【6A文】轴对称知识点总结及专项练习
- 格式:docx
- 大小:178.86 KB
- 文档页数:5
第一章轴对称图形轴对称与轴对称图形轴对称的性质线段轴对称图角轴对称图形等腰三角形等腰梯形第一节一、1.轴对称定义:把一个图形沿一条直线这段,如果它能够和另一个图形重合,那么这两个图形关于这条直线对称,也称这两个图形轴对称。
这条直线称为对称轴(对称轴是一条直线,不是射线或线段),两个图形的对应点(即沿对称轴对折后,能够重合的点)叫做对称点。
2. 轴对称图形定义:把一个图形沿着某一条直线折叠,如果直线两旁的部分能够互相重合,那么称这个图形是轴对称图形3. 轴对称与轴对称图形的区别:(1)轴对称是两个图形的位置关系,轴对称图形是一个具有特殊形状的图形(2)轴对称涉及两个图形,轴对称是一个图形轴对称与轴对称图形的联系:(1)定义中都有一条直线,沿这条直线折叠重合。
(2)轴对称图形一定成轴对称,成轴对称的不一定是轴对称图形。
注意:轴对称图形的对称轴有的只有一条,有的存在多条例1.下列图形中对称轴最多的是()A. 丁香花形B. 带饰上的花纹C. 古币D. 雪花例2、如图,下列图案是我国几家银行的标志,其中是轴对称图形的有()A.1个B.2个C.3个D.4个例3.剪纸是中国的民间艺术.剪纸方法很多,下面是一种剪纸方法的图示(先将纸折叠,然后再剪,展开即得到图案):下面四个图案中,不能用上述方法剪出的是( )二、轴对称的性质:1.(1)线段垂直平分线:垂直并且平分一条线段的直线(线段垂直平分线是到线段两端距离相等的点的集合,即①经过线段的中点②垂直于线段,两者缺一不可。
)(2)作线段AB的垂直平分线:①分别以A、B为圆心,大于AB21的长为半径画弧,两弧相交于点C、D②过C、D两点作直线③直线CD就是线段AB的垂直平分线2.性质:①成中轴对称的两个图形全等;②如果两个图形成轴对称,那么对称轴是对称点连线的垂直平分线。
3. 画轴对称图形:先确定对称轴,然后找出对称点(画线段、三角形的轴对称图形关键在于找到对称点,再把这些对称点顺次连接)例如图,已知:ΔABC和直线l,请作出ΔABC关于直线l的对称三角形。
轴对称1.1轴对称图形如果一个图形沿某一条直线折叠,直线两旁的部分能够互相重合,•这个图形就叫做轴对称图形,这条直线就是它的对称轴.(有的轴对称图形的对称轴不止一条,如圆就有无数条对称轴。
)轴对称有一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,•那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.两个图形关于直线对称也叫做轴对称.图形轴对称的性质性质1:若两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线;注:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫线段的中垂线.性质1的证明如下:如图所示,△ABC与△关于l对称,其中点A、是对称点,设交对称轴于点P.证明:将△ABC和△沿l折叠后,点A与重合,则有,∠1=∠2=90°,即对称轴把垂直平分,同样也能把、都垂直平分,于是得出性质1.性质2:轴对称图形的对称轴也是任何一对对应点所连线段的垂直平分线.证明类似性质1.轴对称与轴对称图形的区别轴对称是指两个图形之间的形状与位置关系,•成轴对称的两个图形是全等形,且有特殊位置关系;轴对称图形是一个具有特殊形状的图形,把一个轴对称图形沿对称轴分成两个图形,这两个图形是全等形,并且成轴对称.如图所示:1.2线段的垂直平分线性质1:线段垂直平分线上的点到线段两端点的距离相等证明:如图所示,l是线段AB的垂直平分线,P为l上任意一点,求证性质1.性质2:与一条线段两个端点距离相等的点在这条线段的垂直平分线上.证明:如图所示,P在线段AB上方,且PA=PB,求证P在线段AB的垂直平分线上。
以上两点性质可得出:线段的垂直平分线可看作是与线段两个端点距离相等的所有点的集合.1.3 轴对称变换由一个平面图形得到它的轴对称图形叫做轴对称变换.•成轴对称的两个图形中的任何一个可以看着由另一个图形经过轴对称变换后得到.对称轴的作法若两个图形成轴对称,其对称轴就是任何一对对应点所连线段的垂直平分线.因此只要找到一对对应点,再作出连接它们的线段的垂直平分线就可以得到这两个图形的对称轴.轴对称图形的对称轴作法相同.例如:A、B两点关于某直线对称,连接AB,作线段AB的垂直平分线就是A、B两点的对称轴,作法如下:(1)分别以点A、B为圆心,以大于1/2AB的长为半径作弧(若两弧半径小于或等于1/2AB,则两弧没有交点或切于一点),两弧交于C、D两点;(2)连CD,得直线CD,直线CD即为所求.如图所示:说明:作对称轴的方法也就是作线段垂直平分线的方法.用此方法把线段平分.轴对称变换将一个图形进行轴对称变换(作一个图形关于某直线的对称图形).关键是作某些点(关键点)关于这条直线的对称点.如:作点A关于直线l的对称点.先作AO⊥l于O;再延长AO至使,则就是A关于l的对称点,如下图所示:主要有两步:第一步,过已知点作对称轴的垂线,得到一个垂线段;第二步,将这个垂线段延长一倍所到达的点就是已知点关于这条直线(对称轴)的对称点.轴对称变换的性质(1)经过轴对称变换得到的图形与原图形的形状、大小完全一样(2)•经过轴对称变换得到的图形上的每一点都是原图形上的某一点关于对称轴的对称点.(3)连接任意一对对应点的线段被对称轴垂直平分..关于坐标轴对称点P(x,y)关于x轴对称的点的坐标是(x,-y)点P(x,y)关于y轴对称的点的坐标是(-x,y)关于原点对称点P(x,y)关于原点对称的点的坐标是(-x,-y)关于坐标轴夹角平分线对称点P(x,y)关于第一、三象限坐标轴夹角平分线y=x对称的点的坐标是(y,x)点P(x,y)关于第二、四象限坐标轴夹角平分线y=-x对称的点的坐标是(-y,-x)关于平行于坐标轴的直线对称点P(x,y)关于直线x=m对称的点的坐标是(2m-x,y);点P(x,y)关于直线y=n对称的点的坐标是(x,2n-y);1.4 等腰三角形有两条边相等的三角形是等腰三角形.相等的两条边叫做腰,另一条边叫做底边.两腰所夹的角叫做顶角,腰与底边的夹角叫做底角.等腰三角形的性质性质1:等腰三角形的两个底角相等(简写成“等边对等角”)性质2:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合.(简称“三线合一”).在△PAB中,PA=PB,PC⊥AB交于C,求证∠A=∠B且PC为顶角平分线、底边上的中线。
轴对称(复习一讲义)课前预习1.剪纸艺术源远流长,是中华民族智慧的结晶,为我们的生活添加了别样的色彩.请欣赏以下美丽的剪纸图片,你发现它们有什么共同的特点?2.做一做,想一想在纸上画一条线段AB,并将线段对折,思考:(1)折痕两边的线段________(填“相等”或“不相等”);(2)折痕与线段AB____________(填“垂直”或“不垂直”);(3)在折痕上任找一点P,并连接AP,BP,沿着折痕对折,可发现AP_____BP(填“>”,“<”或“=”).3.如图,OP平分∠AOB,PM⊥OA于点M,PN⊥OB于点N,若PM=4 cm,则PN=______cm.PNMBOA知识点睛1.如果把一个图形沿一条直线折叠后能够与另一个图形完全重合,则称这两个图形__________,这条直线叫做_________.2.如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做__________,这条直线叫做_______.3.在轴对称图形或两个成轴对称的图形中,对应点所连的线段被对称轴___________,对应线段________,对应角________.4.垂直平分线性质定理:___________________________________________________.5.角平分线性质定理:___________________________________________________.精讲精练1. 如图,在10×10的正方形网格中作图:作出△ABC 关于直线l 的对称图形△A 1B 1C 1.lC BA2.3. 下列四个图案中,是轴对称图形的有( )A .1个B .2个C .3个D .4个4. 如图是用笔尖扎重叠的纸得到的成轴对称的两个图形,则AB 的对应线段是_________,EF 的对应线段是_________,∠A 的对应角是______.连接CE 交l 于点O ,则_____⊥_____,且________=________.lB D F HGE OCA A EB D C第4题图 第5题图5. 如图,裁剪师傅将一块长方形布料ABCD 沿着AE 折叠,使点D 落在BC 边上的点F处.若∠BAF =60°,则∠AEF =_____.6. 如图,先将正方形纸片ABCD 对折,折痕为MN ,再把点B 折叠到折痕MN 上,折痕为AE ,点B 在MN 上的对应点为H ,沿AH 和DH 剪下,这样得到的△ADH 中( ) A .AD DH AH ≠= B .AD DH AH == C .DH AD AH ≠=D .AD DH AH ≠≠HN M ED CAA EBDC第6题图 第7题图7. 已知:如图,在△ABC 中,∠C =90°,AB 的垂直平分线DE 交BC 于点D ,连接AD .若AC =4 cm ,BC =8 cm ,则△ADC 的周长为__________.8. 已知:如图,在△ABC 中,DF ,EG 分别是AB ,AC 的垂直平分线,且△ADE 的周长为32 cm ,则BC =__________.A GEDBF CP DNOMCA B第8题图第9题图9. 已知:如图,点P 关于OA ,OB 的对称点分别为C ,D ,连接CD ,交OA 于点M ,交OB 于点N .若△PMN 的周长为8,则CD 的长为_________.10. 如图,MD ,ME 分别为△ABC 的边AB ,BC 的垂直平分线,若MA =3,求MC 的长度.MBC DE11. 如图,OP 平分∠MON ,P A ⊥ON 于点A ,点Q 是射线OM 上的一个动点,若P A =3,则PQ 的最小值是____________.QP MNAOE DC第11题图 第12题图 第13题12. 已知:如图,在Rt △ABC 中,∠ACB =90°,BD 是∠ABC 的平分线,DE ⊥AB 于E ,若CD =3 cm ,AB =10 cm ,则△ABD 的面积为_________.13. 已知:如图,在△ABC 中,AD 是∠BAC 的平分线,AB =3 cm ,AC =2 cm ,则S △ABD :S△ACD=_________.14. 已知:如图,在四边形ABCD 中,∠B =∠C =90°,DM 平分∠ADC ,AM 平分∠DAB .求证:MB =MC .ABCD MABCD【参考答案】课前预习1.都是左右两边对称的图形2.(1)相等(2)垂直(3)=3. 4知识点睛1.成轴对称,对称轴2.轴对称图形,对称轴3.垂直平分,相等,相等4.线段垂直平分线上的点到这条线段两个端点的距离相等5.角平分线上的点到这个角的两边的距离相等精讲精练1.作图略2.作图略3. C4.GH,CD,∠GCE,l;OC,OE5.75°6. B7.12cm8.32cm9.810.MC=3提示:连接ME,由垂直平分线定理可得结论11. 312.15cm213.3:214.证明略提示:过点M作ME⊥AD于点E,由角平分线定理可得结论轴对称(复习二习题)例题示范例1:已知:如图,AE 平分∠FAC ,EF ⊥AF ,EG ⊥AC ,垂足分别为点F ,G ,DE 是BC 的垂直平分线. 求证:BF =CG .【思路分析】 读题标注:① 从条件出发,看到角平分线考虑“角平分线上的点到角两边的距离相等”,结合题目其他条件,EF ⊥AF ,EG ⊥AC ,可得EF =EG ;② 看到垂直平分线考虑“垂直平分线上的点到线段两端点的距离相等”,因此连接BE ,CE(如图所示),得到BE =CE ;③ 题目所求为BF =CG ,证明△BEF ≌△CEG 即可. 【过程书写】证明:如图,连接BE ,CE ∵AE 平分∠FAC ,EF ⊥AF ,EG ⊥AC ∴EF =EG∵DE 是BC 的垂直平分线 ∴BE =CE∵EF ⊥AF ,EG ⊥AC ∴∠BFE =∠CGE =90° 在Rt △BEF 和Rt △CEG 中BE CE EF EG =⎧⎨=⎩(已证)(已证)∴Rt △BEF ≌Rt △CEG (HL ) ∴BF =CG (全等三角形对应边相等)GFDCB A巩固练习1.下列是轴对称图形的是()A.B.C.D.2.一个风筝的设计图如图所示,其主体部分(四边形ABCD)关于线段BD所在的直线对称,AC与BD相交于点O,且AB≠AD,则下列判断错误的是()A.△ABD≌△CBDB.△ABC≌△ADCC.△AOB≌△COBD.△AOD≌△COD3.已知:如图,在Rt△ABC中,∠C=90°,点E在AC边上,将△ABC沿BE折叠,点C恰好落在AB边上的点D处.若∠A=30°,则∠BED=_______.C EDBODC BA第3题图第4题图4.已知:如图,∠AOB=40°,若CD是OA的垂直平分线,则∠ACB=__________.5.如图,在Rt△ABC中,∠C=90°.BD平分∠ABC,交AC于点D,DE垂直平分AB,垂足为点E.若DE+BD=3cm,则AC=__________cm.EDCBA6.已知:如图,在△ABC中,AB=AC,DE垂直平分AB,交AC于点E,垂足为点D.若BE+CE=12,BC=8,则△ABC的周长为___________.O DBAEDCA7. 作图题:利用网格线,作出△ABC 关于直线DE 对称的图形△A 1B 1C 1.EC BAD8. 已知:如图,P 为∠ABC 内一点,请在AB ,BC 边上各取一点M ,N ,使△PMN 的周长最小.9. 已知:如图,CD 垂直平分线段AB ,E 是CD 上一点,分别连接AC ,BC ,AE ,BE .求证:∠CAE =∠CBE .ED C10. 已知:如图,在△ABC 中,∠ABC 的平分线与∠ACB 的平分线相交于点O .OD ⊥AB ,OE ⊥AC ,垂足分别为点D ,E . 求证:OD =OE .OE DA11.已知:如图,在锐角三角形ABC中,AD,CE分别是BC,AB边上的高,垂足分别为点D,E,AD与CE相交于点O,连接OB,∠OBC=∠OBA.求证:OA=OC.O E DCBA思考小结1.轴对称的思考层次:①全等变换:对应边__________、对应角__________.②对应点:对应点所连线段被对称轴_________________;对称轴上的点到对应点的距离_____________.③应用:奶站问题等.如图,在直线l上找一点P,使得在直线同侧的点A,B到点P的距离之和AP+BP 最小.BAl【参考答案】巩固练习1. B2. B3.60°4.80°5. 36.327.作图略8.作点P关于BA的对称点O1,作点P关于BC的对称点O2,连接O1O2,分别交BA,BC于点M,N,此时△PMN的周长最小.9.证明略提示:利用线段垂直平分线上的点到这条线段两个端点的距离相等,得出AC=BC,AE=BE,再证明△CAE≌△CBE10.证明略提示:过点O作OF⊥BC于点F,角平分线上的点到角两边的距离相等可得结论11.证明略提示:利用角平分线上的点到这个角的两边的距离相等,得出OD=OE,再证明△COD ≌△AOE思考小结1.①相等、相等②垂直平分;相等④作点A关于街道的对称点A1,连接A1B交街道于点P,则点P即为满足条件的点轴对称(复习三随堂测试)1. 如图,在△ABC 中,AB =AC ,AB 的垂直平分线DE 交AC 于点E ,若△ABC 和△EBC 的周长分别为60 cm 和38 cm ,则△ABC 的腰长为____________,底边长为____________.2. 如图,在△ABC 中,AD 是∠BAC 的平分线,点E ,F 分别在AB ,AC 边上,且∠DEA +∠DF A =180°.求证:DE =DF .【思路分析】(1)读题标注:(2)梳理思路:①从条件出发:看到角平分线考虑角平分线上的点到角两边的距离相等,可作________________,________________,可得②题目所求为DE =DF ,证明____________________【过程书写】 证明:如图,【参考答案】1.22cm,16cm2.思路分析:①DM⊥AB于点M,DN⊥AC于点N,DM=DN过程书写略。
轴对称知识点及习题轴对称知识要点1轴对称图形与轴对称轴对称知识点及习题轴对称知识点及习题叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线(成轴)对称,这条直线叫做对称轴.2. 轴对称的性质如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.3•线段的垂直平分线的性质和判定性质:线段垂直平分线上的点与这条线段两个端点的距离相等.判定:与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.4.关于x轴、y轴对称的点的坐标的特点点(x,y)关于x轴对称的点的坐标为(x,- y);点(x,y)关于y轴对称的点的坐标为(一x,y);温馨提示1. 轴对称图形是针对一个图形而言,是指一个具有对称的性质的图形;轴对称是针对两个图形而言,它描述的是两个图形的一种位置关系.2•在平面直角坐标系中,关于x轴对称的两个图形的对应点的横坐标相同,纵坐标互为相反数;关于y轴对称的两个图形的对应点的横坐标互为相反数,纵坐标相同.等腰三角形知识要点1. 等腰三角形的性质性质1等腰三角形的两个底角相等(简写成“等边对等角”);性质2:等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合(简写成“三线合一”).2. 等腰三角形的判定方法如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”).3. 等边三角形的性质和判定方法性质:等边三角形的三个内角都相等,并且每一个角都等于60 ° .判定方法1:三个角都相等的三角形是等边三角形.判定方法2 :有一个角是60°的等腰三角形是等边三角形.4. 直角三角形的性质在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.温馨提示1. “等边对等角”和“等角对等边”只限于在同一个三角形中,在两个三角形中时,上述结论不一定成立.2. 在应用直角三角形的性质时应注意以下两点:(1)必须是在直角三角形中;(2)必须有一个锐角等于30°. 方法技巧1. 等腰三角形的性质是证明两个角相等的重要方法,当要证明同一个三角形的两个内角相等时,可尝试用“等边对等角”.2. 等腰三角形的判定是证明线段相等的一个重要方法,当要证明位于同一个三角形的两条线段相等时,可尝试用“等角对等边”.3. 利用轴对称可以解决几何中的最值问题,本方法的实质是依据轴对称的性质以及两点之间线段最短和三角形两边之和大于第三边.13.1轴对称13.2画轴对称图形专题一轴对称图形2 .众所周知,几何图形中有许多轴对称图形 ,写出一个你最喜欢的轴对称图形是: __________________________ .(答 案不唯一)们成为轴对称图形.6•如图,△ ABC 和厶A B 'C 关于直线 m 对称. ( 1 )结合图形指岀对称点.(2) 连接A 、A '直线m 与线段AA 有什么关系?(3) 延长线段 AC 与A 'C ;它们的交点与直线 m 有怎样的关系?其他对应线段(或其延长线)的交点呢?你发现了什么规律,请叙述出来与同伴交流.3.如图,阴影部分是由5个小正方形组成的一个直角图形 ,请用两种方法分别在下图方格内涂黑两个小正方形 ,使它 芳法二专题二轴对称的性质4. 如图,△ ABC 和厶ADE 关于直线 与DE 的延长线的交点一定落在直线ABC ◎△ ADE :②I 垂直平分 DB ;③/ C= / E ;④BC5 •如图,/ A=90 °,E 为BC 上一点,A 点和E 点关于 BD 对称,B 点、C 点关于DE 对称,求/ ABC 和/ C 的度数. 1.【2012 •连云港】 下列图案是轴对称图形的是()I 对称,下列结论:①DC . 2个D . 3个专题三灵活运用线段垂直平分线的性质和判定解决问题7.如图,在Rt△ ABC中,/ACB=90° ,AB的垂直平分线DE交于BC的延长线于F,若/ F=30 °,DE=1,贝U EF的长是 ( )A. 3B. 2C.D. 1&如图,在厶ABC中,BC=8,AB的垂直平分线交BC于D,AC的垂直平分线交BC与E,则厶ADE的周长等于9. 如图,AD丄BC,BD=DC,点C在AE的垂直平分线上,那么线段AB、BD、DE之间有什么数量关系?并加以证明.专题四利用关于坐标轴对称点的坐标的特点求字母的取值范围10. 已知点P (- 2,3)关于y轴的对称点为Q( a,b),则a+b的值是( )A . 1B . - 1C . 5D . - 511. 已知P l点关于X轴的对称点P2 (3-2a,2a- 5)是第三象限内的整点(横、纵坐标都为整数的点,称为整点)则P1点的坐标是____________ .13.3等腰三角形13.4课题学习最短路径问题专题一等腰三角形的性质和判定的综合应用1.如图在△ ABC中,BF、CF是角平分线,DE // BC,分别交AB、AC于点D、E,DE经过点F.结论:①厶BDF和△ CEF都是等腰三角形;② DE=BD+CE ; ③厶ADE的周长=AB+AC :④BF=CF .其中正确的是__________________ .(填序号)3. 如图,已知△ ABC是等腰直角三角形,/BAC=90° ,BE是/ ABC的平分线,DE丄BC,垂足为D .(1)请你写出图中所有的等腰三角形;(2)请你判断AD与BE垂直吗?并说明理由.(3)如果BC=10,求AB+AE的长.专题二等边三角形的性质和判定4. _______________________________________________________ 如图,在等边△ ABC中,AC=9,点O在AC上,且AO=3,点P是AB上一动点,连接OP,以O为圆心,OP长为半径画弧交BC于点D,连接PD,如果PO=PD,那么AP的长是.5. 如图.在等边△ ABC中,/ABC与/ ACB的平分线相交于点O,且OD // AB,OE // AC .(1)试判定△ ODE的形状,并说明你的理由;(2)线段BD、DE、EC三者有什么关系?写出你的判断过程.专题三最短路径问题 7.如图,A 、B 两点分别表示两幢大楼所在的位置,直线a 表示输水总管道,直线b 表示输煤气总管道.现要在这两根总管道上分别设一个连接点,安装分管道将水和煤气输送到 A 、B 两幢大楼,要求使铺设至两幢大楼的输水分管道和输煤气分管道的用料最短.图中,点A'是点A 关于直线b 的对称点,A '盼别交b 、a 于点C 、D ;点B'是点B 关于直线a 的对称点,B 'A 分别交b 、a 于点E 、F .则符合要求的输水和输煤气分管道的连接点依次是( )A . F 和 CB . &如图,现准备在一条公路旁修建一个仓储基地两个超市的距离之和最小?(保留作图痕迹及简要说明)B 两个超市配货,那么这个基地建在什么位置,能使它到6. 如图,△ ABC 中,AB=BC=AC=12 cm,现有两点 M 、N 分别从点 A 、点 的速度为1 cm/s,点N 的速度为2 cm/s .当点N 第一次到达 B 点时,M 、N (1) 点M 、N 运动几秒后,M 、N 两点重合?(2) 点M 、N 运动几秒后,可得到等边三角形 △ AMN ?(3) 当点M 、N 在BC 边上运动时,能否得到以MN 为底边的等腰三角形 时间.B 同时出发,沿三角形的边运动,已知点M 同时停止运动. AMN ?如存在,请求出此时 M 、N 运动的,分别给A 、。
轴对称知识点及习题集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-第十三章轴对称轴对称知识要点1.轴对称图形与轴对称轴对称图形:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形.这条直线是它的对称轴.轴对称:把一个平面图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线(成轴)对称,这条直线叫做对称轴.2.轴对称的性质如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.3.线段的垂直平分线的性质和判定性质:线段垂直平分线上的点与这条线段两个端点的距离相等.判定:与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.4.关于x轴、y轴对称的点的坐标的特点点(x,y)关于x轴对称的点的坐标为(x,-y);点(x,y)关于y轴对称的点的坐标为(-x,y);温馨提示1.轴对称图形是针对一个图形而言,是指一个具有对称的性质的图形;轴对称是针对两个图形而言,它描述的是两个图形的一种位置关系.2.在平面直角坐标系中,关于x轴对称的两个图形的对应点的横坐标相同,纵坐标互为相反数;关于y轴对称的两个图形的对应点的横坐标互为相反数,纵坐标相同.等腰三角形知识要点1.等腰三角形的性质性质1:等腰三角形的两个底角相等(简写成“等边对等角”);性质2:等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合(简写成“三线合一”).2.等腰三角形的判定方法如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”).3.等边三角形的性质和判定方法性质:等边三角形的三个内角都相等,并且每一个角都等于60°.判定方法1:三个角都相等的三角形是等边三角形.判定方法2:有一个角是60°的等腰三角形是等边三角形.4.直角三角形的性质在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.温馨提示1.“等边对等角”和“等角对等边”只限于在同一个三角形中,在两个三角形中时,上述结论不一定成立.2.在应用直角三角形的性质时应注意以下两点:(1)必须是在直角三角形中;(2)必须有一个锐角等于30°.方法技巧1.等腰三角形的性质是证明两个角相等的重要方法,当要证明同一个三角形的两个内角相等时,可尝试用“等边对等角”.2.等腰三角形的判定是证明线段相等的一个重要方法,当要证明位于同一个三角形的两条线段相等时,可尝试用“等角对等边”.3.利用轴对称可以解决几何中的最值问题,本方法的实质是依据轴对称的性质以及两点之间线段最短和三角形两边之和大于第三边.13.1轴对称13.2画轴对称图形专题一轴对称图形1.【2012·连云港】下列图案是轴对称图形的是()2.众所周知,几何图形中有许多轴对称图形,写出一个你最喜欢的轴对称图形是:______________________.(答案不唯一)3.如图,阴影部分是由5个小正方形组成的一个直角图形,请用两种方法分别在下图方格内涂黑两个小正方形,使它们成为轴对称图形.专题二轴对称的性质4.如图,△ABC和△ADE关于直线l对称,下列结论:①△ABC≌△ADE;②l垂直平分DB;③∠C=∠E;④BC与DE的延长线的交点一定落在直线l上.其中错误的有()A.0个 B.1个 C.2个 D.3个5.如图,∠A=90°,E为BC上一点,A点和E点关于BD对称,B点、C点关于DE对称,求∠ABC和∠C的度数.6.如图,△ABC和△A′B′C′关于直线m对称.(1)结合图形指出对称点.(2)连接A、A′,直线m与线段AA′有什么关系?(3)延长线段AC与A′C′,它们的交点与直线m有怎样的关系?其他对应线段(或其延长线)的交点呢?你发现了什么规律,请叙述出来与同伴交流.专题三灵活运用线段垂直平分线的性质和判定解决问题7.如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交于BC的延长线于F,若∠F=30°,DE=1,则EF的长是()A.3 B.2 C D.18.如图,在△ABC中,BC=8,AB的垂直平分线交BC于D,AC的垂直平分线交BC与E,则△ADE的周长等于________.9.如图,AD⊥BC,BD=DC,点C在AE的垂直平分线上,那么线段AB、BD、DE之间有什么数量关系?并加以证明.专题四利用关于坐标轴对称点的坐标的特点求字母的取值范围10.已知点P(-2,3)关于y轴的对称点为Q(a,b),则a+b的值是()A.1 B.-1 C.5 D.-511.已知P1点关于x轴的对称点P2(3-2a,2a-5)是第三象限内的整点(横、纵坐标都为整数的点,称为整点),则P1点的坐标是__________.13.3等腰三角形13.4课题学习最短路径问题专题一等腰三角形的性质和判定的综合应用1.如图在△ABC中,BF、CF是角平分线,DE∥BC,分别交AB、AC于点D、E,DE经过点F.结论:①△BDF和△CEF都是等腰三角形;②DE=BD+CE;③△ADE的周长=AB+AC;④BF=CF.其中正确的是___________.(填序号)3.如图,已知△ABC是等腰直角三角形,∠BAC=90°,BE是∠ABC的平分线,DE⊥BC,垂足为D.(1)请你写出图中所有的等腰三角形;(2)请你判断AD与BE垂直吗?并说明理由.(3)如果BC=10,求AB+AE的长.专题二等边三角形的性质和判定4.如图,在等边△ABC中,AC=9,点O在AC上,且AO=3,点P是AB上一动点,连接OP,以O为圆心,OP长为半径画弧交BC于点D,连接PD,如果PO=PD,那么AP的长是__________.5.如图.在等边△ABC中,∠ABC与∠ACB的平分线相交于点O,且OD∥AB,OE∥AC.(1)试判定△ODE的形状,并说明你的理由;(2)线段BD、DE、EC三者有什么关系?写出你的判断过程.6.如图,△ABC中,AB=BC=AC=12 cm,现有两点M、N分别从点A、点B同时出发,沿三角形的边运动,已知点M的速度为1 cm/s,点N的速度为2 cm/s.当点N第一次到达B点时,M、N同时停止运动.(1)点M、N运动几秒后,M、N两点重合?(2)点M、N运动几秒后,可得到等边三角形△AMN(3)当点M、N在BC边上运动时,能否得到以MN为底边的等腰三角形AMN如存在,请求出此时M、N运动的时间.专题三最短路径问题7.如图,A、B两点分别表示两幢大楼所在的位置,直线a表示输水总管道,直线b表示输煤气总管道.现要在这两根总管道上分别设一个连接点,安装分管道将水和煤气输送到A、B 两幢大楼,要求使铺设至两幢大楼的输水分管道和输煤气分管道的用料最短.图中,点A′是点A关于直线b的对称点,A′B分别交b、a于点C、D;点B′是点B关于直线a的对称点,B′A分别交b、a于点E、F.则符合要求的输水和输煤气分管道的连接点依次是()A.F和C B.F和E C.D和C D.D和E8.如图,现准备在一条公路旁修建一个仓储基地,分别给A、B两个超市配货,那么这个基地建在什么位置,能使它到两个超市的距离之和最小 (保留作图痕迹及简要说明)。
《轴对称》知识点总结及章节检测解析一、知识点总结:1.轴对称的定义:如果一个图形经过其中一条直线折叠后,能够与自身完全重合,则这条直线被称为这个图形的轴对称线,这个图形是轴对称的。
2.旋转对称:如果一个图形能够围绕其中一点旋转一定的角度后,能够与自身完全重合,则这个图形是旋转对称的。
3.轴对称图形的特点:轴对称图形的特点是,对称轴两侧的各点关于对称轴对应,即对称轴上的一点与对应点互为图形的对称点。
4.轴对称的判定方法:判断一个图形是否为轴对称图形,可以按照以下方式进行判定:(1)观察是否能找到一个或多个对称轴;(2)沿对称轴将图形折叠,看是否能够重合。
5.制作轴对称图形:制作一个轴对称图形可按照以下步骤进行:(1)在纸上画出一条轴对称线;(2)沿着对称线将图形的一边折叠;(3)检查折叠后的图形与未折叠的图形是否重合,如重合则完成。
二、章节检测解析:以小学三年级数学教材为例,进行《轴对称》的章节检测解析。
教材章节:第三章图形与设计1.知识点掌握情况:首先,学生需要了解轴对称的概念、特点和判定方法,并能够制作轴对称图形。
2.基础练习题:对于基础的练习题,要求学生绘制给定图形的对称线,并判断是否为轴对称图形。
3.综合应用题:在综合应用题中,要求学生设计自己的轴对称图形,并描述其特点。
4.拓展思考题:为了拓展学生的思维,可以提出一些拓展思考题,如“如何判断一个图形是否为旋转对称图形”、“如何找到一个图形的所有对称轴”等。
总结:通过针对《轴对称》这一章节的检测解析,学生可以对轴对称的知识点进行复习和巩固。
同时,综合应用题和拓展思考题能够提高学生的思维能力和创造力。
轴对称知识点总结一、知识框架:二、知识概念:(1).基本概念:1.轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形.2.两个图形成轴对称:把一个图形沿某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称.4.线段的垂直平分线:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线.5.等腰三角形:有两条边相等的三角形叫做等腰三角形.相等的两条边叫做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角.6.等边三角形:三条边都相等的三角形叫做等边三角形.(2).基本性质:1.对称的性质:①不管是轴对称图形还是两个图形关于某条直线对称,对称轴都是任何一对对应点所连线段的垂直平分线.②对称的图形都全等.③若两个图形的对应点连线被同条直线垂直平分,那么这两个图形关于这条直线对称。
④两个图形关于某条直线成轴对称,如果它们的对应线段或延长线相交,那么交点在对称轴上。
2.线段垂直平分线的性质:①线段垂直平分线上的点与这条线段两个端点的距离相等.②与一条线段两个端点距离相等的点在这条线段的垂直平分线上.3.关于坐标轴对称的点的坐标性质①点(x, y)关于x轴对称的点的坐标为(x, -y).②点(x, y)关于y轴对称的点的坐标为(-x, y).③点(x, y)关于原点对称的点的坐标为(-x,- y)4.等腰三角形的性质:①等腰三角形两腰相等.②等腰三角形两底角相等(等边对等角).③等腰三角形的顶角角平分线、底边上的中线,底边上的高相互重合.④等腰三角形是轴对称图形,对称轴是三线合一的1条直线.5.等边三角形的性质:①等边三角形三边都相等.②等边三角形三个内角都相等,都等于60°③等边三角形每条边上都存在三线合一.④等边三角形是轴对称图形,对称轴是三线合一的3条直线.6.三角形三条边的垂直平分线相交于一点,这个点到三角形三个顶点的距离相等。
轴对称课本知识点总结一、轴对称的概念轴对称是指一个图形围绕某条中心轴线旋转180度,旋转后的图形和原图形完全重合。
在二维几何中,轴对称是一种重要的对称形式,常见于各种图形和实物之中。
二、轴对称的性质1. 轴对称图形的两个部分互相对称,互为镜像。
2. 轴对称图形的对称中心为图形的轴心。
3. 轴对称图形每一点的对应点与对称中心的距离相等。
三、轴对称的图形1. 对称图形:直线对称图形是最简单的轴对称图形,常见的有点、线段、正多边形等。
2. 音符:音符是一个常见的轴对称图形,它围绕中心轴线旋转180度后,可以和原音符完全重合。
3. 字母、数字:如字母A、M、H等和数字0、8等都是轴对称图形。
四、轴对称的判断方法1. 观察法:观察图形围绕某一条中心轴线旋转180度后是否和原图形重合。
2. 设坐标法:设定坐标轴,通过图形的对称特点来判断是否轴对称。
3. 折叠法:将图形折叠在对称轴上,判断折叠后两部分是否完全重合。
五、轴对称的应用1. 轴对称图形的设计:在各种设计中,轴对称图形的运用可以使设计更加美观。
2. 轴对称图形的制作:通过手工制作,可以制作各种轴对称图形的手工作品。
3. 轴对称图形的应用:在建筑、工程、美术、工艺等领域都有轴对称图形的应用。
六、轴对称的作用1. 保持图形的对称美:轴对称可以使图形保持一定的对称美。
2. 方便图形的绘制:对称图形通过轴对称可以方便地进行绘制和复制。
七、轴对称的练习1. 描绘轴对称图形:通过规定的对称轴来描绘对称图形。
2. 判断轴对称图形:判断给定图形是否对称,并找出对称轴。
3. 补全轴对称图形:在已知半图形的基础上补全对称图形。
八、轴对称的拓展知识1. 轴对称的组合:两个或多个轴对称图形组合成一个新的轴对称图形。
2. 轴对称的面积计算:轴对称图形的面积计算可以通过对称轴进行分割和计算。
九、轴对称的应用案例1. 建筑设计中的轴对称图形应用:在建筑设计中,轴对称图形的应用可以使建筑更加美观大方。
一、轴对称的基本知识轴对称包括三个方面的内容:(1)轴对称(2)轴对称图形(3)平面直角坐标系中点的对称(1)轴对称的定义:把一个图形沿着某一条直线对折,如果它能够与另一个图形重合,那么就说明这两个图形关于这条直线对称,两个图形关于某条直线对称也叫轴对称(注:轴对称是对两个图形而言)(2)轴对称图形的定义如果一个图形沿着一条直线对折,直线两旁的部分能够互相重合那么这个图形叫做轴对称图形(注:轴对称图形是对一个图形而言的)轴对称的性质定理1:关于某条直线对称的两个图形是全等形定理2:如果两个图形关于某条直线对称,那么对称轴是对应点连线的垂直平分线定理3:两个图形关于某条直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上。
逆定理:如果两个图形的对应点连线被同一直线垂直平分,那么这两个图形关于这条直线对称。
(3)平面直角坐标系中点的对称关于轴对称的点的横坐标不变,如点A(-2,3)关于轴对称的对称点A,的坐标为(-2,-3)关于轴对称的点的纵坐标不变,如点A(-2,3)关于轴对称的对称点A,的坐标为(2,3)二、考察重点:1、轴对称图形的识别和对称轴条数的判断2、轴对称在几何题中的应用(包括折叠的题)3、轴对称在实际生活中的应用三、代表性的题型2.如图,A、B是两个蓄水池,都在河流a的同侧,为了方便灌溉作物,•要在河边建一个抽水站,将河水送到A、B两地,问该站建在河边什么地方,•可使所修的渠道最短,试在图中确定该点(保留作图痕迹)3、如图,小明从A到河边a去给马饮水,然后骑马到公路b遛马,最后回到B区去放牧。
问小明怎样走路程最短(保留作图痕迹)5、如图,在锐角ABC ∆中,045,24AB =∠=BAC ,BAC ∠的平分线交BC 于点D,点M 、N 分别是AD 和AB 上的动点,则BM+MN 的最小值是四、轴对称在中考函数中的应用2、如图所示,在平面直角坐标系中,直线与轴交于点A,与轴交于点C,抛物线(a不等于0)经过点A,C,与X轴交于另一点B。
2024年初二数学期末考试轴对称知识点总结轴对称是数学中的一个重要概念,它在几何图形、函数和方程等方面都有广泛的应用。
下面是____年初二数学期末考试轴对称知识点的总结,包括轴对称的定义、性质、判定方法以及一些常见的练习题。
一、轴对称的定义和性质1. 轴对称是指一个几何图形相对于某一条直线对称。
2. 如果一个几何图形相对于某一条直线的两边完全相同或者对称,则该直线为该几何图形的轴对称轴。
3. 轴对称图形的特点是左右对称,即左右两部分完全相同。
4. 轴对称图形可以通过将图形沿着轴对称轴折叠,使两部分完全重合。
二、轴对称的判定方法1. 观察几何图形的特征,如果图形对称,则可判定为轴对称图形。
2. 分析几何图形的复杂度,如果找不到直观的特征,可以进行定点分析,即找出图形上的一系列点,判断这些点是否沿轴对称轴对称。
三、轴对称的常见几何图形1. 线段:线段是轴对称图形,折叠后两端完全重合。
2. 镜像:镜像是轴对称图形的一个特例,通过平面镜可以直观地看到镜像对称。
3. 圆:圆是轴对称图形,通过旋转一定角度可以使圆上的任意一点重合到其他点。
4. 正方形、矩形、正五边形等规则多边形都是轴对称图形,折叠后两边完全重合。
5. 其他不规则几何形状,可以通过定点分析来判断是否轴对称。
四、轴对称的函数和方程1. 函数:轴对称函数的特点是函数图像关于某一直线对称。
例如,二次函数y=ax^2的图像关于y轴对称,三次函数y=ax^3的图像关于原点对称。
2. 方程:轴对称方程是指方程的解对称于某一直线,这条直线即为轴对称轴。
例如,x^2+y^2=r^2的解是关于y轴对称的圆。
五、练习题1. 判断下列图形是否轴对称:(1) 正方形;(2) 三角形;(3) 椭圆;(4) 直线;(5) 抛物线。
2. 判断下列函数是否轴对称:(1) y=x^2+1;(2) y=3x^3-2x;(3) y=sin(x)。
3. 判断下列方程是否轴对称:(1) x^2+y^2=9;(2) x^3+y^3=8;(3) x^2+y^2+x+2y=0。
第十三章轴对称
【知识要点】
1.轴对称图形与轴对称
轴对称图形:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形.这条直线是它的对称轴.
轴对称:把一个平面图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线(成轴)对称,这条直线叫做对称轴.
2.轴对称的性质
如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.
3.线段的垂直平分线的性质和判定
性质:线段垂直平分线上的点与这条线段两个端点的距离相等.
判定:与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.4.关于G轴、y轴对称的点的坐标的特点
点(G,y)关于G轴对称的点的坐标为(G,-y);
点(G,y)关于y轴对称的点的坐标为(-G,y);
【温馨提示】
1.轴对称图形是针对一个图形而言,是指一个具有对称的性质的图形;轴对称是针对两个图形而言,它描述的是两个图形的一种位置关系.
2.在平面直角坐标系中,关于G轴对称的两个图形的对应点的横坐标相同,纵坐标互为相反数;关于y轴对称的两个图形的对应点的横坐标互为相反数,纵坐标相同.
专题一轴对称图形
1.【20XX·连云港】下列图案是轴对称图形的是()
2.众所周知,几何图形中有许多轴对称图形,写出一个你最喜欢的轴对称图形是:______________________.(答案不唯一)
3.如图,阴影部分是由5个小正方形组成的一个直角图形,请用两种方法分别在下图方格内涂黑两个小正方形,使它们成为轴对称图形.
专题二轴对称的性质
4.如图,△ABC和△ADE关于直线l对称,下列结论:①△ABC≌△ADE;②l垂直平分DB;③∠C=∠E;④BC与DE的延长线的交点一定落在直线l上.其中错误的有()
A.0个B.1个C.2个D.3个
5.如图,∠A=90°,E为BC上一点,A点和E点关于BD对称,B点、C点关于DE对称,求∠AB C和∠C的度数.[来源:]
6.如图,△ABC和△A′B′C′关于直线m对称.
(1)结合图形指出对称点.
(2)连接A、A′,直线m与线段AA′有什么关系?
(3)延长线段AC与A′C′,它们的交点与直线m有怎样的关系?其他对应线段(或其延长线)的交点呢?你发现了什么规律,请叙述出来与同伴交流.
专题三灵活运用线段垂直平分线的性质和判定解决问题
7.如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交于BC的延长线
于F,若∠F=30°,DE=1,则EF的长是()
A.3 B.2 C D.1
8.如图,在△ABC中,BC=8,AB的垂直平分线交BC于D,AC的垂直平分线交BC与E,则△ADE的周长等于________.
9.如图,AD⊥BC,BD=DC,点C在AE的垂直平分线上,那么线段AB、BD、DE之间有什么数量关系?并加以证明.
专题四利用关于坐标轴对称点的坐标的特点求字母的取值范围
10.已知点P(-2,3)关于y轴的对称点为Q(a,b),则a+b的值是()A.1B.-1C.5D.-5
11.已知P1点关于G轴的对称点P2(3-2a,2a-5)是第三象限内的整点(横、纵坐标都为整数的点,称为整点),则P1点的坐标是__________.
来源:]
参考答案:
1.D解析:∵将D图形上下或左右折叠,图形都能重合,∴D图形是轴对称图形,
故选D.
2.圆、正三角形、菱形、长方形、正方形、线段等
3.如图所示:
4.A解析:根据轴对称的定义可得,如果△ABC和△ADE关于直线l对称,则△ABC≌△ADE,即①正确;因为如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线;轴对称图形的对应线段、对应角相等,故l垂直平分DB,∠C=∠E,即②,③正确;因为成轴对称的两个图形对应线段
或延长线如果相交,那么,交点一定在对称轴上,故BC与DE的延长线的交点一定落在直线l上,即④正确.综上所述,①②③④都是正确的,故选A.5.解:根据题意A点和E点关于BD对称,
有∠ABD=∠EBD,即∠ABC=2∠ABD=2∠EBD.
B点、C点关于DE对称,
有∠DBE=∠BCD,∠ABC=2∠BCD.
且已知∠A=90°,
故∠ABC+∠BCD=90°.
故∠ABC=60°,∠C=30°.
6.解:(1)对称点有A和A',B和B',C和C'.
(2)连接A、A′,直线m是线段AA′的垂直平分线.
(3)延长线段AC与A′C′,它们的交点在直线m上,其他对应线段(或其延长线)的交点也在直线m上,即若两线段关于直线m对称,且不平行,则它们的交点或它们的延长线的交点在对称轴上.
7.B解析:在Rt△FDB中,∵∠F=30°,∴∠B=60°.在Rt△ABC中,∵∠ACB =90°,∠ABC=60°,∴∠A=30°.在Rt△AED中,∵∠A=30°,DE=1,∴AE
∴P1点的坐标是(-1,1).。