(3)(–3a+b)2=9a2–6ab+b2.
探究新知
素养考点 2 利用完全平方公式进行简便计算
例2 运用完全平方公式计算:
(1) 1022;
(2) 992.
解: 1022 = (100+2)2 =10000+400+4 =10404.
992 = (100 –1)2 =10000 –200+1
=9801.
(1) 说一说积的次数和项数. (2) 两个完全平方式的积有相同的项吗?与a,b有什么关系? (3) 两个完全平方式的积中不同的是哪一项?与a, b有什么 关系?它的符号与什么有关?
探究新知 公式特征: 积为二次三项式; 积中两项为两数的平方和; 另一项是两数积的2倍,且与两数中间的符号相同. 公式中的字母a,b可以表示数、单项式和多项式.
方法总结:当一个数具备与整十、整百⋯ ⋯相差一个正整数时 求它的平方,我们可以通过变形运用完全平方公式进行运算较
简便.
巩固练习
利用乘法公式计算:
(1)982–101×99;
(2)20162–2016×4030+20152.
解:(1)原式=(100–2)2–(100+1)(100–1) =1002–400+4–1002+1=–395;
人教版 数学 八年级 上册
14.2 乘法公式
14.2.2 完全平方公式
导入新知
现有如图所示的三种规格的硬纸片各若干张,请你根据 二次三项式a2+2ab+b2,选取相应种类和数量的硬纸片,
拼出一个正方形,并探究所拼出的正方形的代数意义.
素养目标
3. 体验归纳添括号法则. 2. 灵活应用完全平方公式进行计算. 1. 理解并掌握完全平方公式的推导过程、 结构特点、几何解释.