高三理数111
- 格式:docx
- 大小:1001.75 KB
- 文档页数:9
2023年高考数学全真模拟卷三(全国卷)理科数学(考试时间:120分钟;试卷满分:150分)注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I 卷(选择题)一、单选题(本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项符合题目要求)1.已知集合{}31A x x =-<,{B y y ==,则A B = ()A .∅B .[)4,+∞C .()2,+∞D .[)0,2【答案】C【分析】根据一元一次不等式可解得集合A ,再根据函数值域求法可求得集合B ,由交集运算即可得出结果.【详解】由题意可得{}2A x x =>,由函数值域可得{}0B y y =≥,所以{}2A B x x ⋂=>.故选:C 2.某班40人一次外语测试的成绩如下表:其中中位数为()A .78B .80C .79D .78和89【答案】C【分析】根据中位数的概念即可求得.【详解】解:由题意得:所有成绩从小到大排列,第二十位是78,第二十一位是80,则中位数为7880792+=.故选:C 3.若复数z 满足()()1i i 4z -+=,其中i 为虚数单位,则z 的虚部为()A .2B .2-C .1D .1-【答案】C【分析】根据复数的除法运算与减法运算得2i z =+,进而根据复数的概念求解即可.【详解】解:由题意可知()()()41i 4i i 2i 1i 1i 1i z +=-=-=+--+,所以,z 的虚部为1.故选:C.4.双曲线22221(0,0)x y a b a b -=>>,焦点到渐近线的距离为1,则双曲线方程为()A .2214y x -=B .2214x y -=C .22123x y -=D .22132x y -=【答案】B【分析】由离心率可得12b a =,从而可得渐近线方程,根据焦点到渐近线的距离为1可得c ,从而可求a ,故可得双曲线的方程.【详解】由题可知c a =,222514b e a =+=,得12b a =,则渐近线方程为20x y ±=,焦点到渐近线的距离为1,1=,可解得c =,所以2a =,由222c a b =+得1b =.所以双曲线方程为2214x y -=.故选:B.5.“天圆地方”观反映了中国古代科学对宇宙的认识,后来发展成为中国传统文化的重要思想.中国古人将琮、璧、圭、璋、璜、琥六种玉制礼器谓之“六瑞”,玉琮内圆外方,表示天和地,中间的穿孔表示天地之间的沟通,可以说是中国古代世界观很好的象征物.下面是一玉琮图及其三视图,设规格如图所示(单位:cm ),则三视图中A ,B 两点在实物中对应的两点在实物玉璧上的最小距离约为()(3π≈ 1.4≈)A .8.4B .9.8C .10.4D .11.2【答案】A【分析】玉琮的中空部分看成一圆柱,A ,B 两点可看成是圆柱轴截面所对应矩形的对角线的端点,将圆柱侧面展开,线段AB 的长就是沿该圆柱表面由A 到B 的最短距离.【详解】本题考查传统文化与圆柱的侧面展开图.由题意,将玉琮的中空部分看成一圆柱,A ,B 两点可看成是圆柱轴截面所对应矩形的对角线的端点,现沿该圆柱表面由A到B ,如图,将圆柱侧面展开,可知()min 8.4AB =≈.故选:A .6.已知定义在R 上的函数()21x mf x -=-(m 为实数)是偶函数,记0.5log 3a =,()2log 5b f =,()c f m =,则a 、b 、c 的大小关系为()A .a b c <<B .a c b<<C .c<a<bD .c b a<<【答案】B【分析】由偶函数的性质可得m 的值,即可得函数()f x 的解析式,分析函数单调性,结合对数的运算性质比较大小.【详解】()21x mf x -=-(m 为实数)是R 上的偶函数,∴()()f x f x -=,即2121x m x m ----=-,∴--=-x m x m ,即()()22x m x m --=-,∴0mx =,则0m =,此时()21xf x =-,0.5log 30a =<,()2log 540b f ==>,()(0)0c f m f ===,则a c b <<.故选:B7.若某一几何体的三视图如图所示,则该几何体是()A .三棱柱B .四棱柱C .五棱柱D .六棱柱【答案】C【分析】根据三视图还原出立体图形即可得到答案.【详解】根据其三视图还原出其立体图形如下图所示,易得其为五棱柱,故选:C.8.已知,a b ∈R ,则“1ab ≥”是“222a b +≥”的()A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A【分析】根据充分条件、必要条件及不等式的性质可得解.【详解】由22||12||||2ab a b a b ≥⇒+≥≥,而222a b +≥不一定能得到1ab ≥,例如,0,2a b ==,所以“1ab ≥”是“222a b +≥”的充分而不必要条件.故选:A 9.已知△ABC 满足22AB BA CA =⋅,则△ABC 的形状为()A .直角三角形B .等边三角形C .等腰直角三角形D .等腰三角形【答案】D【分析】根据已知得到22cos c bc A =,利用正弦定理可求得sin 2sin cos =C B A ,结合三角形内角和为π以及两角和的正弦公式可求得in 0()s A B -=,即可确定三角形形状.【详解】解:根据22AB BA CA =⋅得到:22cos c bc A =,由正弦定理2sin sin b cR B C==,可得2sin 2sin sin cos C B C A =,又C 为三角形的内角,得到sin 0C ≠,可得sin 2sin cos =C B A ,又[]sin sin ()sin()C A B A B π=-+=+,∴sin()sin cos cos sin 2sin cos A B A B A B B A +=+=,即sin cos cos sin 0A B A B -=,∴in 0()s A B -=,且A 和B 都为三角形的内角,∴A B =,则ABC 的形状为等腰三角形.故选:D .10.在新型冠状病毒肺炎疫情联防联控期间,社区有5名医务人员到某学校的高一、高二、高三3个年级协助防控和宣传工作.若每个年级至少分配1名医务人员,则不同的分配方法有()A .25种B .50种C .300种D .150种【答案】D【分析】首先分析将5个人分为三小组且每小组至少有一人,则可能分法有:(2,2,1),(3,1,1)两种情况,每种情况利用分步计数原理计算情况数,最后相加即可.【详解】当5个人分为2,2,1三小组,分别来自3个年级,共有2213531322C C C A 90A ⋅=种;②当5个人分为3,1,1三小组时,分别来自3个年级,共有3113521322C C C A 60A ⋅=种.综上,选法共有9060150+=.故选:D.11.已知函数()2tan sin tan 1xf x x x =++,则下列结论正确的是()A .()f x 在区间ππ,33⎛⎫- ⎪⎝⎭上单调递减B .()f x 在区间π0,2⎛⎫ ⎪⎝⎭上有极小值C .设()()2g x f x =-在区间ππ,22⎛⎫- ⎪⎝⎭上的最大值为M ,最小值为m ,则4M m +=D .()f x 在区间ππ,22⎛⎫- ⎪⎝⎭内有且只有一个零点【答案】D【分析】由商数关系化简函数,结合导数法可得函数性质及图象,即可逐个判断.【详解】因为()22sin tan cos sin sin tan 1sin 1cos xx x f x x x x x x =+=++⎛⎫+ ⎪⎝⎭πsin sin cos π,2x x x x k k ⎛⎫=+≠+∈ ⎪⎝⎭Z ,所以()()()22cos cos 12cos 1cos 1f x x x x x '=+-=-⋅+.当ππ,22x ⎛⎫∈- ⎪⎝⎭时,令()0f x '=,解得π3x =±,则当x 变化时,()f x ',()f x 的变化情况如下表所示.x ππ,23⎛⎫-- ⎪⎝⎭π3-ππ,33⎛⎫- ⎪⎝⎭π3ππ,32⎛⎫ ⎪⎝⎭()f x '-0+0-所以()f x 在区间ππ,22⎛⎫- ⎪⎝⎭上的图象如图所示.对A ,()f x 在区间ππ,33⎛⎫- ⎪⎝⎭上单调递增,A 错;对B ,()f x 在区间π0,2⎛⎫ ⎪⎝⎭上有极大值,无极小值,B 错;对C ,()()2g x f x =-在区间ππ,22⎛⎫- ⎪⎝⎭上的最大值为24M =-,最小值为24m =--,4M m +=-,C 错;对D ,()f x 在区间ππ,22⎛⎫- ⎪⎝⎭内有且只有一个零点,D 对.故选:D.12.已知函数()f x 的定义域为R ,且满足()()110f x f x -+-=,()()8f x f x +=,()11f =,()31f =-,()()21,021,24x a x f x x b x ⎧-++<≤⎪=⎨+-<≤⎪⎩,给出下列结论:①1a =-,3b =-;②()20231f =;③当[]4,6x ∈-时,()0f x <的解集为()()2,02,4- ;④若函数()f x 的图象与直线y mx m =-在y 轴右侧有3个交点,则实数m 的取值范围是111,16264⎛⎫⎛⎫--⋂- ⎪ ⎪⎝⎭⎝⎭.其中正确结论的个数为()A .4B .3C .2D .1【答案】C【分析】由()11f =,()31f =-解出,a b 的值可判断①;由周期和奇偶函数的性质计算()20231f =-可判断②;作出函数()f x 在[]0,4上的图象,根据图象可判断③;讨论当0m >和0m <,方程()mx m f x -=的解的个数可判断④.【详解】因为()()110f x f x -+-=,所以()()f x f x -=-,所以函数()f x 为奇函数,()00f =.因为()()8f x f x +=,所以()f x 的周期为8.又()()21111f a =-++=,所以10a +=,所以1a =-,()3311f b =+-=-,所以3b =-,故①正确.因为,()()()()202325381111f f f f =⨯-=-=-=-,故②错误.易知()()211,0231,24x x f x x x ⎧--+<≤⎪=⎨--<≤⎪⎩,作出函数()f x 在[]0,4上的图象,根据函数()f x 为奇函数,及其周期为8,得到函数()f x 在R 上的图象,如图所示,由()f x 的图象知,当[]4,6x ∈-时,()0f x <的解集为()()2,02,4- ,故③正确.由题意,知直线()1y mx m m x =-=-恒过点()1,0,与函数()f x 的图象在y 轴右侧有3个交点根据图象可知当0m >时,应有51m m ⨯-<,即14m <,且同时满足()mx m f x -=,[]8,10x ∈无解,即当[]8,10x ∈时,()()()108f x x x =--,()()108x x mx m --=-无解,所以Δ0<,解得1616m -<<+所以1164m -<<.当0m <时,应有31m m ⨯->-,即12m >-,且同时满足()mx m f x -=,[]6,8x ∈无解,即当[]6,8x ∈时,()()()68f x x x =--,()()58x x mx m --=-无解,所以Δ0<,解得1212m --<<-+1122m -<<-+综上,1164m -<或1122m -<<-+.故选:C.第II 卷(非选择题)二、填空题(本题共4小题,每小题5分,共20分)13.函数()12f x x x=+在1x =处切线的倾斜角为_______.【答案】45【分析】求导,求出斜率,进而可得倾斜角.【详解】()212f x x '=-+,则()11211f '=-+=,即函数()12f x x x=+在1x =处切线的斜率为1,则倾斜角为45 故答案为:45 14.已知平面向量(2,)a x =-,b = ,且()a b b -⊥,实数x 的值为_____.【答案】【分析】表示出(3,a b x -=- ,其与b =数量积为0,可算得出x .【详解】解:因为(2,)a x =-,b = ,所以(3,a b x -=-又()a b b -⊥,则()30a b b x -⋅=-= 故x =故答案为:15.设1F 、2F 分别为椭圆()222210x y a b a b+=>>的左右焦点,与直线y b =相切的圆2F 交椭圆于点E ,且E 是直线1EF 与圆2F 相切的切点,则椭圆焦距与长轴长之比为________.【答案】3【分析】根据题意可得12EF EF ⊥,利用椭圆性质可得()()22222a b b c -+=,结合222a b c =+,即可求得22c a .【详解】如图所示,连接2EF ,易得12EF EF ⊥,圆2F 的半径r b =,所以2EF b =,而122EF EF a +=,所以12EF a b =-,122F F c =,所以()()22222a b b c -+=,且有222a b c =+,化简可得23a b =,所以()22249a a c =-,所以2259a c =,可得22c a =.故答案为:16.已知函数()ln f x ax x x =-与函数()e 1xg x =-的图象上恰有两对关于x 轴对称的点,则实数a 的取值范围为__________.【答案】(),1e -∞-【分析】图象恰有两对关于x 轴对称的点,即0x ∃>,使得()()f x g x -=,即ln e 1xax x x -+=-有两解,对等式全分离,构造()ln e 1x x x h x x-+=,求导求单调性,求出值域,对图象进行判断,即可得出a 的取值范围.【详解】因为函数()f x 与()g x 的图象上恰有两对关于x 轴对称的点,所以0x >时()()f x g x -=有两解,即ln e 1x ax x x -+=-有两解,所以ln e 1x x x a x-+=有两解,令()ln e 1x x x h x x -+=,则()()()2e 11x x h x x --'=,所以当()0,1x ∈时,()0h x '>,函数()h x 单调递增;当()1,x ∈+∞时,()0h x '<,函数()h x 单调递减,所以()h x 在1x =处取得极大值,(11e h =-,且()0,1x ∈时,()h x 的值域为(),1e -∞-;()1,x ∈+∞时,()h x 的值域为(),1e -∞-,因此ln e 1x x x a x-+=有两解时,实数a 的取值范围为(),1e -∞-.故答案为:(),1e -∞-三、解答题(本题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答)(一)必考题:共60分17.已知公差不为0的等差数列{}n a 的前n 项和为n S ,2S 、4S 、55S +成等差数列,且2a 、7a 、22a 成等比数列.(1)求{}n a 的通项公式;(2)若11n n n b a a +=,数列{}n b 的前n 项和为n T ,证明:16n T <.【答案】(1)21n a n =+(2)证明见解析【分析】(1)公式法列方程组解决即可;(2)运用裂项相消解决即可.【详解】(1)由题知,设{}n a 的公差为d ,由题意得42527222250S S S a a a d =++⎧⎪=⎨⎪≠⎩,即11121112(46)(2)(510)5(6)()(21)0a d a d a d a d a d a d d +=++++⎧⎪+=++⎨⎪≠⎩,解得132a d =⎧⎨=⎩,所以1(1)3(1)221n a a n d n n =+-=+-⨯=+,所以{}n a 的通项公式为21n a n =+.(2)证明:由(1)得21n a n =+,所以111111(21)(23)22123n n n b a a n n n n +⎛⎫===- ⎪++++⎝⎭,所以1111111111123557212323236n T n n n ⎛⎫⎛⎫=-+-+⋅⋅⋅+-=-<⎪ ⎪+++⎝⎭⎝⎭.18.为促进新能源汽车的推广,某市逐渐加大充电基础设施的建设,该市统计了近五年新能源汽车充电站的数量(单位:个),得到如下表格:年份编号x 12345年份20162017201820192020新能源汽车充电站数量y /个37104147196226(1)已知可用线性回归模型拟合y 与x 的关系,请用相关系数加以说明;(2)求y 关于x 的线性回归方程,并预测2024年该市新能源汽车充电站的数量.参考数据:51710i i y ==∑,512600i i i x y ==∑,()521149.89i iy y =-=∑ 3.16≈.参考公式:相关系数()()niix x yyr --=∑回归方程ˆˆˆybx a =+中斜率和截距的最小二乘估计公式分别为;()()()121ˆniii nii x x y y b x x ==--=-∑∑,ˆˆay bx =-.【答案】(1)答案见解析;(2)ˆ471yx =+;预测2024年该市新能源汽车充电站的数量为424个.【分析】(1)利用相关系数的计算公式即可得解;(2)先利用已知数据和公式得到y 关于x 的线性回归方程,再将2024年所对应的年份编号代入线性回归方程即可得解.【详解】解:(1)由已知数据得()11234535x =⨯++++=,17101425y =⨯=,()()()2222152101210i i x x=-=-+-+++=∑,()()55115260053142470iii i i i x x yy x y x y ==--=-=-⨯⨯=∑∑,所以4700.993.16149.89r ≈≈⨯.因为y 与x 的相关系数近似为0.9,接近1,说明y 与x 的线性相关程度相当高,从而可以用线性回归模型拟合y 与x 的关系.(2)由(1)得()()()51215470ˆ4710iii ii x x y y bx x ==--===-∑∑,ˆˆ1424731ay bx =-=-⨯=,放所求线性回归方程为ˆ471yx =+.将2024年对应的年份编号9x =代人回归方程得ˆ4791424y=⨯+=,故预测2024年该市新能源汽车充电站的数量为424个.19.如图,在四棱锥P -ABCD 中,AB CD ∥,AB ⊥BC ,122BC CD PA PD AB =====,PC =E 为AB的中点.(1)证明:BD ⊥平面APD ;(2)求平面APD 和平面CEP 的夹角的余弦值.【答案】(1)证明见解析(2)22【分析】(1)已知条件求出AB ,BD ,AD 的长度,勾股定理证得BD AD ⊥,取AD 的中点O ,连接OP ,OC ,有PO AD ⊥,得PO ,勾股定理证得PO OC ⊥,从而PO ⊥平面ABCD ,有BD OP ⊥,所以BD ⊥平面APD .(2)建立空间直角坐标系,求相关点的坐标,求相关向量的坐标,求平面APD 和平面CEP 的一个法向量,利用向量夹角公式求平面APD 和平面CEP 的夹角的余弦值【详解】(1)在直角梯形ABCD 中,易得AB =4,BD =AD =,∴222AD BD AB +=,∴BD ⊥AD .取AD 的中点O ,连接OP ,OC ,易得PO ⊥AD ,PO =,如图所示,在△CDO 中,易得OC ==,又PC =,∴222OC PO PC +=,∴PO ⊥OC ,又PO ⊥AD ,AD OC O = ,,AD OC ⊂平面ABCD ,∴PO ⊥平面ABCD ,BD ⊂平面ABCD ,∴BD ⊥OP ,又BD ⊥AD ,AD OP O ⋂=,,AD OP ⊂平面APD ,∴BD ⊥平面APD .(2)如图,以D 为坐标原点,DA ,DB 所在直线分别为x ,y 轴,过点D 且与PO 平行的直线为z 轴建立空间直角坐标系,则D (0,0,0),()A ,()0,B ,)E,P,()C ,∴(CP =,()CE = ,∵BD ⊥平面APD ,∴平面APD 的一个法向量为()10,1,0n =.设平面CEP 的法向量为()2,,n x y z =u u r,则2200n CP n CE ⎧⋅=⎪⎨⋅=⎪⎩,得00⎧+=⎪⎨=⎪⎩,取y =1,得()20,1,1n = ,∴122cos ,2n n =,∴平面APD 和平面CEP 的夹角的余弦值为22.20.已知抛物线()2:20C x py p =>的焦点为F ,准线为l ,点P 是直线1:2l y x =-上一动点,直线l 与直线1l 交于点Q,QF =(1)求抛物线C 的方程;(2)过点P 作抛物线C 的两条切线,PA PB ,切点为,A B ,且95FA FB -≤⋅≤,求PAB 面积的取值范围.【答案】(1)24x y=(2)⎡⎣【分析】(1)计算2,22p p Q ⎛⎫-- ⎪⎝⎭,0,2p F⎛⎫⎪⎝⎭,根据距离公式计算得到2p =,得到抛物线方程.(2)求导得到导函数,计算切线方程得到AB 的直线方程为()002y y xx +=,联立方程,根据韦达定理得到根与系数的关系,根据向量运算得到034y -≤≤,再计算PAB S =△.【详解】(1)直线1:2l y x =-,当2p y =-时,22p x =-,即2,22p p Q ⎛⎫-- ⎪⎝⎭,0,2p F⎛⎫⎪⎝⎭,则QF ==,解得2p =或25p =-(舍去),故抛物线C 的方程为24x y =.(2)设()11,A x y ,()22,B x y ,()00,P x y ,24x y =,2x y '=,PA 的直线方程为:()1112x y x x y =-+,整理得到()112y y xx +=,同理可得:PB 方程为()222y y xx +=,故()()010*******y y x x y y x x ⎧+=⎪⎨+=⎪⎩,故AB 的直线方程为()002y y xx +=,()00224y y xx x y ⎧+=⎨=⎩,整理得到200240x x x y -+=,12012024 x x x x x y +=⎧⎨=⎩,()()()1122121212,1,11FA FB x y x y x x y y y y ⋅=-⋅-=+-++()02221212221212000216123164x x x x x x x x y x y y +-=+-+=-++=-,09235y -≤-≤,解得034y -≤≤,设P 到AB 的距离为d ,12PABS AB d =⋅=△,034y -≤≤,故[]2044,20y +∈,4,PAB S ⎡∈⎣△21.已知01a <<,函数()1x f x x a -=+,()1log a g x x x =++.(1)若()e e g =,求函数()f x 的极小值;(2)若函数()()y f x g x =-存在唯一的零点,求a 的取值范围.【答案】(1)2(2)1,1e ⎡⎫⎪⎢⎣⎭【分析】(1)由()e e g =可求出1ea =,则()1e xf x x -=+,然后对函数求导,由导数的正负可求出函数的单调区间,从而可求出函数的极小值;(2)令()1log 1x a F x ax -=--(0x >),则()111ln ln x F x xa a x a -⎛⎫'=- ⎪⎝⎭,令()11ln ln x x xaa a ϕ-=-,利用导数可求出其单调区间和最小值,然后分11ln 10ln a a a----≥和10ea <<讨论函数的零点即可.【详解】(1)由()1e e e 1log e e ea g a =⇒++=⇒=,所以()1e x f x x -=+,()11e xf x -'=-,令()01f x x '=⇒=,当1x <时,()0f x '<,当1x >时,()0f x ¢>,所以()f x 在(,1)-∞上递减,在(1,)+∞上递增,所以()f x 的极小值为()12f =;(2)()()1log 1x a f x g x a x --=--,令()1log 1x a F x a x -=--(0x >),()F x 存在唯—的零点,()11111ln ln ln ln x x F x a a xa a x a x a --⎛⎫'=-=- ⎪⎝⎭,令()11ln ln x x xaa a ϕ-=-,()()11ln ln x x a x a a ϕ-'=+,令()10ln x x aϕ'=⇒=-,当10ln x a<<-时,()0x ϕ'<;当1ln x a>-时,()0x ϕ'>,所以()x ϕ在10,ln a ⎛⎫- ⎪⎝⎭上递减,在1,ln a ⎛⎫-+∞ ⎪⎝⎭上递增,所以()11ln min 11ln ln ax a a a ϕϕ--⎛⎫=-=-- ⎪⎝⎭,①若11ln 10ln aa a----≥,即111ln ln ln ln a a a ⎛⎫⎛⎫--≤- ⎪ ⎪⎝⎭⎝⎭,令1ln t a-=,所以()111ln ln 10t t t t t ⎛⎫--≤⇒-+≥ ⎪⎝⎭,所以1t ≥,所以11ln a -≥,即11ea <时,()()min 00x F x ϕ'≥⇒≥,所以()F x 在()0,∞+上递增,注意到()10F =,所以()F x 存在唯一的零点,符合题意②当10e a <<时,()100ln aϕ=->,()min 0x ϕ<,()22213(ln )133ln ln ln a a a a a aϕ-=-=,令22()3(ln )1t a a a =-,10ea <<,则221()3[2(ln )2ln ]6ln (ln 1)t a a a a a a a a a'=+⋅⋅=+,因为10ea <<,所以ln 1a <-,所以()6ln (ln 1)0t a a a a '=+>,所以22()3(ln )1t a a a =-在10,e ⎛⎫⎪⎝⎭上单调递增,所以2221113()3(ln 110e e e e t a t ⎛⎫⎛⎫<=-=-< ⎪ ⎪⎝⎭⎝⎭,所以()22213(ln )133ln 0ln ln a a a a a aϕ-=-=>所以()x ϕ即()F x '在10,ln a ⎛⎫- ⎪⎝⎭和1,ln a ⎛⎫-+∞ ⎪⎝⎭上各有一个零点1x ,2x ,()F x 在()10,x 上递增,()12,x x 上递减,()2,0x 上递增,而()11ln 0ln F a a'=-<,所以121x x <<,()1log 1x a F x a x -=--,当110a x a -<<时,()111log 11(1)0a F a a x a x -------<-=<;当1x a >时,()10log 10a F x a>--=,而()()110F x F >=,()()210F x F <=,所以()F x 在()10,x ,()12,x x 和()2,x +∞上各有一个零点,共3个零点了,舍去.综上,a 的取值范围为1,1e ⎡⎫⎪⎢⎣⎭.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在直角坐标系xOy 中,直线l的参数方程为cos sin x t y t αα⎧=⎪⎨=⎪⎩(t 为参数).以坐标原点为极点,x 轴的正半轴为极轴建立坐标系,曲线C 的极坐标方程为2853cos 2ρθ=-,直线l 与曲线C 相交于A ,B两点,)M .(1)求曲线C 的直角坐标方程;(2)若2AM MB =,求直线l 的斜率.【答案】(1)2214x y +=(2)【分析】(1)根据极坐标与直角坐标直角的转化222cos sin x y x y ρθρθρ=⎧⎪=⎨⎪=+⎩,运算求解;(2)联立直线l 的参数方程和曲线C 的直角坐标方程,根据参数的几何意义结合韦达定理运算求解.【详解】(1)∵()()222222288453cos 2cos 4sin 5cos sin 3cos sin ρθθθθθθθ===-++--,则2222cos 4sin 4ρθρθ+=,∴2244x y +=,即2214x y +=,故曲线C 的直角坐标方程为2214x y +=.(2)将直线l的参数方程为cos sin x t y t αα⎧=⎪⎨=⎪⎩(t 为参数)代入曲线C 的直角坐标方程为2214x y +=,得)()22cos sin 14t t αα+=,整理得()()222cos 4sin 10t t ααα++-=,设A ,B 两点所对应的参数为12,t t ,则121222221,cos 4sin cos 4sin t t t t ααααα+=-=-++,∵2AM MB =,则122t t =-,联立1212222cos 4sin t t t t ααα=-⎧⎪⎨+=-⎪+⎩,解得122222cos 4sin cos 4sin t t αααααα⎧=-⎪⎪+⎨⎪=⎪+⎩,将12,t t 代入12221cos 4sin t t αα=-+得2222221cos 4sin cos 4sin cos 4sin αααααααα⎛⎫⎛⎫-=- ⎪⎪ ⎪⎪+++⎝⎭⎝⎭,解得2223tan 4k α==,故直线l的斜率为2±.[选修4-5:不等式选讲]23.已知:()1f x x x m =+--,0m >.(1)若2m =,求不等式()2f x >的解集;(2)()()g x f x x m =--,若()g x 的图象与x 轴围成的三角形面积不大于54,求m 的取值范围.【答案】(1)3,2∞⎛⎫+ ⎪⎝⎭;(2)(]0,8.【分析】(1)利用零点分段法求解出绝对值不等式;(2)先求出()21,312,121,1x m x mg x x m x m x m x -++>⎧⎪=+--≤≤⎨⎪--<-⎩,由()0g x =,解得:122121,3m x m x -=+=,则()21444133m x x m ---==+,由函数单调性得到()()max 1g x g m m ==+,根据函数图象与x 轴围成的三角形面积不大于54,列出方程,求出m 的取值范围.【详解】(1)当2m =时,()3,21221,123,1x f x x x x x x >⎧⎪=+--=--≤≤⎨⎪-<-⎩,当2x >时,()32f x =>成立;当12x -≤≤时,()212f x x =->,则322x <≤;当1x <-时,()32f x =-<不合题意,综上,()2f x >的解集为3,2∞⎛⎫+ ⎪⎝⎭;(2)因为0m >,所以()21,12312,121,1x m x m g x x x m x m x m x m x -++>⎧⎪=+--=+--≤≤⎨⎪--<-⎩,由()0g x =,解得:122121,3m x m x -=+=,则()21444133m x x m ---==+,当1x <-时,()g x 单调递增,当1x m -≤≤时,()g x 单调递增,当x >m 时,()g x 单调递减,所以当x m =时,()g x 取得最大值,()()max 1g x g m m ==+,∴图象与x 轴围成的三角形面积为()()221421154233S m m =⨯+=+≤,解得:108m -≤≤,又0m >,则08m <≤,∴m 的取值范围是(]0,8.。
数列问题中的数学思想2数列是高中数学的重要内容,蕴含着极其丰富的数学思想。
若能有效的运用其数学思想去分析问题、解决问题,在高考中大为有益。
一、方程思想等差(或等比)数列{}a n 的通项公式,前n 项和公式集中了等差(或等比)数列的五个基本元素a 1、d (或q )、n 、a n 、S n 。
“知三求二”是等差(或等比)数列最基本的题型,通过解方程的方法达到解决问题的目的。
例1、(2007全国)等比数列{}n a 的前n 项和为n S ,已知1S ,22S ,33S 成等差数列,则{}n a 的公比为 .解析:因为{}n a 为等比数列,所以1S =1a ,q a S 12= ;213q a S =,又因为1S ,22S ,33S 成等差数列,所以有:211134q a a q a +=,即01432=+-q q ,化简即得:1=q 或31=q 。
但是当q =1时,不满足1S ,22S ,33S 成等差数列,所以舍去,故31=q 为所求。
点评:本题通过已知转化为首项与公比的关系,体现了高考解题的通行通法,最后通过解方程的解决得出结论,注意要对结论进行验证。
否则常数增解。
例2(2007全国卷文科)设等比数列{}n a 的公比1q <,前n 项和为n S .已知34225a S S ==,,求{}n a 的通项公式. 解:由题设知11(1)01n n a q a S q-≠=-,, 则2121412(1)5(1)11a q a q a q q q ⎧=-⎪=⨯⎨--⎪-⎩,. ② 由②得4215(1)q q -=-,22(4)(1)0q q --=,(2)(2)(1)(1)0q q q q -+-+=, 因为1q <,解得1q =-或2q =-.当1q =-时,代入①得12a =,通项公式12(1)n n a -=⨯-; 当2q =-时,代入①得112a =,通项公式11(2)2n n a -=⨯-. 二、函数思想 数列是一种特殊的函数,动态的函数观点是解决数列问题的有效方法。
2018年高考理数真题试卷(全国Ⅱ卷)一、选择题1.1+2i1−2i=( )A. −45−35i B. −45+35i C. −35−45i D. −35+45i2.已知集合A={(x,y)|x2+y2≤3,x∈Z,y∈Z}.则A中元素的个数为()A. 9B. 8C. 5D. 43.函数f(x)=e x−e−xx2的图像大致为( )A. B.C. D.4.已知向量a→,b→满足|a→|=1, a→⋅b→=−1 ,则a→·(2a→-b→)=()A. 4B. 3C. 2D. 05.双曲线x2a2−y2b2=1(a>0,b>0)的离心率为√3,则其渐近线方程为()A. y=±√2xB. y=±√3xC. y=±√22x D. y=±√32x6.在ΔABC中,cos C2=√55,BC=1,AC=5则AB=()A. 4√2B. √30C. √29D. 2√57.为计算S=1−12+13−14+⋅⋅⋅+199−1100,设计了右侧的程序框图,则在空白框中应填入()A. i=i+1B. i=i+2C. i=i+3D. i=i+48.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果,哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是( )A. 112 B. 114 C. 115 D. 1189.在长方形ABCD-A 1B 1C 1D 1中,AB=BC=1,AA 1= √3 ,则异面直线AD 1与DB 1所成角的余弦值为( ) A. 15 B. √56C. √55D. √2210.若 f(x)=cosx −sinx 在 [−a,a] 是减函数,则a 的最大值是( ) A. π4 B. π2 C. 3π4 D. π11.已知 f(x) 是定义为 (−∞,+∞) 的奇函数,满足 f(1−x)=f(1+x) 。
2015高中数学1.1.1算法的概念讲解新人教A版必修31.算法的概念:对一类问题的机械的、统一的求解方法.算法是由基本运算及规定的运算顺序所构成的完整的解题步骤,或者是按照要求设计好的有限的计算序列,并且这样的步骤或序列能解决一类问题.2.算法的重要特征:(1)有限性:一个算法在执行有限步后必须结束;(2)确.定性:算法的每一个步骤和次序必须是确定的;(3)输入:一个算法有0个或多个输入,以刻划运算对象的初始条件.所谓0个输入是指算法本身定出了初始条件.(4)输出:一个算法有1个或多个输出,以反映对输入数据加工后的结果.没有输出的算法是毫无意义的.算法作为一个名词,在中学教科书中并没有出现过,我们在基础教育阶段还没有接触算法概念。
但是我们却从小学就开始接触算法,熟悉许多问题的算法。
如,做四则运算要先乘除后加减,从里往外脱括弧, 竖式笔算等都是算法,至于乘法口诀、珠算口诀更是算法的.具体体现。
我们知道解一元二次方程的算法,求解一元一次不等式、一元二次不等式的算法,解线性方程组的算法,求两个数的最大公因数的算法等。
因此,算法其实是重要的数学对象。
算法(al.gorithm) 一词源于算术(algorism),即算术方法,是指一个由已知推求未知的运算过程。
后来,人们把它推广到一般,把进行某一工作的方法和步骤称为算法。
广义地说“算法就是做某一件事的步骤或程序。
菜谱是做菜肴的算法,洗衣机的使用说明书是操作洗衣机的算法,歌谱是一首歌曲的算法。
在数学中,主要研究计算机能实现的算法,即按照某种机械程序步骤一定可以得到结果的解决问题的程序。
比如解方程的算法、函数求值的.算法、作图的算法,等等。
要点一:算法的有限性和确定性例1任意给定一个大于1的整数n,试设计一个程序或步骤对“是否为质数做出判定。
解析:根据质数的定义判断解:算法如下:第一步:判断"是否等于2,若厂2,则“是质数;若n>2,则执行第二步。
绝密★启用前2023年普通高等学校招生全国统一考试(全国乙卷∙理科)数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设z =2+i1+i 2+i5,则z =()A.1-2iB.1+2iC.2-iD.2+i2.设集合U =R ,集合M ={x x <1 },N ={x -1<x <2 },则{x x ≥2 } =()A.C U (M ∪N )B.N ∪C U MC.C U (M ⋂N )D.M ∪C U N3.3、如图,网格纸上绘制的一个零件的三视图,网格小正方形的边长为1,则该零件的表面积为()A.24B.26C.28D.304.已知f (x )=xe x e ax -1是偶函数,则a =()A.-2B.-1C.1D.25.设O 为平面坐标系的坐标原点,在区域{(x ,y )1≤x 2+y 2≤4 }内随机取一点,记该点为A ,则直线OA 的倾斜角不大于π4的概率为()A.18B.16C.14D.126.已知函数f (x )=sin (ωx +φ)在区间(π6,2π3)单调递增,直线x =π6和x =2π3为函数y =f (x )的图像的两条对称轴,则f (-5π12)=()A.-32B.-12C.12D.327.甲乙两位同学从6种课外读物中各自选读2种,则这两人选读的课外读物中恰有1种相同的选法共有()A.30种B.60种C.120种D.240种8.已知圆锥PO 的底面半径为3,O 为底面圆心,PA ,PB 为圆锥的母线,∠AOB =120∘,若△PAB的面积等于934,则该圆锥的体积为()A.πB.6πC.3πD.36π9.已知△ABC 为等腰三角形,AB 为斜边,△ABD 为等边三角形,若二面角C -AB -D 为150° ,则直线CD 与平面ABC 所成角的正切值为()A.15B.225C.35D.2510.已知等差数列{a n }的公差为2π3,集合S =cosa n n ∈ N * ,若S ={a b },则ab =()A.-1B.-12C.D.1211.设A ,B 为双曲线x 2-y 29=1上两点,下列四个点中,可为线段AB 中点的是()A.(-1,1)B.(-1,2)C.(1,3)D.(-1,-4)12.已知⊙O 的半径为1,直线PA 与⊙O 相切于点A ,直线PB 与⊙O 交于B ,C 两点,D 为BC 的中点,若|PO |=2,则PA ∙PD的最大值为()A.1+22B.1+222C.1+2D.2+2二、填空题:本题共4小题,每小题5分,共20分。
1.1.1 集合地含义及其表示方法<1)教案【教学目标】1. 通过实例了解集合地含义,体会元素与集合地“属于”关系,能选择集合不同地语言形式描述具体地问题,提高语言转换和抽象概括能力,树立用集合语言表示数学内容地意识.2. 了解集合元素地确定性、互异性、无序性,掌握常用数集及其专用符号,并能够用其解决有关问题,提高学生分析问题和解决问题地能力,培养学生地应用意识.【教学重难点】教学重点:集合地基本概念与表示方法.教学难点:选择恰当地方法表示一些简单地集合.【教学过程】一、导入新课军训前学校通知:8 月15 日8 点,高一年级学生到操场集合进行军训. 试问这个通知地对象是全体地高一学生还是个别学生?在这里,集合是我们常用地一个词语,我们感兴趣地是问题中某些特定(是高一而不是高二、高三>对象地总体,而不是个别地对象,为此,我们将学习一个新地概念——集合.二、提出问题①请我们班地全体女生起立!接下来问:咱班地所有女生能不能构成一个集合啊?”②下面请班上身高在 1.75 以上地男生起立!他们能不能构成一个集合啊?③其实,生活中有很多东西能构成集合,比如新华字典里所有地汉字可以构成一个集合等等.那么,大家能不能再举出一些生活中地实际例子呢?请你给出集合地含义.④如果用A 表示高一(3>班全体学生组成地集合,用a 表示高一(3>班地一位同学,b是高一(4>班地一位同学,那么a、b与集合A分别有什么关系?由此看见元素与集合之间有什么关系?⑤世界上最高地山能不能构成一个集合?⑥世界上地高山能不能构成一个集合?⑦问题⑥说明集合中地元素具有什么性质?⑧由实数1、2、3、 1 组成地集合有几个元素?⑨问题⑧说明集合中地元素具有什么性质?⑩由实数1、2、3 组成地集合记为M, 由实数3、1、2 组成地集合记为N,这两个集合中地元素相同吗?这说明集合中地元素具有什么性质?由此类比实数相等,你发现集合有什么结论?讨论结果:①能.②能.③我们把研究地对象统称为“元素”那,么把一些元素组成地总体叫“集合”.④a是集合A地元素,b不是集合A地元素•学生得出元素与集合地关系有两种:属于和不属于.⑤能,是珠穆朗玛峰.⑥不能.⑦确定性•给定地集合,它地元素必须是明确地,即任何一个元素要么在这个集合中,要么不在这个集合中,这就是集合地确定性.⑧3个.⑨互异性•一个给定集合地元素是互不相同地,即集合中地元素是不重复出现地,这就是集合地互异性.⑩集合M和N相同.这说明集合中地元素具有无序性,即集合中地元素是没有顺序地.可以发现:如果两个集合中地元素完全相同,那么这两个集合是相等地.结论:1、一般地,指定地某些对象地全体称为集合,标记: A , B, C, D,…集合中地每个对象叫做这个集合地元素,标记:a, b, c, d,…2、元素与集合地关系a是集合A地元素,就说a属于集合A, 记作a€ A ,a不是集合A地元素,就说a不属于集合A,记作a A3、集合地中元素地三个特性:<1) •元素地确定性:对于一个给定地集合,集合中地元素是确定地,任何一个对象或者是或者不是这个给定地集合地元素<2.)元素地互异性:任何一个给定地集合中,任何两个元素都是不同地对象,相同地对象归入一个集合时,仅算一个元素•比如:book中地字母构成地集合<3)•元素地无序性:集合中地元素是平等地,没有先后顺序,因此判定两个集合是否一样,仅需比较它们地元素是否一样,不需考查排列顺序是否一样.集合元素地三个特性使集合本身具有了确定性和整体性3、阅读课本P3中:数学中一些常用地数集及其记法•快速写出常见数集地记号.活动:先让学生阅读课本,教师指定学生展示结果•学生写出常用数集地记号后,教师强调:通常情况下,大写地英文字母N、Z、Q、R 不能再表示其他地集合,这是专用集合表示符号,.以后,我们会经常用到这些常见地数集,要求熟练掌握.结论:常见数集地专用符号.N:非负整数集(或自然数集>(全体非负整数地集合>;N*或N+:正整数集(非负整数集N内排除0地集合>;Z:整数集(全体整数地集合>;Q:有理数集(全体有理数地集合>;R:实数集(全体实数地集合>.三、例题例题1•下列各组对象不能组成集合地是(>A.大于6地所有整数B.高中数学地所有难题C.被3除余2地所有整数D.函数y二」图象上所有地点分析:学生先思考、讨论集合元素地性质,教师指导学生此类选择题要逐项判断•判断一组对象能否构成集合,关键是看是否满足集合元素地确定性.在选项A、C、D中地元素符合集合地确定性;而选项B中,难题没有标准,不符合集合元素地确定性,不能构成集合.答案:B变式训练11•下列条件能形成集合地是(D>A.充分小地负数全体B.爱好足球地人C.中国地富翁D.某公司地全体员工例题2.下列结论中,不正确地是(>A.若a€ N,则-a NB. 若a€乙贝卩a2€ ZC.若a€ Q,贝,a|€ QD.若a€ R,贝卩而分析:(1>元素与集合地关系及其符号表示;(2>特殊集合地表示方法;答案:A变式训练2判断下面说法是否正确、正确地在(>内填“/,错误地填“X”(1>所有在N中地元素都在N*中<X )(2>所有在N中地元素都在Z中(V >(3>所有不在N*中地数都不在Z中<X)(4>所有不在Q中地实数都在R中<V )个人收集整理- 仅供参考(5>由既在R中又在N*中地数组成地集合中一定包含数0<X)(6>不在N中地数不能使方程4x= 8成立<V )四、课堂小结1、集合地概念2、集合元素地三个特征,其中“集合中地元素必须是确定地”应理解为:对于一个给定地集合,它地元素地意义是明确地.“集合中地元素必须是互异地”应理解为:对于给定地集合,它地任何两个元素都是不同地.3、常见数集地专用符号.【板书设计】一、集合概念1. 定义2. 三要素二、常用集合三、典型例题例1:例 2 :【作业布置】预习下一节学案.1.1.1 集合地含义及其表示方法<1)课前预习学案一、预习目标:初步理解集合地含义,了解属于关系地意义,知道常用数集及其记法二、预习内容:阅读教材填空:1 、集合:一般地,把一些能够对象看成一个整体,就说这个整体是由这些对象地全体构成地< 或)•构成集合地每个对象叫做这个集合地<或).2、集合与元素地表示:集合通常用来表示,它们地元素通常用来表示.3、元素与集合地关系:如果a是集合A地元素,就说,记作,读作.如果a不是集合A地元素,就说,记作,读作.4•常用地数集及其记号:<1)自然数集:,记作.<2)正整数集:,记作.<3 )整数集:,记作.<4)有理数集:,记作.<5 )实数集:,记作.三、提出疑惑同学们,通过你地自主学习,你还有哪些疑惑,请把它填在下面地表格中课内探究学案一、学习目标1. 通过实例了解集合地含义,体会元素与集合地属于”关系,能选个人收集整理- 仅供参考择集合不同地语言形式描述具体地问题,提高语言转换和抽象概括能力,树立用集合语言表示数学内容地意识.2. 了解集合元素地确定性、互异性、无序性,掌握常用数集及其专用符号,并能够用其解决有关问题,提高学生分析问题和解决问题地能力,培养学生地应用意识.学习重点:集合地基本概念与表示方法.学习难点:选择恰当地方法表示一些简单地集合.二、学习过程1、核对预习学案中地答案2、思考下列问题①请我们班地全体女生起立!接下来问:咱班地所有女生能不能构成一个集合啊?”②下面请班上身高在 1.75 以上地男生起立!他们能不能构成一个集合啊?③其实,生活中有很多东西能构成集合,比如新华字典里所有地汉字可以构成一个集合等等.那么,大家能不能再举出一些生活中地实际例子呢?请你给出集合地含义.④如果用A 表示高一(3>班全体学生组成地集合,用a 表示高一(3>班地一位同学,b是高一(4>班地一位同学,那么a、b与集合A分别有什么关系?由此看见元素与集合之间有什么关系?⑤世界上最高地山能不能构成一个集合?⑥世界上地高山能不能构成一个集合?⑦问题⑥说明集合中地元素具有什么性质?⑧由实数1、2、3、1组成地集合有几个元素?⑨问题⑧说明集合中地元素具有什么性质?⑩由实数1、2、3组成地集合记为M,由实数3、1、2组成地集合记为N,这两个集合中地元素相同吗?这说明集合中地元素具有什么性质?由此类比实数相等,你发现集合有什么结论?3、集合元素地三要素是、、4、例题例题1•下列各组对象不能组成集合地是(>A.大于6地所有整数B.高中数学地所有难题C.被3除余2地所有整数D.函数y= |图象上所有地点变式训练11•下列条件能形成集合地是(>A.充分小地负数全体B.爱好足球地人C.中国地富翁D.某公司地全体员工例题2.下列结论中,不正确地是(>A.若a€ N,则-a NB. 若a€Z,贝卩a2€ ZC若a€ Q,贝,a |€ Q D.若a€ R,贝变式训练2判断下面说法是否正确、正确地在(>内填“/,错误地填“X”(1>所有在N中地元素都在N*中<)(2>所有在N中地元素都在Z中(>(3>所有不在N*中地数都不在Z中<)(4>所有不在Q中地实数都在R中<)(5>由既在R中又在N*中地数组成地集合中一定包含数0<)(6>不在N中地数不能使方程4x= 8成立<)5、课堂小结三、当堂检测1、你能否确定,你所在班级中,高个子同学构成地集合?并说明理由.你能否确定,你所在班级中,最高地3位同学构成地集合?2、 _____ I<1 ) -3N ; <2 ) 3.14Q; <3 ) Q; <4) 0①;<5) Q; <6) _ R; <7) 1N+; <8) R.课后练习与提咼1•下列对象能否组成集合:(1>数组1、3、5、7;(2>到两定点距离地和等于两定点间距离地点;(3>满足3x-2>x+3地全体实数;(4>所有直角三角形;(5>美国NBA地著名篮球明星;(6>所有绝对值等于6地数;(7>所有绝对值小于3地整数;(8>中国男子足球队中技术很差地队员;(9>参加2008年奥运会地中国代表团成员2.(口答〉说出下面集合中地元素:(1>{大于3小于11地偶数};(2>{平方等于1地数};(3>{15地正约数}.3•用符号€或填空4•判断正误:(1>所有属于N地元素都属于N*.(>(2>所有属于N地元素都属于乙(>(3>所有不属于N*地数都不属于乙(>(4>所有不属于Q地实数都属于R .(>(5>不属于N地数不能使方程4x=8成立.(>参考答案1:(1>(2>(3>(4>(6>(7>(9>能组成集合,V5) <8)不能组成集合2: <1)其元素为4, 6, 8, 10<2)其元素为-1, 1<3)其元素为1, 3, 5, 15 3: <1)€€ ???个人收集整理- 仅供参考V2)€€€ ??V3)€€€€ ?V4)€€€€€4: <1)x <2)V <3)x <4)V <5)V申明:所有资料为本人收集整理,仅限个人学习使用,勿做商业用途。
第1节集合最新考纲 1.了解集合的含义,体会元素与集合的属于关系;能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题;2.理解集合之间包含与相等的含义,能识别给定集合的子集;在具体情境中了解全集与空集的含义;3.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集;理解在给定集合中一个子集的补集的含义,会求给定子集的补集;能使用韦恩(Venn)图表达集合间的基本关系及集合的基本运算.知识梳理1.元素与集合(1)集合中元素的三个特性:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于,表示符号分别为∈和∉.(3)集合的三种表示方法:列举法、描述法、图示法.2.集合间的基本关系(1)子集:若对任意x∈A,都有x∈B,则A⊆B或B⊇A.(2)真子集:若A⊆B,且集合B中至少有一个元素不属于集合A,则A≠⊂B或B≠⊃A.(3)相等:若A⊆B,且B⊆A,则A=B.(4)空集的性质:∅是任何集合的子集,是任何非空集合的真子集.3.集合的基本运算集合的并集集合的交集集合的补集符号表示A∪B A∩B若全集为U,则集合A的补集为∁U A 图形表示{x|x∈A,且集合表示{x|x∈A,或x∈B}{x|x∈U,且x∉A}x∈B}4.集合的运算性质(1)A∩A=A,A∩∅=∅,A∩B=B∩A.(2)A∪A=A,A∪∅=A,A∪B=B∪A.(3)A∩(∁U A)=∅,A∪(∁U A)=U,∁U(∁U A)=A.[微点提醒]1.若有限集A中有n个元素,则A的子集有2n个,真子集有2n-1个.2.子集的传递性:A⊆B,B⊆C⇒A⊆C.3.A⊆B⇔A∩B=A⇔A∪B=B⇔∁U A⊇∁U B.4.∁U(A∩B)=(∁U A)∪(∁U B),∁U(A∪B)=(∁U A)∩(∁U B).基础自测1.判断下列结论正误(在括号内打“√”或“×”)(1){x|y=x2+1}={y|y=x2+1}={(x,y)|y=x2+1}.()(2)若{x2,1}={0,1},则x=0,1.()(3)对于任意两个集合A,B,关系(A∩B)⊆(A∪B)恒成立.()(4)含有n个元素的集合有2n个真子集.()2.(必修1P12A5改编)若集合P={x∈N|x≤ 2 019},a=22,则()A.a∈PB.{a}∈PC.{a}⊆PD.a∉P3.(必修1P12B1改编)已知集合M={0,1,2,3,4},N={1,3,5},则集合M∪N的子集的个数为________.4.(2018·全国Ⅰ卷)已知集合A={x|x2-x-2>0},则∁R A=()A.{x|-1<x<2}B.{x |-1≤x ≤2}C.{x |x <-1}∪{x |x >2}D.{x |x ≤-1}∪{x |x ≥2}5.(2019·南昌模拟)已知集合P ={x |x 2≤1},M ={a }.若P ∪M =P ,则实数a 的取值范围为( ) A.[-1,1] B.[1,+∞)C.(-∞,-1]D.(-∞,-1]∪[1,+∞)6.(2017·全国Ⅲ卷改编)已知集合A ={(x ,y )|x 2+y 2=1},B ={(x ,y )|x ,y ∈R ,且y =x },则A ∩B 中元素的个数为________.考点一 集合的基本概念【例1】 (1)(2019·湖北四地七校联考)若集合M ={x ||x |≤1},N ={y |y =x 2,|x |≤1},则( ) A.M =N B.M ⊆N C.M ∩N =∅D.N ⊆M(2)若x ∈A ,则1x ∈A ,就称A 是伙伴关系集合,集合M =⎩⎨⎧⎭⎬⎫-1,0,12,2,3的所有非空子集中具有伙伴关系的集合的个数是()A.1B.3C.7D.31规律方法 1.研究集合问题时,首先要明确构成集合的元素是什么,即弄清该集合是数集、点集,还是其他集合;然后再看集合的构成元素满足的限制条件是什么,从而准确把握集合的含义.2.利用集合元素的限制条件求参数的值或确定集合中元素的个数时,要注意检验集合中的元素是否满足互异性.【训练1】 (1)(2018·全国Ⅱ卷)已知集合A ={(x ,y )|x 2+y 2≤3,x ∈Z ,y ∈Z },则A 中元素的个数为( )A.9B.8C.5D.4(2)设集合A ={x |(x -a )2<1},且2∈A ,3∉A ,则实数a 的取值范围为________.考点二 集合间的基本关系【例2】 (1)已知集合A ={x |y =1-x 2,x ∈R },B ={x |x =m 2,m ∈A },则( ) A.A ≠⊂BB.B ≠⊂AC.A ⊆BD.B =A(2)(2019·郑州调研)已知集合A ={x |x 2-5x -14≤0},集合B ={x |m +1<x <2m -1},若B ⊆A ,则实数m 的取值范围为________.规律方法 1.若B ⊆A ,应分B =∅和B ≠∅两种情况讨论.2.已知两个集合间的关系求参数时,关键是将两个集合间的关系转化为元素或区间端点间的关系,进而转化为参数满足的关系.解决这类问题常常要合理利用数轴、Venn 图,化抽象为直观进行求解.【训练2】 (1)(2018·唐山模拟)设集合M ={x |x 2-x >0},N =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪1x <1,则( )A.M NB.N MC.M =ND.M ∪N =R(2)若将本例(2)的集合A 改为A ={x |x 2-5x -14>0}.其它条件不变,则m 的取值范围是________.考点三 集合的运算 多维探究角度1 集合的基本运算【例3-1】 (1)(2017·全国Ⅰ卷)已知集合A ={x |x <2},B ={x |3-2x >0},则( )A.A ∩B =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <32B.A ∩B =∅C.A ∪B =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <32D.A ∪B =R(2)(2018·天津卷)设全集为R ,集合A ={x |0<x <2},B ={x |x ≥1},则A ∩(∁R B )=( ) A.{x |0<x ≤1} B.{x |0<x <1} C.{x |1≤x <2}D.{x |0<x <2}角度2 抽象集合的运算【例3-2】 设U 为全集,A ,B 是其两个子集,则“存在集合C ,使得A ⊆C ,B ⊆∁U C ”是“A∩B=∅”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件规律方法 1.进行集合运算时,首先看集合能否化简,能化简的先化简,再研究其关系并进行运算.2.注意数形结合思想的应用.(1)离散型数集或抽象集合间的运算,常借助Venn图求解;(2)连续型数集的运算,常借助数轴求解,运用数轴时要特别注意端点是实心还是空心. 【训练3】(1)(2019·延安模拟)若全集U={-2,-1,0,1,2},A={-2,2},B={x|x2-1=0},则图中阴影部分所表示的集合为()A.{-1,0,1}B.{-1,0}C.{-1,1}D.{0}(2)(2019·新乡模拟)已知集合A={x|x2-x≤0},B={x|a-1≤x<a},若A∩B只有一个元素,则a=()A.0B.1C.2D.1或2[思维升华]1.在解题时经常用到集合元素的互异性,一方面利用集合元素的互异性能顺利找到解题的切入点;另一方面,在解答完毕之时,注意检验集合的元素是否满足互异性以确保答案正确.2.对连续数集间的运算,借助数轴的直观性,进行合理转化;对已知连续数集间的关系,求其中参数的取值范围时,要注意单独考察等号能否取到.3.对离散的数集间的运算,或抽象集合间的运算,可借助Venn图.这是数形结合思想的又一体现.[易错防范]1.集合问题解题中要认清集合中元素的属性(是数集、点集还是其他类型集合),要对集合进行化简.2.空集是任何集合的子集,是任何非空集合的真子集,时刻关注对空集的讨论,防止漏解.3.解题时注意区分两大关系:一是元素与集合的从属关系;二是集合与集合的包含关系.4.Venn图图示法和数轴图示法是进行集合交、并、补运算的常用方法,其中运用数轴图示法时要特别注意端点是实心还是空心.基础巩固题组(建议用时:30分钟)一、选择题1.(2018·全国Ⅲ卷)已知集合A={x|x-1≥0},B={0,1,2},则A∩B=()A.{0}B.{1}C.{1,2}D.{0,1,2}2.设集合A={1,2,3},B={4,5},M={x|x=a+b,a∈A,b∈B},则M中元素的个数为()A.3B.4C.5D.63.(2019·佛山质检)已知全集U={0,1,2,3,4},若A={0,2,3},B={2,3,4},则(∁A)∩(∁U B)=()UA.∅B.{1}C.{0,2}D.{1,4}4.(2018·石家庄质检)设集合A={x|-1<x≤2},B={x|x<0},则下列结论正确的是()A.(∁R A)∩B={x|x<-1}B.A∩B={x|-1<x<0}C.A∪(∁R B)={x|x≥0}D.A ∪B ={x |x <0}5.已知集合A ={x ∈N |x 2-2x -8≤0},B ={x |2x ≥8},则集合A ∩B 的子集的个数为( ) A.1B.2C.3D.46.(2019·豫北名校联考)已知集合M ={x |y =x -1},N ={x |y =log 2(2-x )},则 ∁R (M ∩N )=( ) A.[1,2) B.(-∞,1)∪[2,+∞) C.[0,1]D.(-∞,0)∪[2,+∞)7.设集合A ={(x ,y )|x +y =1},B ={(x ,y )|x -y =3},则满足M ⊆(A ∩B )的集合M 的个数是( ) A.0B.1C.2D.38.(一题多解)(2018·中原名校联考)已知集合A ={x |y =lg(x -x 2)},B ={x |x 2-cx <0,c >0},若A ⊆B ,则实数c 的取值范围为( ) A.(0,1] B.[1,+∞) C.(0,1)D.(1,+∞)二、填空题9.(2016·全国Ⅲ卷改编)设集合S ={x |(x -2)(x -3)≥0},T ={x |x >0},则(∁R S )∩T =________.10.已知集合A ={1,2},B ={a ,a 2+3},若A ∩B ={1},则实数a 的值为________.11.(2019·福州质检)已知集合A ={1,3,4,7},B ={x |x =2k +1,k ∈A },则集合A ∪B 中元素的个数为________.12.集合A ={x |x <0},B ={x |y =lg[x (x +1)]},若A -B ={x |x ∈A ,且x ∉B },则A -B =________.能力提升题组 (建议用时:10分钟)13.(2018·河南百校联盟联考)若集合A ={x |y =lg(3x -x2)},B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫y ⎪⎪⎪y =1+4x +1,x ∈A ,则A∩(∁R B)等于()A.(0,2]B.(2,3)C.(3,5)D.(-2,-1)14.已知集合A={x|y=4-x2},B={x|a≤x≤a+1},若A∪B=A,则实数a的取值范围为()A.(-∞,-3]∪[2,+∞)B.[-1,2]C.[-2,1]D.[2,+∞)15.(2019·皖南八校联考改编)已知集合A={(x,y)|x2=4y},B={(x,y)|y=x},则A∩B的真子集个数是________.16.集合U=R,A={x|x2-x-2<0},B={x|y=ln(1-x)},则图中阴影部分所表示的集合是________.。
第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出地四个选项中,只有一项是符合题目要求地.1.已知集合{}2|1log A x N x k =∈<<,集合A 中至少有3个元素,则( )A .8k >B .8k ≥C .16k >D .16k ≥2.复数212i i+-地共轭复数地虚部是( )A .35-B .35C .-1D .13. 下列结论正确地是( )A .若直线l ⊥平面α,直线l ⊥平面β,则//αβB .若直线//l 平面α,直线//l 平面β,则//αβC .若两直线12l l 、与平面α所成地角相等,则12//l l D .若直线l 上两个不同地点A B 、到平面α地距离相等,则//l α4.等比数列{}n a 地前n 项和为n S ,已知2532a a a =,且4a 与72a 地等差中项为54,则5S =( )A .29 B .31 C .33 D .365.已知实数,x y 满足21010x y x y -+≥⎧⎨--≤⎩,则22x y z x ++=地取值范围为( )A .100,3⎡⎤⎢⎥⎣⎦ B .(]10,2,3⎡⎫-∞+∞⎪⎢⎣⎭ C .102,3⎡⎤⎢⎥⎣⎦ D .(]10,0,3⎡⎫-∞+∞⎪⎢⎣⎭6.若()0,0,lg lg lg a b a b a b >>+=+,则a b +地最小值为( )A .8B .6C .4D .27.阅读如下图所示地程序框图,则该算法地功能是( )A .计算数列{}12n -前5项地和B .计算数列{}21n-前5项地和 C .计算数列{}21n -前6项地和 D .计算数列{}12n -前6项地和8.ABC ∆中,"角,,A B C 成等差数列"是")sin sin cos C A A B =+"地( )A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件9.已知a b >,二次三项式220ax x b ++≥对于一切实数x 恒成立,又0x R ∃∈,使20020ax x b ++=成立,则22a b a b+-地最小值为( )A .1 BC .2 D.10.已知等差数列{}{},n n a b 地前n 项和分别为,n n S T ,若对于任意地自然数n ,都有2343n n S n T n -=-,则()3153392102a a a b b b b ++=++( )A .1941 B .1737 C .715 D .204111.已知函数()21,g x a x x e e e ⎛⎫=-≤≤ ⎪⎝⎭为自然对数的底数与()2ln h x x =地图象上存在关于x 轴对称地点,则实数a 地取值范围是( )A .211,2e ⎡⎤+⎢⎥⎣⎦ B .21,2e ⎡⎤-⎣⎦ C .2212,2e e ⎡⎤+-⎢⎥⎣⎦ D .)22,e ⎡-+∞⎣12.如图,在OMN ∆中,,A B 分别是,OM ON 地中点,若(),OP xOA yOB x y R =+∈ ,且点P 落在四边形ABNM 内(含边界),则12y x y +++地取值范围是( )A .12,33⎡⎤⎢⎥⎣⎦B .13,34⎡⎤⎢⎥⎣⎦C .13,44⎡⎤⎢⎥⎣⎦D .12,43⎡⎤⎢⎥⎣⎦第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将解析填在答题纸上)13.若实数()0,1a b ∈、,且满足()114a b ->,则a b 、地大小关系是_____________.14.若110tan ,,tan 342ππααα⎛⎫+=∈ ⎪⎝⎭,则2sin 22cos cos 44ππαα⎛⎫++ ⎪⎝⎭地值为___________.15.一个几何体地三视图如下图所示,则此几何体地体积是_____________.16.已知函数()()2lg ,064,0x x f x x x x ⎧-<⎪=⎨-+≥⎪⎩,若关于x 地方程()()210f x bf x -+=有8个不同根,则实数b 地取值范围是______________.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分12分)已知()2sin 2f x x π⎛⎫=⎪⎝⎭,集合(){}|2,0M x f x x ==>,把M 中地元素从小到大依次排成一列,得到数列{}*,n a n N ∈. (1)求数列{}n a 地通项公式;(2)记211n n b a +=,设数列{}n b 地前n 项和为n T ,求证:14n T <.18.(本小题满分12分)已知向量2,1,cos ,cos 444x x x m n ⎫⎛⎫==⎪ ⎪⎭⎝⎭,记()f x m n=. (1)若()1f x =,求cos 3x π⎛⎫+ ⎪⎝⎭地值; (2)在锐角ABC ∆中,角,,A B C 地对边分别是,,a b c ,且满足()2cos cos a c B b C -=,求()2f A 地取值范围.19.(本小题满分12分)如下图所示,在直三棱柱111ABC A B C -中,平面1A BC ⊥侧面11A B BA ,且12AA AB ==.(1)求证:AB BC ⊥;(2)若直线AC 与平面1A BC 所成角地正弦值为12,求锐二面角1A A C B --地大小.20.(本小题满分12分)已知函数()()()()212ln f x a x x a R =---∈.(1)若曲线 ()()g x f x x =+上点()()1,g 1处地切线过点()0,2,求函数()g x 地单调减区间;(2)若函数()y f x =在10,2⎛⎫ ⎪⎝⎭上无零点,求a 地最小值.21.(本小题满分12分)已知()(),,,1p x m q x a ==+,二次函数()1f x p q =+ ,关于x 地不等式()()2211f x m x m >-+-地解集为()(),1,m m -∞++∞ ,其中m 为非零常数,设()()1f xg x x =-.(1)求a 地值;(2)若存在一条与y 轴垂直地直线和函数()()ln x g x x x Γ=-+地图象相切,且切点地横坐标0x 满足0013x x -+>,求实数m 地取值范围;(3)当实数k 取何值时,函数()()()ln 1x g x k x ϕ=--存在极值?并求出相应地极值点.请从下面所给地22 , 23 ,24三题中任选一题做答,如果多做,则按所做地第一题计分.22.(本小题满分10分)选修4-1:几何证明选讲已知四边形ABCD 为圆O 地内接四边形,且BC CD =,其对角线AC 与BD 相交于点M ,过点B 作圆O 地切线交DC 地延长线于点P .(1)求证:AB MD AD BM = ;(2)若CP MD CB BM = ,求证:AB BC =.23.本小题满分10分)选修4-4:坐标系与参数方程已知直线l地参数方程为x m y ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),以坐标原点为极点,x 轴地正半轴为极轴建立极坐标系,曲线C 地极坐标方程为2222cos 3sin 12ρθρθ+=,且曲线C 地左焦点F 在直线l 上.(1)若直线l 与曲线C 交于,A B 两点,求FA FB 地值;(2)求曲线C 地内接矩形地周长地最大值.24.(本小题满分10分)选修4-5:不等式选讲已知0x R ∃∈使不等式12x x t ---≥成立.(1)求满足条件地实数t 地集合T ;(2)若1,1m n >>,对t T ∀∈,不等式23log log m n t ≥ 恒成立,求m n +地最小值.。
一、选择题1.(2011·高考课标全国卷)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为( )A.13B.12C.23D.34解析:选A.甲、乙两位同学参加3个小组的所有可能性有3×3=9(种),其中甲、乙两人参加同一个小组的情况有3(种).故甲、乙两位同学参加同一个兴趣小组的概率P =39=13. 2.(2012·高考广东卷)从个位数与十位数之和为奇数的两位数中任取一个,其个位数为0的概率是( )A.49B.13C.29D.19解析:选D.由于个位数与十位数之和为奇数,则个位数与十位数分别为一奇一偶.若个位数为奇数时,这样的两位数共有C 15C 14=20个;若个位数为偶数时,这样的两位数共有C 15C 15=25个.于是,个位数与十位数之和为奇数的两位数共有20+25=45个.其中,个位数是0的有C 15×1=5个,于是,所求概率为545=19. 3.在一个袋子中装有分别标注数字1,2,3,4,5的五个小球,这些小球除标注的数字外完全相同.现从中随机取出2个小球,则取出的小球标注的数字之和为3或6的概率是( )A.310B.15C.110D.112 解析:选A.由袋中随机取出2个小球的基本事件总数为C 25,取出小球标注数字和为3的事件为1,2.取出小球标注数字和为6的事件为1,5或2,4,∴取出的小球标注的数字之和为3或6的概率为P =1+2C 25=310.故选A. 4.(2011·高考浙江卷)从装有3个红球、2个白球的袋中任取3个球,则所取的3个球中至少有1个白球的概率是( )A.110B.310C.35D.910解析:选D.“所取的3个球中至少有1个白球”的对立事件是“所取的3个球都不是白球”,因而所求的概率P =1-C 33C 35=1-110=910. 5.(2011·高考浙江卷)有5本不同的书,其中语文书2本,数学书2本,物理书1本,若将其随机地抽取并排摆放在书架的同一层上,则同一科目的书都不相邻的概率是( )A.15B.25C.35D.45解析:选B.第一步先排语文书有A 22=2(种)排法.第二步排物理书,分成两类.一类是物理书放在语文书之间,有1种排法,这时数学书可从4个空中选两个进行排列,有A 24=12(种)排法;一类是物理书不放在语文书之间有2种排法,再选一本数学书放在语文书之间有2种排法,另一本有3种排法.因此同一科目的书都不相邻共有2×(12+2×2×3)=48(种)排法,而5本书全排列共有A 55=120(种),所以同一科目的书都不相邻的概率是48120=25. 二、填空题6.(2012·高考上海卷)三位同学参加跳高、跳远、铅球项目的比赛.若每人都选择其中两个项目,则有且仅有两人选择的项目完全相同的概率是__________(结果用最简分数表示).解析:三位同学每人选择三项中的两项有C 23C 23C 23=3×3×3=27(种)选法,其中有且仅有两人所选项目完全相同的有C 23C 13C 12=3×3×2=18(种)选法.∴所求概率为P =1827=23. 答案:237.在平面直角坐标系中,从六个点:A (0,0)、B (2,0)、C (1,1)、D (0,2)、E (2,2)、F (3,3)中任取三个,这三点能构成三角形的概率是________(结果用分数表示).解析:∵B 、C 、D 三点共线,A 、C 、E 、F 四点共线,∴六个点中任取三点,能构成三角形的取法共有C 36-C 33-C 34=15种,总取法C 36=20种,∴能构成三角形的概率是1520=34. 答案:348.(2012·高考重庆卷)某艺校在一天的6节课中随机安排语文、数学、外语三门文化课和其他三门艺术课各1节,则在课表上的相邻两节文化课之间最多间隔1节艺术课的概率为________(用数字作答).解析:6节课随机安排,共有A 66=720(种)方法.课表上相邻两节文化课之间最多间隔1节艺术课,分三类:第1类:文化课之间没有艺术课,有A 33·A 44=6×24=144(种).第2类:文化课之间有1节艺术课,有A 33·C 13·A 12·A 33=6×3×2×6=216(种).第3类:文化课之间有2节艺术课,有A 33·A 23·A 22=6×6×2=72(种).共有144+216+72=432(种).由概率公式得P =432720=35. 答案:35三、解答题9.6个房间安排4位旅游者住,每人可以住进任一房间,住进各房间是等可能的,计算:(1)指定的4个房间各有1人的概率;(2)恰有4个房间各有1人的概率;(3)指定的某个房间中有2人的概率;(4)第一号房间有1人,第二号房间有3人的概率.解:(1)指定的4个房间各有1人,有A 44种方法,故所求概率P 1=A 4464=154. (2)6间房间选出4间,有C 46种方法,4个人住选出的四间房有A 44种方法,故所求概率为P 2=C 46A 4464=518.(3)从4人中选2人去指定的某个房间,共有C 24种选法,余下2人每人都可去5个房间中的任一间,有52种住法,故所求概率为P 3=C 24·5264=25216. (4)从4人中选1人去1号房间,剩下3人住2号房间,有C 14种方法,故所求概率:P 4=C 1464=1324. 10.(2011·高考课标全国卷)某种产品的质量以其质量指标值衡量,质量指标值越大表明质量越好,且质量指标值大于或等于102的产品为优质品.现用两种新配方(分别称为A 配方和B 配方)做试验,各生产了100件这种产品,并测量了每件产品的质量指标值,得到下面的试验结果:(1)(2)已知用B 配方生产的一件产品的利润y (单位:元)与其质量指标值t 的关系式为y =⎩⎪⎨⎪⎧ -2,t <94,2, 94≤t <102,4, t ≥102.估计用B 配方生产的一件产品的利润大于0的概率,并求用B 配方生产的上述100件产品平均一件的利润.解:(1)由试验结果知,用A 配方生产的产品中优质品的频率为22+8100=0.3,所以用A 配方生产的产品的优质品率的估计值为0.3.由试验结果知,用B 配方生产的产品中优质品的频率为32+10100=0.42,所以用B 配方生产的产品的优质品率的估计值为0.42.(2)由条件知,用B 配方生产的一件产品的利润大于0,需其质量指标值t ≥94,由试验结果知,质量指标值t ≥94的频率为0.96,所以用B 配方生产的一件产品的利润大于0的概率估计值为0.96.用B 配方生产的产品平均一件的利润为1100×[4×(-2)+54×2+42×4]=2.68(元).11.(探究选做)某班级有数学、自然科学、人文科学3个兴趣小组,各小组均有3名成员,现从3个小组中各选出1人参加一个座谈会.(1)求数学小组的甲同学没有被选中、自然科学小组的乙同学被选中的概率;(2)求数学小组的甲同学、自然科学小组的乙同学至少有1人不被选中的概率.解:把数学小组的3名成员记作S 1,S 2,S 3,自然科学小组的3名成员记作Z 1,Z 2,Z 3,人文科学小组的3名成员记作R 1,R 2,R 3,则基本事件是(S 1,Z 1,R 1),(S 1,Z 1,R 2),(S 1,Z 1,R 3),(S 1,Z 2,R 1),(S 1,Z 2,R 2),(S 1,Z 2,R 3),(S 1,Z 3,R 1),(S 1,Z 3,R 2),(S 1,Z 3,R 3),然后把这9个基本事件中S 1换成S 2,S 3又各得9个基本事件,故基本事件的总数是27个.以S 1表示数学组中的甲同学、Z 2表示自然科学小组的乙同学.(1)甲同学没有选中、自然科学小组的乙同学被选中所含有的基本事件是上述基本事件中不含S 1,含有Z 2的基本事件,即(S 2,Z 2,R 1),(S 2,Z 2,R 2),(S 2,Z 2,R 3),(S 3,Z 2,R 1),(S 3,Z 2,R 2),(S 3,Z 2,R 3)共6个基本事件,故所求的概率为627=29. (2)“数学小组的甲同学、自然科学小组的乙同学至少有1人不被选中”的对立事件是“数学小组的甲同学、自然科学小组的乙同学都被选中”,这个事件所包含的基本事件是(S 1,Z 2,R 1),(S 1,Z 2,R 2),(S 1,Z 2,R 3),共3个基本事件,则这个事件的概率是327=19,根据对立事件的概率计算方法,故所求的概率是1-19=89.。
古书中关于有理数运算法则的记载关键信息项:1、所涉及的古书名称及朝代2、书中记载的有理数运算的具体法则3、法则的表述方式和示例4、对这些法则的解释和分析5、这些法则在数学发展中的地位和影响1、引言11 有理数运算在数学中的重要性111 有理数运算作为数学基础的作用112 其在日常生活和科学研究中的广泛应用2、古书中有理数运算法则的来源21 介绍相关古书的背景和作者211 作者的数学造诣和学术地位212 古书创作的时代数学发展状况3、具体的有理数运算法则记载31 加法法则的描述311 举例说明加法法则的应用312 对加法法则的深入解释32 减法法则的记载321 以实例展示减法法则的运算过程322 分析减法法则的特点33 乘法法则的呈现331 乘法法则的详细表述332 提供乘法运算的范例34 除法法则的记录341 说明除法法则的条件和限制342 用具体数据解释除法法则4、法则的表述特点41 语言风格和表达方式411 与现代数学语言的对比412 对理解和传承的影响42 所使用的符号和术语421 独特符号和术语的含义422 其演变和发展5、对这些法则的分析和解读51 从现代数学角度看法则的合理性和准确性511 与现代有理数运算规则的一致性512 可能存在的局限性52 法则所蕴含的数学思想521 对逻辑推理和数学思维的培养522 对后续数学发展的启示6、古书中有理数运算法则的影响61 在当时数学教育中的作用611 对学者和学生的学习指导意义612 对数学知识传播的贡献62 对后世数学研究的启发621 为后续数学理论的建立奠定基础622 对其他数学分支的影响7、结论71 总结古书中有理数运算法则的重要价值711 强调其在数学历史中的地位712 对未来数学研究和教育的展望。
2015年高三理数11月月考卷12小题,每小题5分,共60分)1.设集合}5,2{},3,2,1{},6,5,4,3,2,1{===B A U ,则)(B C A U ⋂=( ) A .{1,3}B .{2}C .{2,3}D .{3}2.已知{}n a 为等差数列,其公差为-2,且7a 是3a 与9a 的等比中项,n S 为{}n a 的前n项和,*n N ∈,则10S 的值为( )A .-110B .-90C .90D .1103.将函数)62sin(π-=x y 图象向左平移4π个单位,所得函数图象的一条对称轴的方程是() A .12x π= B .6x π= C .3x π= D .12x π=-4.已知|a |=1,|b |=2,a 与b 的夹角为60,则a +b 在a 上的投影为 ( )A .1B .2C .772 D .775.执行如图所示的程序框图,若输入n =10,则输出S =( ).A .511B .1011C .3655D .72556.已知()πα,0∈,22)3cos(-=+πα,则=α2tan ( )A .33B .3-或33-C .33- D .3-7.已知命题p :函数2()21(0)f x ax x a =--≠在(0,1)内恰有一个零点; 命题q :函数2ay x -=在(0,)+∞上是减函数,若p 且q ⌝为真命题,则实数a 的取值范围是( )A .1a >B .a ≤2C .1<a ≤2 D.a ≤l 或a >28.在△ABC 中,M 为边BC 上任意一点,N 为AM 的中点,AN AB AC λμ=+,则λ+μ的值为( ) A.12 B .13C .14 D .1 9.ABC ∆中,角,,A B C 成等差数列是sin sin )cos C A A B =+成立的 ( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件10.如图,四棱锥S —ABCD 的底面为正方形,SD ⊥底面ABCD ,则下列结论中不正确...的是 A .AC ⊥SBB .AB ∥平面SCDC .SA 与平面SBD 所成的角等于SC 与平面SBD 所成的角 D .AB 与SC 所成的角等于DC 与SA 所成的角11.已知椭圆C :22221(0)x y a b a b+=>>,12,F F 为左右焦点,点P 在椭圆C上,△12F PF 的重心为G ,内心为I ,且有12IG F F λ= (λ为实数),则椭圆方程为 ( ) A .22186x y += B .221164+=x y C .2251927x y += D .221105+=x y 12.已知定义在R 上的奇函数()f x ,其导函数为()'f x ,对任意正实数x 满足()()'2xf x f x >-,若()()2g x x f x =,则不等式()()13g x g x <-的解集是( )A .1,+4⎛⎫∞⎪⎝⎭ B .10,4⎛⎫⎪⎝⎭C .1-,4⎛⎫∞ ⎪⎝⎭D .11-,,+44⎛⎫⎛⎫∞⋃∞ ⎪ ⎪⎝⎭⎝⎭4小题每题5分共20分) 13.已知a b ⊥,且||a =2,||b =3,且2a b + 与a b λ- 垂直,则实数λ的值为.14.已知,x y 满足1400x x y x y ≥⎧⎪+-≤⎨⎪-≤⎩,,记2z x y =-的最大值为m ,则函数1x y a m-=+(0a >且1a ≠)的图象所过定点坐标为.15.设函数212log (0)()log ()(0)xx f x x x >⎧⎪=⎨-<⎪⎩若()()f a f a >-,则实数a 的取值范围是.16.三棱柱111ABC A B C -各顶点都在一个球面上,侧棱与底面垂直,0120ACB ∠=,CA CB ==14AA =,则这个球的表面积为.三、解答题17.(本题满分12分)如图,在ABC ∆中,BC 边上的中线AD 长为3,且cos B =1cos 4ADC ∠=-.(1)求sin BAD ∠的值; (2)求AC 边的长.18.(本小题满分12分)已知数列{a }n 的首项al =1,*14()2nn n a a n N a +=∈+. (1)证明:数列11{}2n a -是等比数列; (2)设n nnb a =,求数列{}n b 的前n 项和n S .19.(本小题满分12分)如图,在四棱锥S ﹣ABCD 中,底面ABCD 是正方形,其他四个侧面都是等边三角形,AC 与BD 的交点为O ,E 为侧棱SC 上一点.(Ⅰ)当E 为侧棱SC 的中点时,求证:SA∥平面BDE ; (Ⅱ)求证:平面BDE⊥平面SAC ;(Ⅲ)当二面角E ﹣BD ﹣C 的大小为45°时,试判断点E 在SC 上的位置,并说明理由. 20.(本小题满分12分)已知函数 f (x )=ax+(1﹣a )lnx+(a ∈R )(Ⅰ)当a=0时,求 f (x )的极值;(Ⅱ)当a <0时,求 f (x )的单调区间;(Ⅲ)方程 f (x )=0的根的个数能否达到3,若能请求出此时a 的范围,若不能,请说明理由. 21.(本小题满分12分)选修4-5:不等式选讲 已知函数()|21|2,()|2| 3.f x x g x x =-+=-++ (Ⅰ)解不等式:()2g x ≥-;(Ⅱ)当x R ∈时,()()2f x g x m -≥+恒成立,求实数m 的取值范围.22.(本题满分10分) 选修4-4:极坐标与参数方程在直角坐标系xOy 中,圆C 1:x 2+y 2=4,圆C 2:(x -2)2+y 2=4.(Ⅰ)在以O 为极点,x 轴正半轴为极轴的极坐标系中,分别写出圆C 1,C 2的极坐标方程,并求出圆C 1,C 2交点的极坐标;(Ⅱ)求圆C 1与C 2的公共弦的参数方程.参考答案一选择1.A :因为{1,3,4}U C B =,所以(){1,2,3}{1,3,4}{1,3}U A C B == ,选A . 2.D 3.A4.B :a +b 在a 上的投影为()112cos602||a ab a ⋅+=+⨯⨯=,选B . 5.A .6.C()40,,333πππαπα⎛⎫∈⇒+∈ ⎪⎝⎭,因此由22)3cos(-=+πα得355,,2,tan 234126ππππαααα+====7.C :命题p 为真时:0,(1)2201a f a a >=->⇒>;命题q 为真时:20,2a a -<>,因为p 且q ⌝为真命题,所以命题p 为真,命题q 为假,即12a <≤,选C .8.A .:因为222AM AN AB AC λμ==+,所以1221,,2λμλμ+=+=选A . 9.A .sin()sin )cos cos sin cos cos 0tan A B A A B A B A B A B +=+⇒=⇒==或即23A B ππ==或,而角,,A B C 成等差数列,则3B π=,因此角,,A B C 成等差数列是sin cos sin )cos C A A B =+成立的充分不必要条件,选A .10.D 11.A : 12.C 二填空13.29:由题意得:229(2)()02.2a b a b a b λλλ+⋅-=⇒=⇒=14.(1,3)15.(-1,0)∪(1,+∞) 16.64π 三解答题17.(1);863sin ,,810cos =∴=B B451sin ,41cos =∠∴-=∠ADC ADC ;46)sin(sin =∠-∠=∠∴B ADC BAD(2)在ABD ∆中,由正弦定理,得sin sin AD BDB BAD =∠,即=,解得2BD =…故2DC =,从而在ADC ∆中,由余弦定理,得2222cos AC AD DC AD DC ADC =+-⋅∠22132232()164=+-⨯⨯⨯-=;AC= 4 ;18.(1)证明:142n n n a a a +=+∵,12111442n n n n a a a a ++==+∴,111111222n n a a +⎛⎫-=- ⎪⎝⎭∴,又11111122a a =-=,∴,所以数列112n a ⎧⎫-⎨⎬⎩⎭是以12为首项,12为公比的等比数列. (2)解:由(1)知1111112222n nn a -⎛⎫-==⎪⎝⎭,22nn n n n n b a =-=∴, 设231232222n n nS =++++…,① 则231112122222n n n n nS +-=++++…,② 由①-②得,21111111111122112222222212n n n n n n n n n nS +++⎛⎫- ⎪⎝⎭=+++-=-=---…,11222n n nnS -=--∴.19.(Ⅰ)由题可知,连接OE ,由条件可得SA ∥OE .因为SA ⊈平面BDE ,OE ⊂平面BDE ,所以SA ∥平面BDE .(Ⅱ)由(Ⅰ)知SO ⊥面ABCD ,AC ⊥BD .建立如图所示的空间直角坐标系.设四棱锥S ﹣ABCD 的底面边长为2,则)000(,,O ,)200(,,S ,)002(,,A ,)0,2,0(B ,)0,0,2(-C ,)0,2,0(-D ,于是)00,22(,-=AC ,)0,220(-=,BD .设CE=a (0<a <2),由已知可求得∠ECO=45°. 所以)22,0,222(a a E +-,于是)2,2,222(a aa BE -+-=. 设平面BDE 法向量为),,(z y x =,则⎪⎩⎪⎨⎧=⋅=⋅00即⎪⎩⎪⎨⎧=+-+-=0222)222(0az y x a y , 令z=1,得)1,0,2(a an -=.易知)0,220(,=是平面SAC 的法向量. 因为0)0,22,0()1,0,2(=-⋅-=⋅aa,所以⊥,所以平面BDE ⊥平面SAC .(8分) (Ⅲ)设CE=a (0<a <2),由(Ⅱ)可知,平面BDE 法向量为)1,0,2(aa-=,因为SO ⊥底面ABCD ,所以)200(,,=OS 是平面BDC 的一个法向量.由已知二面角E ﹣BD ﹣C 的大小为45°. 所以2245cos |),cos(|=︒=,所以2221)2(22=-+-aa ,解得a=1. 所以点E 是SC 的中点.20.(Ⅰ)f (x )其定义域为(0,+∞). 当a=0时,f (x )=,f'(x )=.令f'(x )=0,解得x=1,当0<x <1时,f'(x )<0;当x >1时,f'(x )>0.所以f (x )的单调递减区间是(0,1),单调递增区间是(1,+∞); 所以x=1时,f (x )有极小值为f (1)=1,无极大值 (Ⅱ) f'(x )=a ﹣(x >0)令f'(x )=0,得x=1或x=﹣当﹣1<a <0时,1<﹣,令f'(x )<0,得0<x <1或x >﹣, 令f'(x )>0,得1<x <﹣;当a=﹣1时,f'(x )=﹣.当a <﹣1时,0<﹣<1,令f'(x )<0,得0<x <﹣或x >1, 令f'(x )>0,得﹣<a <1; 综上所述:当﹣1<a <0时,f (x )的单调递减区间是(0,1),(﹣),单调递增区间是(1,﹣);当a=﹣1时,f (x )的单调递减区间是(0,+∞);当a <﹣1时,f (x )的单调递减区间是(0,﹣),(1,+∞),单调递增区间是(Ⅲ)a ≥0∴f'(x )=0(x >0)仅有1解,方程f (x )=0至多有两个不同的解. (注:也可用f min (x )=f (1)=a+1>0说明.)由(Ⅱ)知﹣1<a <0时,极小值 f (1)a+1>0,方程f (x )=0至多在区间(﹣)上有1个解.a=﹣1时f (x )单调,方程f (x )=0至多有1个解.; a <﹣1时,,方程f (x )=0仅在区间内(0,﹣)有1个解; 故方程f (x )=0的根的个数不能达到3.21:(Ⅰ)由()2-≥x g 得52≤+x ,解得37-≤≤x 所以不等式的解集是{}37≤≤-x x(Ⅱ)设()()()21+21h x f x g x x x =-=-+-则()⎪⎩⎪⎨⎧+---=xx x x h 3223212122≥<<--≤x x x 所以()23≥x h所以对应任意R x ∈,不等式()()2+≥-m x g x f 恒成立,得232≤+m ,得21-≤m 所以最后m 的取值范围是21-≤m .22.(Ⅰ)ρ=2,ρ=4cos θ.(2,3π),(2,-3π).(Ⅱ)1,,tan ,x y θ=⎧⎨=⎩-3π≤θ≤3π. 解:(Ⅰ)圆C 1的极坐标方程为ρ=2,圆C 2的极坐标方程ρ=4cos θ.解2,,4cos ,ρρθ=⎧⎨=⎩,得ρ=2,θ=±3π,故圆C 1与圆C 2交点的坐标为(2,3π),(2,-3π). (Ⅱ) 圆C 1与圆C 2交点都在直线x =1 上 于是圆C 1与C 2的公共弦的参数方程为1,,tan ,x y θ=⎧⎨=⎩-3π≤θ≤3π.。