﹣1<m≤0B.﹣1≤m<0C.0≤m<1D.0<m≤17.关于x的不等式组的解集中至少有7个整数解,则整数a的最小值是()A.4B.3C.2D.18.(2022秋•沙坪坝区校级月考)若数m使关于x的一元一次不等式组至多5个整数解,则则整数m的最大值是()A.7B.8C.9D.109.(2022秋•渝中区校级月考)若数a使关于y的不等式组恰好有两个奇数解,则符合条件的所有整数a的和是()A.7B.8C.9D.1010.若关于x的不等式组的所有整数解的和是﹣7,则m的取值范围是.(三)方程与不等式组综合过关训练➢典例精讲1.(2020春•渝中区校级期末)关于x的方程3﹣2x=3(k﹣2)的解为非负整数,且关于x的不等式组无解,则符合条件的整数k的值的和为()A.5B.2C.4D.62.若数a使关于x的方程=﹣﹣1有非负数解,且关于y的不等式组恰好有两个偶数解,则符合条件的所有整数a的和是()A.﹣22B.﹣18C.11D.123.(2021秋•渝中区校级期末)整数a使得关于x,y的二元一次方程组的解为正整数(x,y均为正整数),且使得关于x的不等式组无解,则所有满足条件的a的和为()A.9B.16C.17D.304.如果关于x的不等式组的解集为x>4,且整数m使得关于x,y的二元一次方程组的解为整数(x,y均为整数),则符合条件的所有整数m的和是()A.﹣2B.2C.6D.10➢课后训练1.(2022秋•九龙坡区校级月考)若整数a使关于x的方程x+2a=1的解为负数,且使关于的不等式组无解,则所有满足条件的整数a的值之和是()A.5B.7C.9D.102.(2022秋•沙坪坝区校级期末)若关于x的一元一次不等式组的解集为x≥,且关于y 的方程3y﹣2=的解为非负整数,则符合条件的所有整数m的积为()A.2B.7C.11D.103.(2021春•沙坪坝区期末)关于x、y的方程组的解是正整数,且关于t的不等式组有解,则符合条件的整数m的值的和为.参考答案与试题解析➢典例精讲1.如果关于x的不等式(a+2020)x﹣a>2020的解集为x<1,那么a的取值范围是()A.a>﹣2020B.a<﹣2020C.a>2020D.a<2020【解答】解:∵不等式(a+2020)x﹣a>2020的解集为x<1,∴a+2020<0,解得,a<﹣2020,故选:B.2.已知关于x的不等式(a+3b)x>a﹣b的解集为x<﹣,则关于x的一元一次不等式bx﹣a>0的解集为x<﹣.【解答】解:∵不等式(a+3b)x>a﹣b的解集是x<﹣,∴a+3b<0,即a<﹣3b,∵,即8a=﹣12b,,∵a+3b<0,2a+3b=0,则a>0,b<0,∴bx﹣a>0的解集为x<﹣.故答案为:x<﹣.3.若关于x的不等式ax<﹣bx+b(a,b≠0)的解集为x>,则关于x的不等式ax>2bx+b的解集是x >﹣1.【解答】解:ax<﹣bx+b,(a+b)x<b,∵关于x的不等式ax<﹣bx+b(a,b≠0)的解集为x>,∴=,且a+b<0,∴a=b<0,∴ax>2bx+b变为﹣bx>b,∴x>﹣1,故答案为x>﹣1.4.已知关于x的不等式3x﹣2a<4﹣5x有且仅有三个正整数解,则满足条件的整数a的个数是()A.3个B.4个C.5个D.6个【解答】解:解不等式3x﹣2a<4﹣5x得:x<,∵关于x的不等式3x﹣2a<4﹣5x有且仅有三个正整数解,是1,2,3,∴3<≤4,解得:10<a≤14,∴整数a可以是11,12,13,14,共4个,故选:B.5.若关于x的不等式7x+9>2x+a的负整数解为﹣2,﹣1,则a的取值范围是﹣6≤a<﹣1.【解答】解:解不等式得:x>,∵负整数解是﹣1,﹣2,∴﹣3≤<﹣2.∴﹣6≤a<﹣1.故答案为:﹣6≤a<﹣1.➢课后训练1.已知关于x的不等式(2﹣a)x>3的解集为,则a的取值范围是()A.a>0B.a<0C.a>2D.a<2【解答】解:根据题意得:2﹣a<0,解得:a>2.故选:C.2.若关于x的不等式(2m﹣n)x﹣m>5n的解集为x<,则关于x的不等式(m﹣n)x>m+n的解集为()A.x<B.x>C.x>5D.x<5【解答】解:不等式(2m﹣n)x﹣m>5n,变形得:(2m﹣n)x>5n+m,根据已知解集为x<,得到=,且2m﹣n<0,即2m<n,整理得:4m+20n=26m﹣13n,即33n=22m,整理得:3n=2m,即m=1.5n,n<0,代入所求不等式得:0.5nx>2.5n,解得:x<5.故选:D.3.已知关于x的不等式3(a﹣b)x+a﹣5b>0的解集为x<1,则关于x的不等式ax≥4b的解集为x≤2.【解答】解:不等式移项得:3(a﹣b)x>5b﹣a,由不等式的解集为x<1,得到a﹣b<0,且=1,整理得:a<b,且4a=8b,即a=2b,∴a<0,则不等式ax≥4b变形得:x≤=2,故答案为:x≤2.4.若关于x的不等式3x﹣m≤0的正整数解是1,2,3,则m的取值范围是()A.m≥9B.9<m<12C.m<12D.9≤m<12【解答】解:移项,得:3x≤m,系数化为1,得:x≤,∵不等式的正整数解为1,2,3,∴3≤<4,解得:9≤m<12,故选:D.5.若关于x的不等式2x﹣m≥0的负整数解为﹣1,﹣2.﹣3.则m的取值范围是﹣8<m≤﹣6.【解答】解:∵2x﹣m≥0,∴2x≥m,∴x≥,∵不等式组的负整数解为﹣1,﹣2.﹣3,∴﹣4<≤﹣3,则﹣8<m≤﹣6,故答案为:﹣8<m≤﹣6.➢典例精讲一、两同问题1.若关于x的不等式组的解集为x≥2,则m的取值范围是()A.m≥﹣2B.m≤2C.m<2D.m=2【解答】解:,解x﹣m>0,得:x>m,解5﹣2x≤1,得:x≥2,∵不等式组的解集是x≥2,∴m<2,故选:C.2.若关于x的不等式组的解集是x<2,则a的取值范围是()A.a≥2B.a<﹣2C.a>2D.a≤2【解答】解:解不等式组,由①可得:x<2,由②可得:x<a,因为关于x的不等式组的解集是x<2,所以,a≥2,故选:A.二、有解、无解问题3.若不等式组有解,则a的取值范围是()A.a≤B.a≤4C.1≤a≤4D.a≥【解答】解:,解不等式①得:x≥1,解不等式②得:x≤4a,又∵不等式组有解,∴4a≥1,解得:a≥,故选:D.4.若不等式组无解,则m的取值范围为()A.m≤8B.m<8C.m≥8D.m>8【解答】解:解不等式<﹣1得:x>8,又∵不等式组无解,∴m≤8,故选:A.三、整数解问题5.关于x的不等式组的解中恰有4个整数解,则a的取值范围是()A.18≤a≤19B.18≤a<19C.18<a≤19D.18<a<19【解答】解:不等式组整理得:,解得:a﹣2<x<21,由不等式组恰有4个整数解,得到整数解为17,18,19,20,∴16≤a﹣2<17,解得:18≤a<19,故选:B.6.关于x的不等式组有且只有4个整数解,则常数m的取值范围是.【解答】解:,解不等式①得:x≥﹣1,解不等式②得:x<m+5,∴原不等式组的解集为﹣1≤x<m+5,由不等式组的整数解只有4个,得到整数解为﹣1,0,1,2,∴2<m+5≤3,∴﹣2<m≤﹣故答案为﹣2<m≤﹣.7.若关于x的不等式组的解集中至少有6个整数解,则正数a的最小值是()A.1B.2C.D.【解答】解:解不等式x﹣a≤0,得:x≤a,解不等式2x+3a≥0,得:x≥﹣a,则不等式组的解集为﹣a≤x≤a,∵不等式至少有6个整数解,则a+a≥5,解得a≥2.a的最小值是2.故选:B.8.(2019•沙坪坝区校级二模)若数m使关于x的一元一次不等式组至多有4个整数解,则非负整数m的值之和是()A.6B.10C.15D.21【解答】解:解不等式组,得﹣1<x≤,∵至多有4个整数解,<4,解得m<7;∴故满足条件的所有非负整数m的值之和为0+1+2+3+4+5+6=21,故选:D.9.(2019•渝中区校级模拟)如果关于x的不等式组有且仅有2个奇数解,则符合条件的所有整数m的和是()A.15B.21C.28D.36【解答】解:解不等式组,得:﹣<x<,∵不等式组有且仅有2个奇数解,∴-1<≤1,解得:0<m≤8,所以所有满足条件的整数m的值为1,2,3,4,5,6,7,8,和为36.故选:D.10.已知关于x的不等式组的所有整数解的和为7,则a的取值范围是7≤a<9或﹣3≤a<﹣1.【解答】解:,∵解不等式①得:x,解不等式②得:x≤4,∴不等式组的解集为<x≤4,∵关于x的不等式组的所有整数解的和为7,∴当时,这两个整数解一定是3和4,∴,∴7≤a<9,当时,整数解是﹣2,﹣1,0,1,3和4,∴﹣3,∴﹣3≤a<﹣1,∴a的取值范围是7≤a<9或﹣3≤a<﹣1.故答案为:7≤a<9或﹣3≤a<﹣1.➢课后训练一、两同问题1.不等式组的解集是x>3,则m的取值范围是()A.m>3B.m≥3C.m<3D.m≤3【解答】解:解不等式3(x+1)>12,得:x>3,∵不等式组的解集为x>3,∴m≤3,故选:D.2.若关于x的不等式组的解集是x≤a,则a的取值范围是()A.a≤2B.a>﹣2C.a<﹣2D.a≤﹣2【解答】解:解不等式﹣2x﹣1>3,得:x<﹣2,解不等式a﹣x≥0,得:x≤a,∵不等式组的解集为x≤a,∴a<﹣2,故选:C.二、有解、无解问题3.若不等式组有解,则实数a的取值范围是()A.a<﹣36B.a≤﹣36C.a≥﹣36D.a>﹣36【解答】解:不等式组整理得:,由不等式组有解,得到a﹣1>﹣37,解得:a>﹣36.故选:D.4.(2020春•陇西县期末)若关于x的不等式组无解,则a的取值范围是a≥﹣2.【解答】解:,解①得:x>a+3,解②得:x<1.根据题意得:a+3≥1,解得:a≥﹣2.故答案是:a≥﹣2.三、整数解问题5.若关于x的不等式组恰好只有2个整数解,则所有满足条件的整数a的值之和是()A.3B.4C.6D.1【解答】解:解不等式组得:<x<2,由关于x的不等式组恰好只有2个整数解,得﹣1≤<0,即0≤a<4,满足条件的整数a的值为0、1、2、3,整数a的值之和是0+1+2+3=6,故选:C.6.关于x的不等式组恰有三个整数解,那么m的取值范围为()A.﹣1<m≤0B.﹣1≤m<0C.0≤m<1D.0<m≤1【解答】解:,解不等式①可得x>m,解不等式②可得x≤3,由题意可知原不等式组有解,∴原不等式组的解集为m<x≤3,∵该不等式组恰好有三个整数解,∴整数解为1,2,3,∴0≤m<1.故选:C.7.关于x的不等式组的解集中至少有7个整数解,则整数a的最小值是()A.4B.3C.2D.1【解答】解:,解①得x≤2a,解②得x>﹣a.则不等式组的解集是﹣a<x≤2a.∵不等式至少有7个整数解,则2a+a>7,解得a>2.整数a的最小值是3.故选:B.8.(2019秋•沙坪坝区校级月考)若数m使关于x的一元一次不等式组至多5个整数解,则则整数m的最大值是()A.7B.8C.9D.10【解答】解:不等式组的解为,∵至多5个整数解,∴<5,∴m<,故选:B.9.(2020秋•渝中区校级月考)若数a使关于y的不等式组恰好有两个奇数解,则符合条件的所有整数a的和是()【解答】解:不等式组整理得:,解得:<y<4,由不等式组有解且恰好有两个奇数解,得到奇数解为3,1,∴﹣1≤<1,∴﹣3≤a<5,则满足题意a的值有﹣3,﹣2,﹣1,0,1,2,3,4,5四个,则符合条件的所有整数a的和是9.故选:C.10.若关于x的不等式组的所有整数解的和是﹣7,则m的取值范围是﹣3<m≤﹣2或2<m≤3.【解答】解:解不等式+3>﹣1,得:x>﹣4.5,∵不等式组的整数解的和为﹣7,∴不等式组的整数解为﹣4、﹣3或﹣4、﹣3、﹣2、﹣1、0、1、2,则﹣3<m≤﹣2或2<m≤3,故答案为:﹣3<m≤﹣2或2<m≤3.➢典例精讲方程与不等式综合含参问题1.(2020春•渝中区校级期末)关于x的方程3﹣2x=3(k﹣2)的解为非负整数,且关于x的不等式组无解,则符合条件的整数k的值的和为()A.5B.2C.4D.6【解答】解:解方程3﹣2x=3(k﹣2)得x=,∵方程的解为非负整数,∴≥0,即k≤3,即非负整数k=1,3,不等式组整理得:,由不等式组无解,得到k>﹣1,∴﹣1<k≤3,即整数k=0,1,2,3,当k=0时,x=4.5,不是整数;当x=2时,k=1.5,不是整数,两个k的值不符合题意,舍去;综上,k=1,3,则符合条件的整数k的值的和为4.故选:C.2.若数a使关于x的方程=﹣﹣1有非负数解,且关于y的不等式组恰好有两个偶数解,则符合条件的所有整数a的和是()【解答】解:去分母得:3ax+3=﹣14x﹣6,解得:x=﹣,∵关于x的方程=﹣﹣1有非负数解,∴3a+14<0,∴a<﹣,不等式组整理得:,解得:<y<4,由不等式组有解且恰好有两个偶数解,得到偶数解为2,0,∴﹣2≤<﹣1,∴﹣7≤a<﹣3,则满足题意a的值有﹣7,﹣6,﹣5,则符合条件的所有整数a的和是﹣18.故选:B.3.(2019秋•渝中区校级期末)整数a使得关于x,y的二元一次方程组的解为正整数(x,y均为正整数),且使得关于x的不等式组无解,则所有满足条件的a的和为()A.9B.16C.17D.30【解答】解:解方程组得:,∵方程组的解为正整数,∴a﹣3=1或a﹣3=2或a﹣3=5或a﹣3=10,解得a=4或a=5或a=8或a=13;解不等式(2x+8)≥7,得:x≥10,解不等式x﹣a<2,得:x<a+2,∵不等式组无解,∴a+2≤10,即a≤8,综上,符合条件的a的值为4、5、8,则所有满足条件的a的和为17,故选:C.4.如果关于x的不等式组的解集为x>4,且整数m使得关于x,y的二元一次方程组的解为整数(x,y均为整数),则符合条件的所有整数m的和是()A.﹣2B.2C.6D.10【解答】解:解不等式>0,得:x>m,解不等式﹣x<﹣4,得:x>4,∵不等式组的解集为x>4,∴m≤4,解方程组得,∵x,y均为整数,∴m=4或m=10或m=2或m=﹣4,又m≤4,∴m=﹣4或m=4或m=2,则符合条件的所有整数m的和是2,故选:B.➢课后训练1.(2019秋•九龙坡区校级月考)若整数a使关于x的方程x+2a=1的解为负数,且使关于的不等式组无解,则所有满足条件的整数a的值之和是()A.5B.7C.9D.10【解答】解:解方程x+2a=1得:x=1﹣2a,∵方程的解为负数,∴1﹣2a<0,解得:a>0.5,∵解不等式①得:x<a,解不等式②得:x≥4,又∵不等式组无解,∴a≤4,∴a的取值范围是0.5<a≤4,∴整数和为1+2+3+4=10,故选:D.2.(2020秋•沙坪坝区校级期末)若关于x的一元一次不等式组的解集为x≥,且关于y 的方程3y﹣2=的解为非负整数,则符合条件的所有整数m的积为()A.2B.7C.11D.10【解答】解:解不等式≤2x,得:x≥,解不等式2x+7≤4(x+1),得:x≥,∵不等式组的解集为x≥,∴≤,解得m≤5,解方程3y﹣2=,得:y=,∵方程的解为非负整数,∴符合m≤5的m的值为2和5,则符合条件的所有整数m的积为10,故选:D.3.(2019春•沙坪坝区期末)关于x、y的方程组的解是正整数,且关于t的不等式组有解,则符合条件的整数m的值的和为5.【解答】解:,①﹣②得:3y=7﹣m,解得:y=,把y=代入①得:x=,由方程组的解为正整数,得到7﹣m与8+m都为3的倍数,∴m=1,4,不等式组整理得:,即﹣1≤t≤m,由不等式组有解,得到m=1,4,综上,符合条件的整数m的值的和为1+4=5.故答案为:5.。