2017年中考数学专项复习《圆周角1》练习 浙教版 精品
- 格式:doc
- 大小:196.51 KB
- 文档页数:8
3.5 圆周角一、选择题(共10小题;共50分)1. 如图,点A、B、M在⊙O上的动点,要是△ABM为等腰三角形,则所有符合条件的点M有 ( ).A. 1个B. 2个C. 3个D. 4个2. 如图,P为正三角形ABC外接圆上一点,则∠APB= ( ).A. 150∘B. 135∘C. 115∘D. 120∘3. 如图,⊙O中,∠CBO=45∘,∠CAO=15∘,则∠AOB的度数是 ( )A. 75∘B. 60∘C. 45∘D. 30∘4. 如图,AB是⊙O的直径,C,D是⊙O上的两点,分别连接AC,BC,CD,OD,若∠DOB=140∘,则∠ACD= ( )A. 20∘B. 30∘C. 40∘D. 70∘5. 如图,⊙O是△ABC的外接圆,∠ACO=45∘,则∠B的度数为 ( )A. 30∘B. 35∘C. 40∘D. 45∘6. 如图,四边形ABCD内接于⊙O,若四边形ABCO是平行四边形,则∠ADC的大小为 ( )A. 45∘B. 50∘C. 60∘D. 75∘7. 如图,⊙O为△ABC的外接圆,∠A=72∘,则∠BCO的度数为 ( )A. 15∘B. 18∘C. 20∘D. 28∘8. 如图所示,等圆⊙O1和⊙O2相交于A、B两点,⊙O1经过⊙O2的圆心O2,连接AO1并延长交⊙O1于点C,则∠ACO2的度数为 ( )A. 60∘B. 45∘C. 30∘D. 20∘9. 如图,平行四边形ABCD的顶点A,B,D在⊙O上,顶点C在⊙O的直径BE上,∠ADC= 54∘,连接AE,则∠AEB的度数为 ( )A. 36∘B. 46∘C. 27∘D. 63∘10. 如图,正方形ABCD的对角线相交于O,点F在AD上,AD=3AF,△AOF的外接圆交AB于E,则AEAF的值为 ( )A. 32B. 3 C. 53D. 2二、填空题(共10小题;共50分)11. 如图,已知AB,AC是⊙O的两条弦,且AB=AC,∠BOC=100∘,则∠B的度数为.12. 如图,⊙O的半径是2,直线与⊙O相交于A、B两点,M、N是⊙O上两个动点,且在直线的异侧,若∠AMB=45∘,则四边形MANB面积的最大值是.13. 如图,AB是⊙O的弦,AB=6,点C是⊙O上的一个动点,且∠ACB=45∘,若点M,N分别是AB,BC的中点,则MN长的最大值是14. 如图,AB是⊙O的一条弦,点C是⊙O上一动点,且∠ACB=30∘,点E、F分别是AC、BC的中点,直线EF与⊙O交于G、H两点,若⊙O的半径为7,则GE+FH的最大值为.15. 直径为10 cm的⊙O中,弦AB=5 cm,则弦AB所对的圆周角是.16. 如图,已知A,B,C三点在⊙O上,AC⊥BO于D,∠B=55∘,则∠BOC的度数是.17. 如图,在⊙O的内接五边形ABCDE中,∠CAD=35∘,则∠B+∠E=.18. 如图,点A,B,C在⊙O上,CO的延长线交AB于点D,∠A=50∘,∠B=30∘则∠ADC的度数为.⏜的中点,点P是直径MN上一动点,若⊙O的19. 如图,点A是半圆上一个三等分点,点B是AN半径为1,则AP+BP的最小值是.20. 如图,△ABC中,BC=4,∠BAC=45∘,以4√2为半径,过B、C两点作⊙O,连OA,则线段OA的最大值为.三、解答题(共3小题;共39分)21. 已知:△ABC中,∠ABC=∠ACB,以AB为直径的⊙O交BC于点D.Ⅰ如图1,当∠A为锐角时,AC与⊙O交于点E,连接BE,则∠BAC与∠CBE的数量关系是∠BAC=∠CBE;Ⅱ如图2,若AB不动,AC绕点A逆时针旋转,当∠BAC为钝角时,CA的延长线与⊙O交于点E,连接BE,(1)中∠BAC与∠CBE的数量关系是否依然成立?若成立,请加以证明;若不成立,请说明理由.22. 如图,在平面直角坐标系xOy中,△OCB的外接圆与y轴交于点A(0,√2),∠OCB=60∘,∠COB=45∘,求OC的长.23. 如图,△ABC外接圆⊙O半径为r,BE⊥AC于E,AD⊥BC于D,BE、AD交于点K,AK=r.求∠BAC的度数.答案第一部分1. D2. D3. B4. A5. D6. C7. B8. C9. A 10. D第二部分11. 25∘12. 4√13. 3√14. 10.515. 30∘或150∘16. 70∘17. 215∘18. 110∘19. √20. 2+2√2+2√7第三部分21. (1)2(2)(1)中∠BAC与∠CBE的数量关系成立.证明:连接AD.∵AB为⊙O的直径,∴∠AEB=∠ADB=90∘.∴∠AEB+∠ADB=180∘.∵∠AEB+∠ADB+∠CBE+∠EAD=360∘,∴∠CBE+∠EAD=180∘.∵∠DAC+∠EAD=180∘,∴∠CBE=∠DAC.∵AB=AC,∴∠BAC=2∠DAC.∴∠BAC=2∠CBE.22. 连接AB、AC,作AD⊥OC于D.∵∠AOB=90∘∴AB为直径.⏜=BO⏜,∠AOB=90∘,∵BO∴∠OAB=∠OCB=60∘,∴∠ABO=∠ACO=30∘.∵∠COB=45∘,∴∠CAB=45∘.∵AB为直径,∴∠ACB=90∘,∴∠ABC=45∘,∴∠AOC=45∘.∵OA=√2,∴AD=OD=1,∴CD=√=√,∴OC=1+√23. 连接AO并延长与⊙O交于点H,延长BE与⊙O交于点F,连接AF,OF,CH,如图.∵∠AKF+∠KAE=90∘,∠KAE+∠ACD=90∘,∴∠AKF=∠ACD.∵∠ACD=∠AFK,∴∠AKF=∠AFK.∴AF=AK=r.∴△AOF是等边三角形.∴∠OAF=60∘.∵AH是⊙O的直径,∴∠ACH=90∘.∴CH∥BF.∴∠CBF=∠BCH.∵∠BCH=∠BAH,∠CBF=∠CAF,∴∠BAH=∠CAF.∵∠OAF=60∘.∴∠BAC=60∘.。
圆周角—巩固练习(基础)【巩固练习】一、选择题1.(2016•张家界)如图,AB是⊙O的直径,BC是⊙O的弦.若∠OBC=60°,则∠BAC的度数是()A.75°B.60°C.45°D.30°2.如图所示,∠1,∠2,∠3的大小关系是().A.∠1>∠2>∠3 B.∠3>∠1>∠2 C.∠2>∠1>∠3 D.∠3>∠2>∠13.如图,AC是⊙O的直径,弦AB∥CD,若∠BAC=32°,则∠AOD等于( ).A.64°B.48°C.32°D.76°4.如图,弦AB,CD相交于E点,若∠BAC=27°,∠BEC=64°,则∠AOD等于( ).A.37°B.74°C.54°D.64°(第3题图)(第4题图)(第5题图)5.如图,四边形ABCD内接于⊙O,若∠BOD=138°,则它的一个外角∠DCE等于( ).A.69°B.42°C.48°D.38°6.△ABC为⊙O的内接三角形,若∠AOC=160°,则∠ABC的度数是()A.80°B.160°C.100°D.80°或100°二、填空题7.在同圆或等圆中,两个圆心角及它们所对的两条弧、两条弦中如果有一组量相等,那么_ _________.8.(2016•济宁)如图,在⊙O中,=,∠AOB=40°,则∠ADC的度数是________.9.如图,AB 是⊙O 的直径,弦CD⊥AB 于H ,BD∥OC,则∠B 的度数是 .10.如图,△ABC 内接于⊙O ,AB =BC ,∠BAC =30°,AD 为⊙O 的直径,AD =2 3 ,则BD = .11.如图,已知⊙O 的直径MN =10,正方形ABCD 四个顶点分别在半径OM 、OP 和⊙O 上,且∠POM =45°,则AB = .(第11题图) (第12题图)12.如图,已知A 、B 、C 、D 、E 均在⊙O 上,且AC 为直径,则∠A+∠B+∠C=________度.三、解答题13. 如图所示,AB ,AC 是⊙O 的弦,AD ⊥BC 于D ,交⊙O 于F ,AE 为⊙O 的直径,试问两弦BE 与CF 的大小有何关系,说明理由.14.如图,AB 是半圆O 的直径,C 、D 是半圆O 上的两点,且OD ∥BC ,OD 与AC 交于点E .(1)若∠D=70°,求∠CAD 的度数;(2)若AC=8,DE=2,求AB 的长.15.如图,⊙O 中,直径AB =15cm ,有一条长为9cm 的动弦CD 在上滑动(点C 与A ,点D 与B 不重合),CF ⊥CD 交AB 于F ,DE ⊥CD 交AB 于E .(第10题图)(1)求证:AE=BF;(2)在动弦CD滑动的过程中,四边形CDEF的面积是否为定值?若是定值,请给出证明并求这个定值;若不是,请说明理由.【答案与解析】一、选择题1.【答案】D【解析】∵AB是⊙O的直径,∴∠ACB=90°,又∵∠OBC=60°,∴∠BAC=180°﹣∠ACB﹣∠ABC=30°.故选D.2.【答案】D;【解析】圆内角大于圆周角大于圆外角.3.【答案】A;【解析】∵弦AB∥CD,∠BAC=32°,∴∠C=∠A=32°,∠AOD=2∠C=64°.4.【答案】B;【解析】∠ACD=64°-27°=37°,∠AOD=2∠ACD=74°.5.【答案】A;【解析】∠BAD=12∠BOD=69°,由圆内接四边形的外角等于它的内对角得∠DCE=∠BAD=69°.6.【答案】D;【解析】如图,∵∠AOC=160°,∴∠ABC=∠AOC=×160°=80°,∵∠ABC+∠AB′C=180°,∴∠AB′C=180°﹣∠ABC=180°﹣80°=100°.∴∠ABC的度数是:80°或100°.故选D.二、填空题7.【答案】它们所对应的其余各组量也分别相等;8.【答案】20°.【解析】连接CO,如图:∵在⊙O中,=,∴∠AOC=∠AOB,∵∠AOB=40°,∴∠AOC=40°,∴∠ADC=∠AOC=20°.9.【答案】60°;10.11.【答案】;【解析】如图,设AB=x,在Rt⊿AOD 中:x²+(2x)²=5², x=, 即 AB的长=.第11题第12题12.【答案】90°;【解析】如图,连结AB、BC,则∠CAD + ∠EBD +•∠ACE=∠CBD +∠EBD +•∠ABE=∠ABC=90°.三、解答题13.【答案与解析】BE=CF.理由:∵AE为⊙O的直径,AD⊥BC,∴∠ABE=90°=∠ADC,又∠AEB=∠ACB,∴∠BAE=∠CAF,.∴BE CF∴BE=CF.14.【答案与解析】解:(1)∵OA=OD ,∠D=70°,∴∠OAD=∠D=70°,∴∠AOD=180°﹣∠OAD ﹣∠D=40°,∵AB 是半圆O 的直径,∴∠C=90°,∵OD ∥BC ,∴∠AEO=∠C=90°,即OD ⊥AC , ∴=,∴∠CAD=∠AOD=20°;(2)∵AC=8,OE ⊥AC ,∴AE=AC=4,设OA=x ,则OE=OD ﹣DE=x ﹣2,∵在Rt △OAE 中,OE 2+AE 2=OA 2,∴(x ﹣2)2+42=x 2,解得:x=5,∴OA=5,∴AB=2OA=10.15.【答案与解析】(1)如图,作OH ⊥CD 于H ,利用梯形中位线易证OF=OE ,OA=OB , 所以AF=BE ,AF+EF=BE+EF ,即AE=BF .(2)四边形CDEF 的面积是定值.连结OC ,则, 11()2O 6922S CF DE CD H CD =+⋅=⋅⋅⋅=⨯=54(cm 2).。
浙教版九年级数学上册同步测试:3.5 圆周角一、选择题1.如图,⊙O的直径CD过弦EF的中点G,∠DCF=20°,则∠EOD等于()A.10°B.20°C.40°D.80°2.如图,OA是⊙O的半径,弦BC⊥OA,D是⊙O上一点,若∠ADB=28°,则∠AOC的度数为()A.14°B.28°C.56°D.84°3.如图,已知点C,D是半圆上的三等分点,连接AC,BC,CD,OD,BC和OD相交于点E.则下列结论:①∠CBA=30°,②OD⊥BC,③OE=AC,④四边形AODC是菱形.正确的个数是()A.1 B.2 C.3 D.44.如图,已知圆心角∠BOC=78°,则圆周角∠BAC的度数是()A.156°B.78°C.39°D.12°5.如图,点A,B,C,在⊙O上,∠ABO=32°,∠ACO=38°,则∠BOC等于()A.60°B.70°C.120°D.140°6.如图,▱ABCD的顶点A、B、D在⊙O上,顶点C在⊙O的直径BE上,∠ADC=54°,连接AE,则∠AEB的度数为()A.36°B.46°C.27°D.63°7.如图,A、B、C是⊙O上的三点,且∠ABC=70°,则∠AOC的度数是()A.35°B.140°C.70°D.70°或140°8.下列四个图中,∠x是圆周角的是()A.B.C.D.9.如图,在⊙O中,已知∠OAB=22.5°,则∠C的度数为()A.135°B.122.5°C.115.5°D.112.5°10.如图,A、B、P是半径为2的⊙O上的三点,∠APB=45°,则弦AB的长为()A .B .2C .2D .411.如图,已知⊙O 是△ABD 的外接圆,AB 是⊙O 的直径,CD 是⊙O 的弦,∠ABD=58°,则∠BCD 等于( )A .116°B .32°C .58°D .64°12.如图,在⊙O 中,直径CD ⊥弦AB ,则下列结论中正确的是( )A .AD=AB B .∠BOC=2∠DC .∠D +∠BOC=90° D .∠D=∠B13.如图,在⊙O 中,∠CBO=45°,∠CAO=15°,则∠AOB 的度数是( )A .75°B .60°C .45°D .30°14.如图,⊙O 是△ABC 的外接圆,∠OCB=40°,则∠A 的度数是( )A.40°B.50°C.60°D.100°15.如图,AB是⊙O的直径,AB垂直于弦CD,∠BOC=70°,则∠ABD=()A.20°B.46°C.55°D.70°16.如图,点A,B,C在⊙O上,∠A=50°,则∠BOC的度数为()A.40°B.50°C.80°D.100°17.如图,在△ABC中,以BC为直径的圆分别交边AC、AB于D、E两点,连接BD、DE.若BD 平分∠ABC,则下列结论不一定成立的是()A.BD⊥AC B.AC2=2AB•AEC.△ADE是等腰三角形D.BC=2AD二、填空题18.如图,AB是⊙O的直径,点C在⊙O上,点P在线段OA上运动.设∠BCP=α,则α的最大值是.19.如图,P是⊙O外一点,A、B、C是⊙O上的三点,∠AOB=60°,PA、PB分别交于M、N 两点,则∠APB的范围是.20.如图所示⊙O中,已知∠BAC=∠CDA=20°,则∠ABO的度数为.21.已知点O是△ABC外接圆的圆心,若∠BOC=110°,则∠A的度数是.22.如图,点A、B、C、D都在⊙O上,∠ABC=90°,AD=3,CD=2,则⊙O的直径的长是.23.如图,OC是⊙O的半径,AB是弦,且OC⊥AB,点P在⊙O上,∠APC=26°,则∠BOC=度.24.如图,边长为1的小正方形网格中,⊙O的圆心在格点上,则∠AED的余弦值是.25.如图,将直角三角板60°角的顶点放在圆心O上,斜边和一直角边分别与⊙O相交于A、B两点,P是优弧AB上任意一点(与A、B不重合),则∠APB=.26.如图,AD、AC分别是直径和弦,∠CAD=30°,B是AC上一点,BO⊥AD,垂足为O,BO=5cm,则CD等于cm.27.如图,在⊙O中直径CD垂直弦AB,垂足为E,若∠AOD=52°,则∠DCB=.三、解答题28.(1)甲市共有三个郊县,各郊县的人数及人均耕地面积如表所示:郊县人数/万人均耕地面积/公顷A 20 0.15B 5 0.20C 10 0.18求甲市郊县所有人口的人均耕地面积(精确到0.01公顷);(2)先化简下式,再求值:,其中,;(3)如图,已知A,B,C,D是⊙O上的四点,延长DC,AB相交于点E,若BC=BE.求证:△ADE是等腰三角形.29.如图,AB为⊙O的直径,点C在⊙O上,延长BC至点D,使DC=CB,延长DA与⊙O的另一个交点为E,连接AC,CE.(1)求证:∠B=∠D;(2)若AB=4,BC﹣AC=2,求CE的长.30.如图.点A、B、C、D在⊙O上,AC⊥BD于点E,过点O作OF⊥BC于F,求证:(1)△AEB∽△OFC;(2)AD=2FO.初中数学试卷鼎尚图文**整理制作。
2022-2023学年浙教版九年级数学上册《3.4圆心角、3.5圆周角》优生辅导综合练习题(附答案)一.选择题1.如图,AB为⊙O的直径,点C,D在⊙O上,若∠ADC=130°,则∠BAC的度数为()A.25°B.30°C.40°D.50°2.如图,在⊙O中,=,∠AOB=40°,则∠ADC的度数是()A.40°B.30°C.20°D.15°3.如图,C,D是⊙O上直径AB两侧的两点,设∠ABC=15°,则∠BDC=()A.85°B.75°C.70°D.65°4.如图,AB是⊙O的直径,∠D=32°,则∠AOC等于()A.158°B.58°C.64°D.116°5.如图,△ABC的两顶点A,B在⊙O上,点C在圆外,∠C=46°,边AC交⊙O于点D,DE∥BC经过圆心交⊙O于点E,则的度数为()A.44°B.80°C.88°D.92°6.一副学生三角板放在一个圈里恰好如图所示,顶点D在圆圈外,其他几个顶点都在圆圈上,圆圈和AD交于点E,已知AC=8cm,则这个圆圈上的弦CE长是()A.6cm B.6cm C.4cm D.cm 二.填空题7.如图,AB为⊙O的直径,点C、D在⊙O上.若∠ACD=50°,则∠BAD的大小为°.8.如图所示,在△ABC中,AB=AC,以AB为直径作半圆O,交BC于点D,交AC于点E.若∠BAC=44°,BD=2,则弧AE的度数是,DC的长为.9.如图,在△ABC中,∠ACB=90°,∠A=30°,AB=4,以点B为圆心,BC长为半径画弧,交边AB于点D,则CD的长为.10.在半径为r的圆中,长度为r的弦所对的圆周角的度数是.11.如图,在⊙O中,∠BAC=15°,∠ADC=20°,则∠ABO的度数为.12.如图,A,B,C,D都是⊙O上的点,OA⊥BC,垂足为E,若∠OBC=20°,则∠ADC 等于度.13.如图,矩形ABCD中,AB=6,以点D为圆心,CD长为半径的圆弧与以BC为直径的半圆O相交于点E,若的度数为60°,则直径BC长为.14.如图,边长为2的正方形ABCD的顶点A、B在一个半径为2的圆上,顶点C、D在该圆内.将正方形ABCD绕点A逆时针旋转,当点D第一次落在圆上时,点C旋转到C′,则∠C′AB=°.15.如图,OA、OB是⊙O的半径且OA=OB=1,AB=,在⊙O上一点C,使BC=,则∠BAC的度数为.三.解答题16.如图,在下列4×4(边长为1)的网格中,已知△ABC的三个顶点A,B,C在格点上,请分别按不同要求在网格中描出一个格点D,并写出点D的坐标.(1)将△ABC绕点C顺时针旋转90°,画出旋转后所得的三角形,点A旋转后落点为D;(2)经过A,B,C三点有一条抛物线,请找到点D,使点D也落在这条抛物线上;(3)经过A,B,C三点有一个圆,请找到一个横坐标为2的点D,使点D也落在这个圆上,①点D的坐标为;②点D的坐标为;③点D的坐标为.17.如图,在⊙O中,B,C是的三等分点,弦AC,BD相交于点E.(1)求证:AC=BD;(2)连接CD,若∠BDC=25°,求∠BEC的度数.18.如图,AB是⊙O的直径,弦CD⊥AB于点M,连接CO,CB.(1)若AM=2,BM=8,求CD的长度;(2)若CO平分∠DCB,求证:CD=CB.19.如图所示,已知AB为⊙O的直径,CD是弦,且AB⊥CD于点E,连接AC、OC、BC.(1)求证:∠ACO=∠BCD;(2)若EB=8,CD=24,求⊙O的直径.20.如图,AB是⊙O的直径,点C,E都在⊙O上,OC⊥AB,=2,DE∥AB交OC 于点D,延长OC至点F,使FC=OC,连接EF.(1)求证:CD=OD.(2)若⊙O的直径是4,求EF的长.21.如图,AD为⊙O的直径,∠BAD=∠CAD,连接BC.点E在⊙O上,AB=BE,求证:(1)BC平分∠ACE;(2)AB∥CE.22.如图,AB是⊙O的直径,C是弧BD的中点,CE⊥AB,垂足为E,BD交CE于点F.(1)求证:CF=BF;(2)若AD=6,⊙O的半径为5,求BC的长.23.如图,AB为⊙O的直径,C,D为⊙O上不同于A,B的两点,且OC平分∠ACD,延长AC与DB交于点E,过点C作CF⊥OC交DE于点F.(1)求证:∠A=∠E.(2)若BF=5,,求⊙O的半径.24.如图,Rt△ABC中,AC=CB,点E,F分别是AC,BC上的点,△CEF的外接圆交AB 于点Q,D.(1)如图1,若点D为AB的中点,求证:∠DEF=∠B;(2)在(1)问的条件下:①如图2,连接CD,交EF于H,AC=4,若△EHD为等腰三角形,求CF的长度.②如图2,△AED与△ECF的面积之比是3:4,且ED=3,求△CED与△ECF的面积之比(直接写出答案).(3)如图3,连接CQ,CD,若AE+BF=EF,求证:∠QCD=45°.参考答案一.选择题1.解:∵四边形ABCD是圆内接四边形,∴∠ADC+∠B=180°,∵∠ADC=130°,∴∠B=180°﹣130°=50°,∵AB是⊙O的直径,∴∠ACB=90°,∴∠BAC=90°﹣∠B=40°.故选:C.2.解:连接CO,如图:∵在⊙O中,=,∴∠AOC=∠AOB,∵∠AOB=40°,∴∠AOC=40°,∴∠ADC=∠AOC=20°,故选:C.3.解:∵AB是⊙O的直径,∴∠ACB=90°,∵∠ABC=15°,∴∠CAB=75°,∴∠BDC=∠CAB=75°,故选:B.4.解:∵∠D=32°,∴∠BOC=2∠D=64°,∴∠AOC=180°﹣64°=116°.故选:D.5.解:∵DE||BC,∴∠C=∠ADE=46°,∴的度数是92°,∴的度数为180°﹣92°=88°.故选:C.6.解:作AH⊥CE于H,如图,∠ACB=90°,∠ABC=∠BAC=45°,∠BAD=30°,∴∠BCE=∠BAD=30°,∴∠ACE=60°,在Rt△ACH中,CH=AC=×8=4cm,∴AH=CH=4cm,∵∠AEC=∠ABC=45°,∴AH=HE=4cm,∴CE=CH+HE=(4+4)cm.故选:C.二.填空题7.解:连接BD,∵BD是直径,∴∠ADB=90°,∵∠ABD和∠ACD所对的弧都是,∴∠ABD=∠ACD=50°,∴∠BAD=90°﹣∠ABD=90°﹣50°=40°,故答案为:40.8.解:连接OE,AD,∵OA=OE,∠BAC=44°,∴∠BAC=∠OEA=44°,∴∠AOE=92°,∴弧AE的度数是92°,∵AB为半圆O的直径,∴∠ADB=90°,∵AB=AC,∴AD是△ABC的中线,∴BD=CD,∵BD=2,∴CD=2.故答案为:92°,2.9.解:连接CD,∵∠ACB=90°,∠A=30°,AB=4,∴∠B=60°,BC=AB=2,∵以点B为圆心,BC长为半径画弧,交边AB于点D,∴△BCD是等边三角形,∴CD=BC=2,故答案为:2.10.解:如图,作OD⊥AB,垂足为D,则由垂径定理知,点D是AB的中点,∴AD=AB=r,∴∠AOD=45°,∴∠AOB=2∠AOD=90°,∴∠ACB=∠AOB=45°,∵A、C、B、E四点共圆,∴∠ACB+∠AEB=180°,∴∠AEB=135°,故答案为:45°或135°.11.解:连接AO,CO,则∠AOC=2∠ADC,∠BOC=2∠BAC,∴∠AOB=∠BOC+∠AOC=2∠BAC+2∠ADC=2×15°+2×20°=70°,∵OA=OB,∴∠ABO=(180°﹣∠AOB)=55°,故答案为:55°.12.解:∵OA⊥BC,∴∠OEB=90°,∵∠OBC=20°,∴∠AOB=90°﹣∠OBC=70°,∴的度数是70°,∵OA⊥BC,OA过圆心O,∴=,∴的度数是70°,∴圆周角∠ADC==35°,故答案为:35.13.解:如图,连接BE,EC.∵BC是直径,∴∠BEC=90°,∵的度数=60°,∴∠BCE=×60°=30°,∵四边形ABCD是矩形,∴AB=CD=6,∠DCB=90°,∴∠DCE=90°﹣30°=60°,∵DE=DC,∴△DEC是等边三角形,∴EC=CD=6,∴BC=4.故答案为:.14.解:如图,分别连接OA、OB、OD′、OC、OC′;∵OA=OB=AB,∴△OAB是等边三角形,∴∠OAB=60°;同理可得△OAD′为等边三角形,∴∠OAD′=60°,∴∠D′AB=60°+60°=120°;∵AC′为正方形AB′C′D′的对角线,∴∠D′AC′=45°,∴∠C′AB=∠D′AB﹣∠D′AC′=120°﹣45°=75°.故答案为75.15.解:如图,作OH⊥BC于H.连接AC.∵OH⊥BC,∴BH=CH=,∴∠OBH=30°,∵OA=OB=1,AB=,∴AB2=OA2+OB2,∴∠AOB=90°,∴∠ACB=∠AOB=45°,∵∠ABC=∠ABO+∠OBC=45°+30°=75°,∴∠BAC=180°﹣75°﹣45°=60°,作点C关于直线OB的对称点C′,连接AC′,BC′,CC′,∵∠OBC=∠OBC′=30°,∴∠CBC′=60°,∵BC=BC′,∴△BCC′是等边三角形,∴∠BCC′=60°,∴∠BAC′=180°﹣60°=120°,故答案为60°或120°.三.解答题16.解:(1)如图,点B的对应点为B′,点A的对应点为点D(4,2);故①答案为:(4,2);(2)抛物线的对称轴在BC的中垂线上,则点D、A关于函数对称轴对称,故点D(3,2),故②的答案为:(3,2);(3)AB中垂线的表达式为:y=x,BC的中垂线为:x=,则圆心O为:(,),设点D(2,m),则OD=OB,()2+()2=(2﹣)2+(m﹣)2,解得:m=0或3(舍去0),故点D(2,3);故③的答案为(2,3).17.(1)证明:∵B,C是的三等分点,∴==,∴+=+,∴=,∴AC=BD;(2)解:如图,连接CD,AD,∵∠BDC=25°,==,∴∠CAD=∠BDA=∠BDC=25°,∵∠AED+∠CAD+∠BDA=180°,∴∠AED=180°﹣∠CAD﹣∠BDA=130°,∴∠BEC=∠AED=130°.18.解:(1)∵AB是⊙O的直径,弦CD⊥AB,∴CM=DM,∵AM=2,BM=8,∴AB=10,∴OA=OC=5,在Rt△OCM中,OM2+CM2=OC2,∴CM==4,∴CD=8;(2)过点O作ON⊥BC,垂足为N,∵CO平分∠DCB,∴OM=ON,∴CB=CD.19.(1)证明:∵AB⊥CD,∴,∴∠A=∠BCD,∵OA=OC,∴∠A=∠ACO,∴∠ACO=∠BCD;(2)解:设⊙O的半径为r,则OC=r,OE=OA﹣BE=r﹣8,∵AB⊥CD,∴CE=DE=CD=×24=12,在Rt△OCE中,122+(r﹣8)2=r2,解得r=13,∴⊙O的直径=2r=26.20.(1)证明:连接OE、CE,如图,∵OC⊥AB,∴∠AOC=90°,∵=2,∴∠COE=2∠AOE,∴∠COE=60°,而OE=OC,∴△OCE为等边三角形,∵DE∥AB,OC⊥AB,∴DE⊥OC,∴CD=OD;(2)解:∵⊙O的直径是4,∴OE=OC=CF=2,CD=OD=1,在Rt△ODE中,DE==,在Rt△EFD中,EF===2.21.证明:(1)∵AB=BE,∴,∴∠ACB=∠BCE,∴BC平分∠ACE;(2)连接OC、OB,∵OA、OB、OC是⊙O半径,∴OA=OB=OC,∴∠OAB=∠OBA,∠OAC=∠OCA,∵∠BAD=∠CAD,∴∠ABO=∠ACO,∵OB=OC,∴∠OBC=∠OCB,∴∠OBA+∠OBC=∠OCA+∠OCB,∴∠ABC=∠ACB,∴AB=AC,∵AB=BE,∴AC=BE,∴,∴∠ABC=∠ECB,∴AB∥CE.22.(1)证明:连接AC,如图1所示:∵C是弧BD的中点,∴∠DBC=∠BAC,在ABC中,∠ACB=90°,CE⊥AB,∴∠BCE+∠ECA=∠BAC+∠ECA=90°,∴∠BCE=∠BAC,又C是弧BD的中点,∴∠DBC=∠CDB,∴∠BCE=∠DBC,∴CF=BF.(2)解:连接OC交BD于G,如图2所示:∵AB是O的直径,AB=2OC=10,∴∠ADB=90°,∴BD===8,∵C是弧BD的中点,∴OC⊥BD,DG=BG=BD=4,∵OA=OB,∴OG是△ABD的中位线,∴OG=AD=3,∴CG=OC﹣OG=5﹣3=2,在Rt△BCG中,由勾股定理得:BC===2.23.(1)证明:由题意∠ACO=∠A=∠D.∵OC平分∠ACD,∴∠ACO=∠OCD,∴∠OCD=∠D.∴OC∥DE,∴∠E=∠ACO,∴∠E=∠A.(2)解:∵,∴设BD=3x,OB=4x,由(1)得∠E=∠A=∠CDE,OC∥DE.∵CF⊥OC,∴CF⊥DE,∴EF=DF=3x+5.∴BE=3x+10,∵∠E=∠A,∴AB=BE,即3x+10=8x,解得x=2∴半径OB=4x=8.24.(1)证明:连接CD.在Rt△ABC中,∵AC=CB,∴∠A=∠B=45°,∵CD=DB,∴∠DCB=∠B=45°,∵∠DEF=∠DCB,∴∠DEF=∠B.(2)解:①如图2﹣1中,当EH=HD,可证四边形CFDE是正方形CF=2.如图2﹣2中,当EH=ED时,∠EDH=∠EHD=67.5°,∵∠EDF=∠CDB=90°,∴∠EDH=∠BDF=67.5°,∴∠BFD=180°﹣45°﹣67.5°=67.5°,∴∠BDF=∠BFD,∴BD=BF,∵AC=BC=4,∠ACB=90°,∴AB==4,∴BD=BF=2,∴CF=4﹣2.如图2﹣3中,当DA=FH时,点E于A重合,点H与C重合,CF=0.综上所述,满足条件的CF的值为0或2或4﹣2.②如图2﹣4中,作DM⊥AC于M,DN⊥BC于N,连接DF.∵CA=CB,AD=DB,∠ACB=90°,∴CD⊥AB,∠ACD=∠BCD=45°,CD=DA=DB∴DE=DF,∵∠ADC=∠EDF=90°,∴∠ADE=∠CDF,∴△ADE≌△CDF(SAS),∴AE=CF,S△ADE=S△CDF,∵DC平分∠ACB,DM⊥AC,DN⊥BC,∴DM=DN,可得四边形DMCN是正方形,∴DM=CM=CN=DN,∵====,∴可以假设DN=3k,EC=4k,则AC=BC=6k,AE=CF=2k,∴==.(3)证明:连接OD,OQ,作ER⊥AB,OH⊥AB,FK⊥AB.∵ER∥OH∥FK,EO=OF,∴RH=HK∴OH=(ER+FK),∵ER=AE,FK=FB,∴OH=(AE+BF)=EF=OE=OQ,∴∠OQD=∠ODQ=45°,∴∠QOD=90°,∴∠QCD=45°.。
与圆有关的计算【牛刀小试】1. 如图,在⊙O 中,60AOB ∠=,3cm AB =, 则劣弧AB⌒ 的长 为 cm .2. 翔宇学中的铅球场如图所示,已知扇形AOB 的面积是36米2,AB ⌒ 的长度为9米,那么半径OA = 米.3. 如图,已知扇形的半径为3cm ,圆心角为120°,则扇形的面积为__________ 2cm .(结果保留π)4. 已知扇形的半径为2cm ,面积是243cm π,则扇形的弧长是 cm ,扇形的圆心角为 °.5. 如图,正六边形内接于圆O ,圆O 的半径为10,则圆中阴影部分的面积为 .【考点梳理】1. 圆的周长为 ,1°的圆心角所对的弧长为 ,n °的圆心角所对 的弧长为 ,弧长公式为 .2. 圆的面积为 ,1°的圆心角所在的扇形面积为 ,n °的圆心角所在的扇形面积为S= 2R π⨯ = = .3. 圆柱的侧面积公式:S=2rl π.(其中r 为 的半径,l 为 的高)4. 圆锥的侧面积公式:S=rl π.(其中r 为 的半径,l 为 的长)【典例分析】例1 如图,CD 切⊙O 于点D ,连结OC ,交⊙O 于点B ,过点B 作弦AB ⊥OD ,点E 为垂足,已知⊙O 的半径为10,si n ∠COD =54.(1)求弦AB 的长;(2)CD 的长; (3)劣弧AB 的长.(结果保留三个有效数字,sin53.130.8≈,π≈3.142)第1题第3题第5题 第2题例2 如图,AB 为⊙O 的直径,CD AB ⊥于点E ,交⊙O 于点D ,OF AC ⊥于点F .(1)请写出三条与BC 有关的正确结论;(2)当30D ∠=,1BC =例 3 如图,线段AB 与⊙O 相切于点C ,连结OA 、OB ,OB 交⊙O 于点D ,已知6cm OA OB ==,AB =.求(1)⊙O 的半径; (2)图中阴影部分的面积.【真题演练】1. Rt ABC △中,90C ∠=,8AC =,6BC =,两等圆⊙A ,⊙B 外切,那么图中两个扇形(即阴影部分)的面积之和为( ) A .254π B .258π C .2516π D .2532π 2. 如图,在矩形空地上铺4块扇形草地.若扇形的半径均为r 米,圆心角均为90,则铺上的草地共有 平方米.3. 如图,已知AB 上,且13AB =,5BC =.(1)求sin ∠的值; BAOACBD(2)如果OD AC ⊥,垂足为D ,求AD 的长; (3)求图中阴影部分的面积(精确到0.1).4. 如图,从一个直径是2的圆形铁皮中剪下一个圆心角为90的扇形.(1)求这个扇形的面积(结果保留π); (2)在剩下的三块余料中,能否从第③块余料中剪出一个圆作为底面与此扇形围成一个圆锥?请说明理由. (3)当⊙O 的半径(0)R R >为任意值时,(2)中的结论是否仍然成立?请说明理由.B。
初中数学浙教版九年级上册3.5圆周角同步练习一、单选题(共12题;共23分)1.如图,AB是⊙O的直径,点C在⊙O上,CD平分∠ACB交⊙O于点D,若∠ABC=30°,则∠CAD的度数为( )A. 100°B. 105°C. 110°D. 1202.如图,AB是半圆的直径,O为圆心,C是半圆上的点,D是上的点,若∠BOC=40°,则∠D的度数为()A. 100°B. 110°C. 120°D. 130°3.用直角三角板检查半圆形的工件,下列工件合格的是()A. B. C. D.4.已知A,B,C在⊙O上,△ABO为正三角形,则()A. 150°B. 120°C. 150°或30°D. 120°或60°5.如图,将三角板的直角顶点放在⊙O的圆心上,两条直角边分别交⊙O于A、B两点,点P在优弧AB上,且与点A、B不重合,连结PA、PB.则∠APB的大小为________度.6.如图,点A,B,C,D,E均在⊙O上,∠BAC=15°,∠CED=30°,则∠BOD的度数为()A. 45°B. 60°C. 75°D. 90°7.AB是⊙O的弦,∠AOB=80°,则弦AB所对的圆周角是()A. 40°B. 140°或40°C. 20°D. 20°或160°8.如图,已知BC是⊙O的直径,半径OA⊥BC,点D在劣弧AC上(不与点A,点C重合),BD与OA交于点E,设∠AED=α,∠AOD=β,则( )A. 3α+β=180°B. 2α+β=180°C. 3α-β=90°D. 2α-β=90°9.数学课上,老师让学生尺规作图画Rt△ABC,使其斜边AB=c,一条直角边BC=a.小明的作法如图所示,你认为这种作法中判断∠ACB是直角的依据是( )A. 勾股定理B. 勾股定理的逆定理C. 直径所对的圆周角是直角D. 90°的圆周角所对的弦是直径10.如图,已知EF是⊙O的直径,把∠A为60°的直角三角板ABC的一条直角边BC放在直线EF上,斜边AB与⊙O交于点P,点B与点O重合,且AC大于OE,将三角板ABC沿OE方向平移,使得点B与点E重合为止.设∠POF=x,则x的取值范围是()A. 30≤x≤60B. 30≤x≤90C. 30≤x≤120D. 60≤x≤12011.如图,点A,B,D,C是⊙O上的四个点,连结AB,CD并延长,相交于点E,若∠BOD=20°,∠AOC=90°,则∠E的度数为( )A. 30°B. 35°C. 45°D. 55°12.如图,AB是⊙O的直径,点C,D在直径AB一侧的圆上(异于A,B两点),点E在直径AB另一侧的圆上,若∠E=42°,∠A=60°,则∠B=()A. 62°B. 70°C. 72°D. 74°二、填空题(共5题;共5分)13.如图,量角器上、两点所表示的读数分别是、,则的度数为________.14.如图,⊙O1的半径是⊙O2的直径,⊙O1的半径O1C交⊙O2于B,若的度数是48°,那么的度数是________.15.如图,量角器的直径与直角三角板ABC的斜边AB重合,其中量角器零刻度线的端点N与点A重合,射线CP从CA处出发沿顺时针方向以每秒4度的速度旋转,CP与量角器的半圆弧交于点E,第18秒时,点E在量角器上对应的读数是________度.16.若点O是△ABC的外心,且∠BOC=70°,则∠BAC的度数为________.17.如图,AB是半圆O的直径,弦AC=4,∠CAB=60°,点D是弧BC上的一个动点,作CG⊥AD,连结BG,在点D移动的过程中,BG的最小值是________.三、解答题(共5题;共40分)18.如图,AB是⊙O的直径,半径OC⊥AB,过OC的中点D作弦EF∥AB,求∠ABE的度数.19.如图,已知OA、OB、OC是⊙O的三条半径,点C是弧AB的中点,M、N分别是OA、OB的中点.求证:MC=NC.20.已知:如图△ABC内接于圆O,AB=AC,D为弧BC上任意一点,连结AD,BD(1)若∠ADB=65°,求∠BAC的度数(2)求证:∠ABD=∠AEB21.如图AB是半圆的直径,图1中,点C在半圆外;图2中,点C在半圆内,请仅用无刻度的直尺按要求画图.(1)在图1中,画出△ABC的三条高的交点;(2)在图2中,画出△ABC中AB边上的高.22.如图,圆内接四边形ABDC,AB是⊙O的直径,OD⊥BC于E.(1)求证:∠BCD=∠CBD;(2)若BE=4,AC=6,求DE的长.答案解析部分一、单选题1.【答案】B【解析】【解答】解:∵AB是⊙O的直径,∴∠ACB=90°,∴∠BAC=90°﹣∠ABC=90°﹣30°=60°,∵CD平分∠ACB,∴∠BCD=45°,∵∠BAD=∠BCD=45°,∴∠CAD=∠BAC+∠BAD=60°+45°=105°.故答案为:B.【分析】利用圆周角定理得到∠ACB=90°,则利用互余计算出∠BAC=60°,接着根据角平分线定义得到∠BCD=45°,从而利用圆周角定理得到∠BAD=∠BCD=45°,然后计算∠BAC+∠BAD即可.2.【答案】B【解析】【解答】∵∠BOC=40°,∠AOB=180°,∴∠BOC+∠AOB=220°,∴∠D=110°(同弧所对的圆周角是圆心角度数的一半),故答案为:B.【分析】根据同弧所对的圆周角是圆心角度数的一半即可解题.3.【答案】C【解析】【解答】解:A、直角未在工件上,故该工件不是半圆,不合格,故A错误;B、直角边未落在工件上,故该工件不是半圆,不合格,故B错误;C、直角及直角边均落在工件上,故该工件是半圆,合格,故C正确;D、直角边未落在工件上,故该工件不是半圆,不合格,故D错误,故答案为:C.【分析】利用90°的圆周角所对的弦是直径进行逐一判断即可.4.【答案】C【解析】【解答】解:∵△ABO为正三角形,∴∠AOB=60°,当点C在优弧上的时候,∠ACB=∠AOB=30°,当点C在劣弧AB上的时候,∠ACB=180°-30°=150°,∴∠ACB的度数为150°或30° .故答案为:C.【分析】根据等边三角形的性质得出∠AOB的度数,然后分当点C在优弧上的时候与当点C在劣弧AB上的时候两种情况,根据同弧所对的圆周角等于圆心角的一半得出答案.5.【答案】45【解析】【解答】解:∵∠AOB与∠APB为所对的圆心角和圆周角,∴∠APB= ∠AOB= ×90°=45°.【分析】根据“同弧所对的圆周角是圆心角的一半”进行解答.6.【答案】D【解析】【解答】解:连接,,,,.故答案为:D.【分析】连接BE,利用同弧所对的圆周角相等,可求出∠BEC的度数,从而可求出∠BED的度数,然后利用圆周角定理求出∠BOD的度数。
圆(1)班级某某学号一、选择题1.如图,已知AB是⊙O的直径,∠D=40°,则∠CAB的度数为()A.20° B.40° C.50° D.70°2.如图,从一X腰长为60cm,顶角为120°的等腰三角形铁皮OAB中剪出一个最大的扇形OCD,用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的高为()A.10cm B.15cm C.10cm D.20cm3.如图,过⊙O外一点P引⊙O的两条切线PA、PB,切点分别是A、B,OP交⊙O于点C,点D是优弧上不与点A、点C重合的一个动点,连接AD、CD,若∠APB=80°,则∠ADC的度数是()A.15° B.20° C.25° D.30°4.如图,点A,B,C,P在⊙O上,CD⊥OA,CE⊥OB,垂足分别为D,E,∠DCE=40°,则∠P的度数为()A.140° B.70° C.60° D.40°,已知一块圆心角为270°的扇形铁皮,用它做一个圆锥形的烟囱帽(接缝忽略不计),圆锥底面圆的直径是60cm,则这块扇形铁皮的半径是( )A.40cmB.50cmC.60cmD.80cm6.如图,在等腰Rt△ABC中,AC=BC=22,点P在以斜边AB为直径的半圆上,M为PC的中点.当点P沿半圆从点A运动至点B时,点M运动的路径长是()A.π2B.πC.22D.27.如图,点D(0,3),O(0,0),C(4,0)在⊙A上,BD是⊙A的一条弦,则sin∠OBD=()A.B.C.D.8.如图,AB是⊙O的直径,直线PA与⊙O相切于点A,PO交⊙O于点C,连接B C.若∠P=40°,则∠ABC的度数为()A.20° B.25° C.40° D.50°9.如图,圆O是Rt△ABC的外接圆,∠ACB=90°,∠A=25°,过点C作圆O的切线,交AB的延长线于点D,则∠D的度数是()A.25° B.40° C.50° D.65°10.在公园的O处附近有E、F、G、H四棵树,位置如图所示(图中小正方形的边长均相等)现计划修建一座以O为圆心,OA为半径的圆形水池,要求池中不留树木,则E、F、G、H四棵树中需要被移除的为()A.E、F、G B.F、G、H C.G、H、E D.H、E、F二、填空题11.如图,四边形ABCD为⊙O的内接四边形,已知∠C=∠D,则AB与CD的位置关系是.12.如图,某数学兴趣小组将边长为5的正方形铁丝框ABCD变形为以A为圆心,AB为半径的扇形(忽略铁丝的粗细),则所得的扇形ABD的面积为______________.13.如图,AB是⊙O的直径,AC、BC是⊙O的弦,直径DE⊥AC于点P.若点D在优弧上,AB=8,BC=3,则DP=.14.如图,⊙O是△ABC的外接圆,直径AD=4,∠ABC=∠DAC,则AC长为.15.如图,△ABC中,∠C=90°,AC=3,AB=5,D为BC边的中点,以AD上一点O为圆心的⊙O和AB、BC均相切,则⊙O的半径为.三、解答题16.如图,在Rt△ABC中,∠BAC=90°(1)先作∠ACB的平分线交AB边于点P,再以点P为圆心,PA长为半径作⊙P;(要求:尺规作图,保留作图痕迹,不写作法)(2)请你判断(1)中BC与⊙P的位置关系,并证明你的结论.17.如图,已知四边形ABCD内接于圆O,连结BD,∠BAD=105°,∠DBC=75°.(1)求证:BD=CD;(2)若圆O的半径为3,求的长.18.如图,在⊙O中,点C是直径AB延长线上一点,过点C作⊙O的切线,切点为D,连结B D.(1)求证:∠A=∠BDC;(2)若CM平分∠ACD,且分别交AD、BD于点M、N,当DM=1时,求MN的长.19.如图,在Rt△ABC中,∠B=90°,点O在边AB上,以点O为圆心,OA为半径的圆经过点C,过点C作直线MN,使∠BCM=2∠A.(1)判断直线MN与⊙O的位置关系,并说明理由;(2)若OA=4,∠BCM=60°,求图中阴影部分的面积.20.如图,在△ABC中,E是AC边上的一点,且AE=AB,∠BAC=2∠CBE,以AB为直径作⊙O交AC于点D,交BE于点F.(1)求证:BC是⊙O的切线;(2)若AB=8,BC=6,求DE的长.21.如图,在△ABC中,∠C=90°,D是BC边上一点,以DB为直径的⊙O经过AB的中点E,交AD的延长线于点F,连结EF.(1)求证:∠1=∠F.(2)若sinB=,EF=2,求CD的长.22.如图,A、F、B、C是半圆O上的四个点,四边形OABC是平行四边形,∠FAB=15°,连接OF交AB于点E,过点C作OF的平行线交AB的延长线于点D,延长AF交直线CD于点H.(1)求证:CD是半圆O的切线;(2)若DH=6﹣3,求EF和半径OA的长.23.如图1,AB为半圆O的直径,D为BA的延长线上一点,DC为半圆O的切线,切点为C.(1)求证:∠ACD=∠B;(2)如图2,∠BDC的平分线分别交AC,BC于点E,F;①求tan∠CFE的值;②若AC=3,BC=4,求CE的长.24.如图,在△AOB中,∠AOB为直角,OA=6,OB=8,半径为2的动圆圆心Q从点O出发,沿着OA方向以1个单位长度/秒的速度匀速运动,同时动点P从点A出发,沿着AB方向也以1个单位长度/秒的速度匀速运动,设运动时间为t秒(0<t≤5)以P为圆心,PA长为半径的⊙P与AB、OA的另一个交点分别为C、D,连结CD、Q C.(1)当t为何值时,点Q与点D重合?(2)当⊙Q经过点A时,求⊙P被OB截得的弦长.(3)若⊙P与线段QC只有一个公共点,求t的取值X围.答案详解一、选择题2.如图,从一X腰长为60cm,顶角为120°的等腰三角形铁皮OAB中剪出一个最大的扇形OCD,用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的高为()A.10cm B.15cm C.10cm D.20cm【考点】圆锥的计算.【分析】根据等腰三角形的性质得到OE的长,再利用弧长公式计算出弧CD的长,设圆锥的底面圆的半径为r,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长得到r,然后利用勾股定理计算出圆锥的高.【解答】解:过O作OE⊥AB于E,∵OA=OD=60cm,∠AOB=120°,∴∠A=∠B=30°,∴OE=OA=30cm,∴弧CD的长==20π,设圆锥的底面圆的半径为r,则2πr=20π,解得r=10,∴圆锥的高==20.故选D.3.如图,过⊙O外一点P引⊙O的两条切线PA、PB,切点分别是A、B,OP交⊙O于点C,点D是优弧上不与点A、点C重合的一个动点,连接AD、CD,若∠APB=80°,则∠ADC的度数是()A.15° B.20° C.25° D.30°【分析】根据四边形的内角和,可得∠BOA,根据等弧所对的圆周角相等,根据圆周角定理,可得答案.【解答】解;如图,由四边形的内角和定理,得∠BOA=360°﹣90°﹣90°﹣80°=100°,由=,得∠AOC=∠BOC=50°.由圆周角定理,得∠ADC=∠AOC=25°,故选:C.4.如图,点A ,B ,C ,P 在⊙O 上,CD ⊥OA ,CE ⊥OB ,垂足分别为D ,E ,∠DCE =40°,则∠P 的度数为( )A .140° B.70° C.60° D.40°【考点】圆周角定理.【分析】先根据四边形内角和定理求出∠DOE 的度数,再由圆周角定理即可得出结论.【解答】解:∵CD ⊥OA ,CE ⊥OB ,垂足分别为D ,E ,∠DCE =40°,∴∠DOE =180°﹣40°=140°,∴∠P =∠DOE =70°.故选B .5.如图,已知一块圆心角为270°的扇形铁皮,用它做一个圆锥形的烟囱帽(接缝忽略不计),圆锥底面圆的直径是60cm ,则这块扇形铁皮的半径是( )A.40cmB.50cmC.60cmD.80cm【知识点】圆中的计算问题——弧长、圆锥的侧面积【答案】A.【解析】设这块扇形铁皮的半径为R cm ,∵圆锥的底面周长等于它的侧面展开图的弧长,∴270360×2πR=2π×602.解得R =40.故选择A.6.如图,在等腰Rt △ABC 中,AC =BC =22,点P 在以斜边AB 为直径的半圆上,M 为PC 的中点.当点P沿半圆从点A运动至点B时,点M运动的路径长是()A.π2B.πC.22D.2 【考点】轨迹,等腰直角三角形【答案】B【解析】取AB的中点E,取CE的中点F,连接PE,CE,MF,则FM=12PE=1,故M的轨迹为以F为圆心,1为半径的半圆弧,轨迹长为1212ππ⋅⋅=.7.如图,点D(0,3),O(0,0),C(4,0)在⊙A上,BD是⊙A的一条弦,则sin∠OBD=()A.B.C.D.【考点】锐角三角函数的定义.【分析】连接CD,可得出∠OBD=∠OCD,根据点D(0,3),C(4,0),得OD=3,OC=4,由勾股定理得出CD=5,再在直角三角形中得出利用三角函数求出sin∠OBD即可.【解答】解:∵D(0,3),C(4,0),∴OD=3,OC=4,∵∠COD=90°,∴CD==5,连接CD,如图所示:∵∠OBD=∠OCD,∴sin∠OBD=sin∠OCD==.故选:D.8.如图,AB是⊙O的直径,直线PA与⊙O相切于点A,PO交⊙O于点C,连接B C.若∠P=40°,则∠ABC的度数为()A.20° B.25° C.40° D.50°【考点】切线的性质.【分析】利用切线的性质和直角三角形的两个锐角互余的性质得到圆心角∠PAO的度数,然后利用圆周角定理来求∠ABC的度数.【解答】解:如图,∵AB是⊙O的直径,直线PA与⊙O相切于点A,∴∠PAO=90°.又∵∠P=40°,∴∠∠PAO=50°,∴∠ABC=∠PAO=25°.故选:B.9.如图,圆O是Rt△ABC的外接圆,∠ACB=90°,∠A=25°,过点C作圆O的切线,交AB的延长线于点D,则∠D的度数是()A.25° B.40° C.50° D.65°【考点】切线的性质;圆周角定理.【分析】首先连接OC,由∠A=25°,可求得∠BOC的度数,由CD是圆O的切线,可得OC⊥CD,继而求得答案.【解答】解:连接OC,∵圆O是Rt△ABC的外接圆,∠ACB=90°,∴AB是直径,∵∠A=25°,∴∠BOC=2∠A=50°,∵CD是圆O的切线,∴OC⊥CD,∴∠D=90°﹣∠BOC=40°.故选B.10.在公园的O处附近有E、F、G、H四棵树,位置如图所示(图中小正方形的边长均相等)现计划修建一座以O为圆心,OA为半径的圆形水池,要求池中不留树木,则E、F、G、H四棵树中需要被移除的为()A.E、F、G B.F、G、H C.G、H、E D.H、E、F【考点】点与圆的位置关系.【分析】根据网格中两点间的距离分别求出,OE,OF,OG,OH然后和OA比较大小.最后得到哪些树需要移除.【解答】解:∵OA==,∴OE=2<OA,所以点E在⊙O内,OF=2<OA,所以点E在⊙O内,OG=1<OA,所以点E在⊙O内,OH==2>OA,所以点E在⊙O外,故选A二、填空题11.如图,四边形ABCD为⊙O的内接四边形,已知∠C=∠D,则AB与CD的位置关系是AB∥CD.【考点】圆内接四边形的性质.【分析】由圆内接四边形的对角互补的性质以及等角的补角相等求解即可.【解答】解:∵四边形ABCD为⊙O的内接四边形,∴∠A+∠C=180°又∵∠C=∠D,∴∠A +∠D =180°.∴AB ∥C D .故答案为:AB ∥C D12.如图,某数学兴趣小组将边长为5的正方形铁丝框ABCD 变形为以A 为圆心,AB 为半径的扇形(忽略铁丝的粗细),则所得的扇形ABD 的面积为______________.【知识点】圆中的计算问题——扇形的计算.【答案】25.【解析】∵扇形ABD 的弧长DB 等于正方形两边长的和BC +DC =10,扇形ABD 的半径为正方形的边长5,∴S 扇形ABD =12×10×5=25.13.如图,AB 是⊙O 的直径,AC 、BC 是⊙O 的弦,直径DE ⊥AC 于点P .若点D 在优弧上,AB =8,BC =3,则DP = 5.5 .【考点】圆周角定理;垂径定理.【分析】解:由AB 和DE 是⊙O 的直径,可推出OA =OB =OD =4,∠C =90°,又有DE ⊥AC ,得到OP ∥BC ,于是有△AOP ∽△ABC ,根据相似三角形的性质即可得到结论.【解答】解:∵AB 和DE 是⊙O 的直径,∴OA =OB =OD =4,∠C =90°,又∵DE ⊥AC ,∴OP ∥BC ,∴△AOP ∽△ABC ,∴,即,∴OP=1.5.∴DP=OP+OP=5.5,故答案为:5.5.14.如图,⊙O是△ABC的外接圆,直径AD=4,∠ABC=∠DAC,则AC长为2.【考点】三角形的外接圆与外心;圆周角定理.【分析】连接CD,由∠ABC=∠DAC可得,得出则AC=CD,又∠ACD=90°,由等腰直角三角形的性质和勾股定理可求得AC的长.【解答】解:连接CD,如图所示:∵∠B=∠DAC,∴,∴AC=CD,∵AD为直径,∴∠ACD=90°,在Rt△ACD中,AD=6,∴AC=CD=AD=×4=2,故答案为:2.15.如图,△ABC中,∠C=90°,AC=3,AB=5,D为BC边的中点,以AD上一点O为圆心的⊙O和AB、BC均相切,则⊙O的半径为.【考点】切线的性质.【分析】过点0作OE⊥AB于点E,OF⊥BC于点F.根据切线的性质,知OE、OF是⊙O的半径;然后由三角形的面积间的关系(S△ABO+S△BOD=S△ABD=S△ACD)列出关于圆的半径的等式,求得圆的半径即可.【解答】解:过点0作OE⊥AB于点E,OF⊥BC于点F.∵AB、BC是⊙O的切线,∴点E、F是切点,∴OE、OF是⊙O的半径;∴OE=OF;在△ABC中,∠C=90°,AC=3,AB=5,∴由勾股定理,得BC=4;又∵D是BC边的中点,∴S△ABD=S△ACD,又∵S△ABD=S△ABO+S△BOD,∴AB•OE+BD•OF=CD•AC,即5×OE+2×0E=2×3,解得OE=,∴⊙O的半径是.故答案为:.三、解答题16.如图,在Rt△ABC中,∠BAC=90°(1)先作∠ACB的平分线交AB边于点P,再以点P为圆心,PA长为半径作⊙P;(要求:尺规作图,保留作图痕迹,不写作法)(2)请你判断(1)中BC与⊙P的位置关系,并证明你的结论.【考点】直线与圆的位置关系;作图—复杂作图.【分析】(1)根据题意作出图形,如图所示;(2)BC与⊙P相切,理由为:过P作PD⊥BC,交BC于点P,利用角平分线定理得到PD=PA,而PA 为圆P的半径,即可得证.【解答】解:(1)如图所示,⊙P为所求的圆;(2)BC与⊙P相切,理由为:过P作PD⊥BC,交BC于点P,∵CP为∠ACB的平分线,且PA⊥AC,PD⊥CB,∴PD=PA,∵PA为⊙P的半径.∴BC与⊙P相切.17.如图,已知四边形ABCD内接于圆O,连结BD,∠BAD=105°,∠DBC=75°.(1)求证:BD=CD;(2)若圆O的半径为3,求的长.【考点】圆内接四边形的性质;弧长的计算.【分析】(1)直接利用圆周角定理得出∠DCB的度数,再利用∠DCB=∠DBC求出答案;(2)首先求出的度数,再利用弧长公式直接求出答案.【解答】(1)证明:∵四边形ABCD内接于圆O,∴∠DCB+∠BAD=180°,∵∠BAD=105°,∴∠DCB=180°﹣105°=75°,∵∠DBC=75°,∴∠DCB=∠DBC=75°,∴BD=CD;(2)解:∵∠DCB=∠DBC=75°,∴∠BDC=30°,由圆周角定理,得,的度数为:60°,故===π,答:的长为π.18.如图,在⊙O中,点C是直径AB延长线上一点,过点C作⊙O的切线,切点为D,连结B D.(1)求证:∠A=∠BDC;(2)若CM平分∠ACD,且分别交AD、BD于点M、N,当DM=1时,求MN的长.【考点】切线的性质.【分析】(1)由圆周角推论可得∠A+∠ABD=90°,由切线性质可得∠CDB+∠ODB=90°,而∠ABD=∠ODB,可得答案;(2)由角平分线及三角形外角性质可得∠A+∠ACM=∠BDC+∠DCM,即∠DMN=∠DNM,根据勾股定理可求得MN的长.【解答】解:(1)如图,连接OD,∵AB为⊙O的直径,∴∠ADB=90°,即∠A+∠ABD=90°,又∵CD与⊙O相切于点D,∴∠CDB+∠ODB=90°,∵OD=OB,∴∠ABD=∠ODB,∴∠A=∠BDC;(2)∵CM平分∠ACD,∴∠DCM=∠ACM,又∵∠A=∠BDC,∴∠A+∠ACM=∠BDC+∠DCM,即∠DMN=∠DNM,∵∠ADB=90°,DM=1,∴DN=DM=1,∴MN==.19.如图,在Rt△ABC中,∠B=90°,点O在边AB上,以点O为圆心,OA为半径的圆经过点C,过点C作直线MN,使∠BCM=2∠A.(1)判断直线MN与⊙O的位置关系,并说明理由;(2)若OA=4,∠BCM=60°,求图中阴影部分的面积.【考点】直线与圆的位置关系;扇形面积的计算.【分析】(1)MN是⊙O切线,只要证明∠OCM=90°即可.(2)求出∠AOC以及BC,根据S阴=S扇形OAC﹣S△OAC计算即可.【解答】解:(1)MN是⊙O切线.理由:连接O C.∵OA=OC,∴∠OAC=∠OCA,∵∠BOC=∠A+∠OCA=2∠A,∠BCM=2∠A,∴∠BCM=∠BOC,∵∠B=90°,∴∠BOC+∠BCO=90°,∴∠BCM+∠BCO=90°,∴OC⊥MN,∴MN是⊙O切线.(2)由(1)可知∠BOC=∠BCM=60°,∴∠AOC=120°,在RT△BCO中,OC=OA=4,∠BCO=30°,∴BO=OC=2,BC=2∴S阴=S扇形OAC﹣S△OAC=﹣=﹣4.20.如图,在△ABC中,E是AC边上的一点,且AE=AB,∠BAC=2∠CBE,以AB为直径作⊙O交AC于点D,交BE于点F.(1)求证:BC是⊙O的切线;(2)若AB=8,BC=6,求DE的长.【考点】切线的判定.【分析】(1)由AE=AB,可得∠ABE=90°﹣∠BAC,又由∠BAC=2∠CBE,可求得∠ABC=∠ABE+∠CBE=90°,继而证得结论;(2)首先连接BD,易证得△ABD∽△ACB,然后由相似三角形的对应边成比例,求得答案.【解答】(1)证明:∵AE=AB,∴△ABE是等腰三角形,∴∠ABE=(180°﹣∠BAC=)=90°﹣∠BAC,∵∠BAC=2∠CBE,∴∠CBE=∠BAC,∴∠ABC=∠ABE+∠CBE=(90°﹣∠BAC)+∠BAC=90°,即AB⊥BC,∴BC是⊙O的切线;(2)解:连接BD,∵AB是⊙O的直径,∴∠ADB=90°,∵∠ABC=90°,∴∠ADB=∠ABC,∵∠A=∠A,∴△ABD∽△ACB,∴=,∵在Rt△ABC中,AB=8,BC=6,∴AC==10,∴,解得:AD=6.4,∵AE=AB=8,∴DE=AE﹣AD=8﹣6.4=1.6.21.如图,在△ABC中,∠C=90°,D是BC边上一点,以DB为直径的⊙O经过AB的中点E,交AD的延长线于点F,连结EF.(1)求证:∠1=∠F.(2)若sinB=,EF=2,求CD的长.【考点】圆周角定理;解直角三角形.【分析】(1)连接DE,由BD是⊙O的直径,得到∠DEB=90°,由于E是AB的中点,得到DA=DB,根据等腰三角形的性质得到∠1=∠B等量代换即可得到结论;(2)g根据等腰三角形的判定定理得到AE=EF=2,推出AB=2AE=4,在Rt△ABC中,根据勾股定理得到BC==8,设CD=x,则AD=BD=8﹣x,根据勾股定理列方程即可得到结论.【解答】解:(1)证明:连接DE,∵BD是⊙O的直径,∴∠DEB=90°,∵E是AB的中点,∴DA=DB,∴∠1=∠B,∵∠B=∠F,∴∠1=∠F;(2)∵∠1=∠F,∴AE=EF=2,∴AB=2AE=4,在Rt△ABC中,AC=AB•sinB=4,∴BC==8,设CD=x,则AD=BD=8﹣x,∵AC2+CD2=AD2,即42+x2=(8﹣x)2,∴x=3,即CD=3.22.如图,A、F、B、C是半圆O上的四个点,四边形OABC是平行四边形,∠FAB=15°,连接OF交AB于点E,过点C作OF的平行线交AB的延长线于点D,延长AF交直线CD于点H.(1)求证:CD是半圆O的切线;(2)若DH=6﹣3,求EF和半径OA的长.【分析】(1)连接OB,根据已知条件得到△AOB是等边三角形,得到∠AOB=60°,根据圆周角定理得到∠AOF=∠BOF=30°,根据平行线的性质得到OC⊥CD,由切线的判定定理即可得到结论;(2)根据平行线的性质得到∠DBC=∠EAO=60°,解直角三角形得到BD=BC=AB,推出AE=AD,根据相似三角形的性质得到,求得EF=2﹣,根据直角三角形的性质即可得到结论.【解答】解:(1)连接OB,∵OA=OB=OC,∵四边形OABC是平行四边形,∴AB=OC,∴△AOB是等边三角形,∴∠AOB=60°,∵∠FAD=15°,∴∠BOF=30°,∴∠AOF=∠BOF=30°,∴OF⊥AB,∵CD∥OF,∴CD⊥AD,∵AD∥OC,∴OC⊥CD,∴CD是半圆O的切线;(2)∵BC∥OA,∴∠DBC=∠EAO=60°,∴BD=BC=AB,∴AE=AD,∵EF∥DH,∴△AEF∽△ADH,∴,∵DH=6﹣3,∴EF=2﹣,∵OF=OA,∴OE=OA﹣(2﹣),∵∠AOE=30°,∴==,解得:OA=2.23.如图1,AB为半圆O的直径,D为BA的延长线上一点,DC为半圆O的切线,切点为C.(1)求证:∠ACD=∠B;(2)如图2,∠BDC的平分线分别交AC,BC于点E,F;①求tan∠CFE的值;②若AC=3,BC=4,求CE的长.【考点】切线的性质.【分析】(1)利用等角的余角相等即可证明.(2)①只要证明∠CEF=∠CFE即可.②由△DCA∽△DBC,得===,设DC=3k,DB=4k,由CD2=DA•DB,得9k2=(4k﹣5)•4k,由此求出DC,DB,再由△DCE∽△DBF,得=,设EC=CF=x,列出方程即可解决问题.【解答】(1)证明:如图1中,连接O C.∵OA=OC,∴∠1=∠2,∵CD是⊙O切线,∴OC⊥CD,∴∠DCO=90°,∴∠3+∠2=90°,∵AB是直径,∴∠1+∠B=90°,∴∠3=∠B.(2)解:①∵∠CEF=∠ECD+∠CDE,∠CFE=∠B+∠FDB,∵∠CDE=∠FDB,∠ECD=∠B,∴∠CEF=∠CFE,∵∠ECF=90°,∴∠CEF=∠CFE=45°,∴tan∠CFE=tan45°=1.②在RT△ABC中,∵AC=3,BC=4,∴AB==5,∵∠CDA=∠BDC,∠DCA=∠B,∴△DCA∽△DBC,∴===,设DC=3k,DB=4k,∵CD2=DA•DB,∴9k2=(4k﹣5)•4k,∴k=,∴CD=,DB=,∵∠CDE=∠BDF,∠DCE=∠B,∴△DCE∽△DBF,∴=,设EC=CF=x,∴=,∴x=.∴CE=.24.如图,在△AOB中,∠AOB为直角,OA=6,OB=8,半径为2的动圆圆心Q从点O出发,沿着OA方向以1个单位长度/秒的速度匀速运动,同时动点P从点A出发,沿着AB方向也以1个单位长度/秒的速度匀速运动,设运动时间为t秒(0<t≤5)以P为圆心,PA长为半径的⊙P与AB、OA的另一个交点分别为C、D,连结CD、Q C.(1)当t为何值时,点Q与点D重合?(2)当⊙Q经过点A时,求⊙P被OB截得的弦长.(3)若⊙P与线段QC只有一个公共点,求t的取值X围.【考点】圆的综合题.【分析】(1)由题意知CD⊥OA,所以△ACD∽△ABO,利用对应边的比求出AD的长度,若Q与D重合时,则,AD+OQ=OA,列出方程即可求出t的值;(2)由于0<t≤5,当Q经过A点时,OQ=4,此时用时为4s,过点P作PE⊥OB于点E,利用垂径定理即可求出⊙P被OB截得的弦长;(3)若⊙P与线段QC只有一个公共点,分以下两种情况,①当QC与⊙P相切时,计算出此时的时间;②当Q与D重合时,计算出此时的时间;由以上两种情况即可得出t的取值X围.【解答】解:(1)∵OA=6,OB=8,∴由勾股定理可求得:AB=10,由题意知:OQ=AP=t,∴AC=2t,∵AC是⊙P的直径,∴∠CDA=90°,∴CD∥OB,∴△ACD∽△ABO,∴,∴AD=,当Q与D重合时,AD+OQ=OA,∴+t=6,(2)当⊙Q经过A点时,如图1,OQ=OA﹣QA=4,∴t==4s,∴PA=4,∴BP=AB﹣PA=6,过点P作PE⊥OB于点E,⊙P与OB相交于点F、G,连接PF,∴PE∥OA,∴△PEB∽△AOB,∴,∴PE=,∴由勾股定理可求得:EF=,由垂径定理可求知:FG=2EF=;(3)当QC与⊙P相切时,如图2,此时∠QCA=90°,∵OQ=AP=t,∴AQ=6﹣t,AC=2t,∵∠A=∠A,∠QCA=∠ABO,∴△AQC∽△ABO,∴,∴,∴当0<t≤时,⊙P与QC只有一个交点,当QC⊥OA时,此时Q与D重合,由(1)可知:t=,∴当<t≤5时,⊙P与QC只有一个交点,综上所述,当,⊙P与QC只有一个交点,t的取值X围为:0<t≤或<t≤5.。
3.5 圆周角(1)(1)圆周角的度数等于它所对弧上的圆心角度数的一半.(2)直径(或半圆)所对的圆周角是直角,90°的圆周角所对的弦是直径.1.如图所示,在⊙O 中,OD ⊥BC ,∠BOD=60°,则∠CAD 的度数为(D ).A.15°B.20°C.25°D.30°(第1题) (第2题)(第3题)(第4题)2.如图所示,AB 是⊙O 的直径,点C ,D ,E 在⊙O 上,若∠AED=20°,则∠BCD 的度数为(B ).A.100°B.110°C.115°D.120°3.如图所示,在⊙O 中,AB 是直径,BC 是弦,点P 是上任意一点.若AB=5,BC=3,则AP 的长不可能为(A ).A.3B.4C. 29 D.5 4.如图所示,ABCD 的顶点A ,B ,D 在⊙O 上,顶点C 在⊙O 的直径BE 上,连结AE ,∠E=36°,则∠ADC 的度数为(B ).A.44°B.54°C.72°D.53°5.如图所示,在△ABC 中,AB 是⊙O 的直径,∠B=60°,∠C=70°,则∠BOD 的度数为(B ).A.90°B.100°C.110°D.120°(第5题)(第6题)(第7题)(第8题)6.如图所示,△ABC内接于⊙O,若∠OAB=32°,则∠C= 58°.7.如图所示,点B,D,C是⊙A上的点,∠BDC=130°,则∠BAC= 100°.8.如图所示,在△ABC中,AB=AC.以AB为直径作半⊙O,交BC于点D.若∠BAC=40°,则的度数是140°.9.如图所示,已知△ABC,以AB为直径的半圆O交AC于点D,交BC于点E,BE=CE,∠C=70°,求∠DOE的度数.(第9题) (第9题答图)【答案】如答图所示,连结AE.∵AB是半圆O的直径,∴∠AEB=90°.∴AE⊥BC.∵BE=CE,∴AB=AC.∴∠B=∠C=70°,∠BAC=2∠CAE.∴∠BAC=40°.∴∠DOE=2∠CAE=∠BAC=40°.(第10题)10.如图所示,△ABD是⊙O的内接三角形,圆心O在边AB上,C为的中点,AD分别与BC,OC交于E,F两点.求证:(1)OF∥BD.(2)若∠C=30°,则AD平分OC.【答案】(1)∵OC为半径,点C为中点,∴AF=DF.∵AO=BO,∴OF∥BD.(第10题答图)(2)如答图所示,延长CO 交⊙O 于点N.∵∠C=30°,∴∠BON=60°.∵∠AOC=∠BON,∴∠AOC=60°.∵OC 为半径,C 为中点,∴OF⊥AD.∴∠OFA=90°.∴∠A=30°.∴OF=21OA=21OC ,即AD 平分OC.11.如图所示,A ,B ,C ,D 是⊙O 上的四个点,B 是的中点,M 是半径OD 上任意一点.若∠BDC=40°,则∠AMB 的度数不可能是(D ). A.45° B.60° C.75° D.85°(第11题) (第12题) (第13题) (第14题)12.如图所示,⊙O 的直径AB 为8,P 是上半圆(点A ,B 除外)上任一点,∠APB 的平分线交⊙O 于点C ,弦EF 过AC ,BC 的中点M ,N ,则EF 的长是(A ).A.43B.23C.6D.2513.如图所示,A ,B ,C 为⊙O 上的三个点,∠BOC=2∠AOB,∠BAC=40°,则∠ACB= 20° .14.AB 为半圆O 的直径,现将一把等腰直角三角尺如图所示放置,锐角顶点P 在半圆上,斜边过点B ,一条直角边交该半圆于点Q.若AB=2,则线段BQ 的长为2 .(第15题)15.如图所示,D 为边AC 上一点,O 为边AB 上一点,AD=DO.以点O 为圆心,OD 长为半径作圆,交AC 于另一点E ,交AB 于点F ,G ,连结EF.若∠BAC=22°,则∠EFG= 33° .16.我们把1°的圆心角所对的弧叫做1°的弧.则圆心角∠AOB 的度数等于它所对的弧的度数,记为:.由此可知:命题“圆周角的度数等于其所对的弧的度数的一半”是真命题,请结合图1给予证明(不要求写已知、求证,只需直接证明),并解决以下的问题.(1)如图2所示,⊙O 的两条弦AB ,CD 相交于圆内一点P ,求证:.(2)如图3所示,⊙O 的两条弦AB ,CD 相交于圆外一点P.(1)中的结论是否成立?如果成立,给予证明;如果不成立,写出一个类似的结论(不要求证明).(第16题)(第16题答图) 【答案】∵∠APB=21∠AOB,,即圆周角的度数等于其所对的弧的度数的一半.(1)如答图所示,连结BC ,则∠APC=∠PCB+∠PBC.∵.(2)(1)中的结论不成立.类似的结论为:.(第17题17.【毕节】如图所示,AB 是⊙O 的直径,CD 是⊙O 的弦,∠ACD=30°,则∠BAD 为(C ).A.30°B.50°C.60°D.70°18.【临沂】如图所示,∠BAC 的平分线交△ABC 的外接圆于点D ,∠ABC 的平分线交AD 于点E.(1)求证:DE=DB.(2)若∠BAC=90°,BD=4,求△ABC 外接圆的半径.(第18题) (第18题答图)【答案】(1)∵AD 平分∠BAC,∴∠BAD=∠CAD.又∵∠DBC=∠CAD,∴∠DBC=∠BAD.∵BE 平分∠ABC ,∴∠ABE =∠CBE.∵∠DBE=∠CBE+∠DBC ,∠DEB=∠ABE+∠BAD ,∴∠DBE=∠DEB.∴DE=DB.(2)如答图所示,连结CD.由(1)得,∴CD=BD=4.∵∠BAC=90°,∴BC 是直径.∴∠BDC=90°.∴BC=22CD BD =42.∴△ABC 外接圆的半径=21×42=22.19.研究发现:当四边形的对角线互相垂直时,该四边形的面积等于对角线乘积的一半.如图1所示,已知四边形ABCD 内接于⊙O,对角线AC=BD ,且AC⊥BD.(1)求证:AB=CD.(2)若⊙O 的半径为8,的度数为120°,求四边形ABCD 的面积.(3)如图2所示,作OM⊥BC 于点M ,请猜测OM 与AD 的数量关系,并证明你的结论.图1图2(第19题)图1图2(第19题答图)【答案】(1)∵AC=BD,∴,∴AB=CD. (2)如答图所示,连结OB ,OD ,作OH⊥BD 于点H ,∵的度数为120°,∴∠BOD=120°.∴∠BOH=60°.则BH=23OB=43,∴BD=83则四边形ABCD 的面积S=21×AC×BD=96.(3)AD=2OM.证明:如答图2所示,连结OB ,OC ,OA ,OD ,作OE⊥AD 于点E.∵OE⊥AD,∴AE=DE. ∵∠BOC=2∠BAC ,而∠BOC=2∠BOM,∴∠BOM=∠BAC.同理可得∠AOE=∠ABD.∵BD⊥AC,∴∠BAC+∠ABD=90°.∴∠BOM+∠AOE=90°.∵∠BOM+∠OBM=90°,∴∠OBM=∠AOE.在△BOM和△OAE 中,∵⎪⎩⎪⎨⎧=∠=∠∠=∠OA OB AOE OBM OEA OMB ,∴△BOM≌△OAE.∴OM=AE.∴AD=2OM.。
专题3.5 圆周角、圆内接四边形【十大题型】【浙教版】【题型1 圆周角的运用】........................................................................................................................................2【题型2 圆内接四边形的运用】............................................................................................................................3【题型3 利用圆的有关性质求值】........................................................................................................................4【题型4 利用圆的有关性质进行证明】................................................................................................................5【题型5 翻折中的圆的有关性质的运用】............................................................................................................7【题型6 利用圆的有关性质求最值】....................................................................................................................9【题型7 利用圆的有关性质求取值范围】..........................................................................................................10【题型8 利用圆的有关性质探究角或线段间的关系】......................................................................................11【题型9 利用圆的有关性质判断多结论问题】..................................................................................................13【题型10 构造圆利用圆周角解决三角形或四边形中的问题】.. (14)【知识点1圆周角定理及其推论】【题型1 圆周角的运用】【例1】(2023春·山东泰安·九年级东平县实验中学校考期末)如图,⊙O 的直径是AB ,∠BPQ =45°,圆的半径是4,则弦BQ 的长是( ).A .B .C .D .【变式1-1】(2023春·广西玉林·九年级统考期末)如图,在△ABC 中,AB 为⊙O 的直径,已知AB =4,CD =1,∠B =55°,∠C =65°,则BC = .【变式1-2】(2023春·江西九江·九年级校考期中)如图,△ABC 内接于☉O ,AC =BC ,连接OB ,若∠C =52°,则∠OBC 的度数为.【变式1-3】(2023春·湖北省直辖县级单位·九年级统考期末)如图,AB 为半圆的直径,AB =10,点O 到弦AC 的距离为4,点P 从出发沿BA 方向向点A 以每秒1个单位长度的速度运动,连接CP ,当△APC 为等腰三角形时,点P 运动的时间是( )A .145或4B .145或5C .4或5D .145,4或5【知识点2 圆内接四边形】【题型2 圆内接四边形的运用】【例2】(2023春·浙江衢州·九年级校联考期中)如图,在△ABC 中,AB =AC .⊙O 是△ABC 的外接圆,D 为弧AC 的中点,E 为BA 延长线上一点.(1)求证:∠B =2∠ACD ;(2)若∠ACD =35°,求∠DAE 的度数.【变式2-1】(2023春·陕西西安·九年级高新一中校考期中)如图,四边形ABCD 是⊙O 的内接四边形,BE 是⊙O 的直径,连接AE ,若∠BCD =2∠BAD ,若连接OD ,则∠DOE 的度数是( )A .30°B .35°C .45°D .60°【变式2-2】(2023春·浙江·九年级期中)如图,⊙O 的内接四边形ABCD 两组对边的延长线分别交于点E 、F ,若∠E =α,∠F =β,且α≠β,则∠A =(用含有a 、β的代数式表示).【变式2-3】(2023春·辽宁大连·九年级统考期末)如图,以△ABC的边AB为直径作⊙O交AC于D且OD∥BC,⊙O交BC于点E.(1)求证:CD=DE;(2)若AB=12,AD=4,求CE的长度.【题型3利用圆的有关性质求值】【例3】(2023春·四川德阳·九年级四川省德阳中学校校考期中)如图,在△ABC中,∠ACB=90°,过B,C两点的⊙O交AC于点D,交AB于点E,连接EO并延长交⊙O于点F.连接BF,CF,若∠EDC=135°,AE=2,BE=4,则CF的值为().A B.C.D.3【变式3-1】(2023春·湖南长沙·九年级统考期末)如图,⊙O中,OA⊥BC,∠B=50°,则∠D的度数为()A.20°B.50°C.40°D.25°【变式3-2】(2023春·山东滨州·九年级统考期中)如图,⊙O为△ABC的外接圆,AD⊥BC,垂足为点D,直径AE平分∠BAD,交BC于点F,连接BE.(1)求证:BE=BF;(2)若AB=10,BF=5,求EF:AF的值.【变式3-3】(2023春·广东汕头·九年级汕头市龙湖实验中学校考期中)如图1,四边形ADBC内接于⊙O,E为BD延长线上一点,AD平分∠EDC.(1)求证:AB=AC;(2)若△ABC为等边三角形,则∠EDA=度;(直接写答案)(3)如图2,若CD为直径,过A点作AE⊥BD于E,且DB=AE=2,求⊙O的半径.【题型4利用圆的有关性质进行证明】【例4】(2023春·广东广州·九年级广东广雅中学校考期末)如图,CD是△ABC的外角∠ECB的角平分线,与△ABC的外接圆⊙O交于点D,∠ECB=120°.(1)求AB所对圆心角的度数;(2)连DB,DA,求证:DA=DB;(3)探究线段CD,CA,CB之间的数量关系,并证明你的结论.【变式4-1】(2023春·浙江金华·九年级校考期中)如图,已知圆O的直径AB垂直于弦CD于点E,连接CO并延长交AD于点F,且CF⊥AD.证明:E是OB的中点.【变式4-2】(2023春·山西长治·九年级统考期末)阅读材料,解答问题:关于圆的引理古希腊数学家、物理学家阿基米德流传于世的数学著作有10余种,下面是《阿基米德全集》的《引理集》中记载的一个命题:如图1,AB是⊙O的弦,点C在⊙O上,CD⊥AB于点D,在弦AB上取点E,使DE=AD,点F是BC上的一点,且CF=CA,连接BF,则BF=BE.小颖对这个问题很感兴趣,经过思考,写出了下面的证明过程:证明:如图2,连接CA,CE,CF,BC,∵CD⊥AB于点D,DE=AD,∴CA=CE.∴∠CAE=∠CEA.∵CF=CA,∴CF=CA(依据1),∠CBF=∠CBA.∵四边形ABFC内接于⊙O,∴∠CAB+∠CFB=180°.(依据2)……(1)上述证明过程中的依据1为 ,依据2为 ;(2)将上述证明过程补充完整.【变式4-3】(2023春·江苏泰州·九年级校考期末)已知⊙O为△ACD的外接圆,AD=CD.(1)如图1,延长AD至点B,使BD=AD,连接CB.①求证:△ABC为直角三角形;②若⊙O的半径为4,AD=5,求BC的值;(2)如图2,若∠ADC=90°,E为⊙O上的一点,且点D,E位于AC两侧,作△ADE关于AD对称的图形△ADQ,连接QC,试猜想QA,QC,QD三者之间的数量关系并给予证明.【题型5翻折中的圆的有关性质的运用】【例5】(2023春·江苏无锡·九年级统考期中)如图,将⊙O上的BC沿弦BC翻折交半径OA于点D,再将BD沿BD翻折交BC于点E,连接DE.若AD=2OD,则DE的值为()ABA B C D【变式5-1】(2023春·湖北恩施·九年级期末)如图,AB为⊙O的一条弦,C为⊙O上一点,OC∥AB.将劣弧AB沿弦AB翻折,交翻折后的弧AB交AC于点D.若D为翻折后弧AB的中点,则∠ABC=( )A.110°B.112.5°C.115°D.117.5°【变式5-2】(2023春·浙江宁波·九年级校考期中)如图,在⊙O中,AB为直径,C为圆上一点,将劣弧AC 沿弦AC翻折,交AB于点D,连接CD,若点D与圆心O不重合,∠BAC=25°,则∠DCA=.【变式5-3】(2023春·浙江金华·九年级浙江省义乌市稠江中学校考期中)在⊙O中,AB为直径,点C为圆上一点,将劣弧沿弦AC翻折交AB于点D,连接CD.(1)如图1,若点D与圆心O重合,AC⊙O的半径r;(2)如图2,若点D与圆心O不重合,∠BAC=20∘,请求出∠DCA的度数.(3)如图2,如果AD=6,DB=2,求AC的长.【题型6利用圆的有关性质求最值】【例6】(2023春·浙江衢州·九年级校联考期中)如图,△ABC中,AB=∠ACB=75°,∠ABC=60°,D是线段BC上的一个动点,以AD为直径画⊙O,分别交AB,AC于E,F,连接EF,则∠BAC=;EF的最小值为.【变式6-1】(2023春·北京密云·九年级统考期末)如图,⊙O的弦AB长为2,CD是⊙O的直径,∠ADB=30°,∠ADC=15°.①⊙O的半径长为.②P是CD上的动点,则PA+PB的最小值是.【变式6-2】(2023春·湖南湘西·九年级统考期末)如图,在正方形ABCD中,AB=4,以边CD为直径作半圆O,E是半圆O上的动点,EF⊥DA于点F,EP⊥AB于点P,设EF=x,EP=y()A.B.C.D.【变式6-3】(2023春·辽宁沈阳·九年级沈阳市第七中学校考期末)如图,已知以BC为直径的⊙O,A为弧BC 中点,P为弧AC上任意一点,AD⊥AP交BP于D,连CD.若BC=6,则CD的最小值为.【题型7利用圆的有关性质求取值范围】【例7】(2023春·湖北武汉·九年级校考期末)如图,△ABC的两个顶点A、B在⊙O上,⊙O的半径为2,∠BAC=90°,AB=AC,若动点B在⊙O上运动,OC=m,则m的取值范围是.圆周,C点是BE 【变式7-1】(2023春·新疆乌鲁木齐·九年级校考期中)如图,弧BE是半径为6的圆D的14上的任意一点,△ABD是等边三角形,则四边形ABCD的周长P的取值范围是( )A.12<P≤18B.18<P≤24C.18<P≤18+D.12<P≤12+【变式7-2】(2023春·福建福州·九年级校考期中)如图,⊙O的直径为10,A、B、C、D是⊙O上的四个动点,且AB=6,CD=8,若点E、F分别是弦AB、CD的中点,则线段EF长度的取值范围是()A.1≤EF≤7B.2≤EF≤5C.1<EF<7D.1≤EF≤6【变式7-3】(2023春·江苏南京·九年级统考期中)如图,在平面直角坐标系xOy中,⊙O的半径是1.过⊙O 上一点P作等边三角形PDE,使点D,E分别落在x轴、y轴上,则PD的取值范围是.【题型8利用圆的有关性质探究角或线段间的关系】【例8】(2023·河北石家庄·统考一模)如图,AB是半圆O的直径,C、D、E三点依次在半圆O上,若∠C=α,∠E=β,则α与β之间的关系是()α+90°A.α+β=270°B.α+β=180°C.β=α+90°D.β=12【变式8-1】(2023·湖北襄阳·九年级校考阶段练习)如图,等边△ABC内接于⊙O,P是AB上任意一点(不与点A、B重合),连AP、BP,过点C作CM//BP交PA的延长线于点M.(1)求∠APC和∠BPC的度数(2)探究PA、PB、PM之间的关系(3)若PA=1,PB=2,求四边形PBCM的面积.【变式8-2】(2023春·安徽·九年级专题练习)如图,四边形ABCD内接于⊙O,AC是⊙O的直径,AB=BC,延长DA到点E,使得BE=BD.(1)若AF平分∠CAD,求证:BA=BF;(2)试探究线段AD,CD与BD之间的数量关系.【变式8-3】(2023·江苏·九年级假期作业)小明学习了垂径定理,做了下面的探究,请根据题目要求帮小明完成探究.(1)更换定理的题设和结论可以得到许多真命题.如图1,在⊙O中,C是劣弧AB的中点,直线CD⊥AB于点E,则AE=BE.请证明此结论;(2)从圆上任意一点出发的两条弦所组成的折线,成为该圆的一条折弦.如图2,PA,PB组成⊙O的一条折弦.C是劣弧AB的中点,直线CD⊥PA于点E,则AE=PE+PB.可以通过延长DB、AP相交于点F,再连接AD证明结论成立.请写出证明过程;(3)如图3,PA,PB组成⊙O的一条折弦.C是优弧ACB的中点,直线CD⊥PA于点E,则AE,PE与PB之间存在怎样的数量关系?写出结论,不必证明.【题型9利用圆的有关性质判断多结论问题】【例9】(2023春·江苏镇江·九年级统考期中)如图,点A、B、C是⊙O上的点,且∠ACB=90°,AC=6,BC=8,∠ACB的平分线交⊙O于D,下列4个判断:①⊙O的半径为5;②CD的长为③在BC弦所在直线上存在3个不同的点E,使得△CDE是等腰三角形;④在BC弦所在直线上存在2个不同的点F,使得△CDF是直角三角形;正确判断的个数有()A.1B.2C.3D.4【变式9-1】(2023春·广东湛江·九年级统考期末)如图所示,MN是⊙O的直径,作AB⊥MN,垂足为点D,连接AM,AN,点C为AN上一点,且AC=AM,连接CM,交AB于点E,交AN于点F,现给出以下MF.结论:①AD=BD;②∠MAN=90°;③AM=BM;④∠ACM+∠ANM=∠MOB;⑤AE=12其中正确结论的个数是( )A.2B.3C.4D.5【变式9-2】(2023春·全国·九年级统考期末)已知如图,点O为△ABD的外心,点C为直径BD下方弧BCD上一点,且不与点B,D重合,∠ACB=∠ABD=45°,则下列对AC,BC,CD之间的数量关系判断正确的是()A.AC=BC+CD B AC=BC+CD C AC=BC+CD D.2AC=BC+CD 【变式9-3】(2023春·浙江·九年级期末)在一次探究活动中,方方完成了如下的尺规画图过程:第一步:在半径为1的⊙O上任取一点A,连续以1为半径在⊙O上截取AB=BC=CD;第二步:分别以A、D为圆心A到C的距离为半径画弧,两弧交于E,以A为圆心O到E的距离为半径画弧,交⊙O于F.画图后,他得出两个结论:①AF②△ACF)A.①正确,②正确B.①正确,②错误C.①错误,②正确D.①错误,②错误【题型10构造圆利用圆周角解决三角形或四边形中的问题】【例10】(2023春·安徽六安·九年级校考期末)如图,在Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC内部的一个动点,连接PC,且满足∠PAB=∠PBC,过点P作PD⊥BC于点D,则∠APB=;当线段CP最短时,△BCP的面积为【变式10-1】(2023春·福建厦门·九年级厦门市第五中学校考期中)在△ABC中,∠ACB=90°,AC=BC=2,把△ABC绕点B顺时针旋转得到△DBE(点A与D对应).(1)如图,若点E落在边AB上,连接AD,求AE的长;(2)如图,若旋转角度为60°,连接AE.求AE的长;(3)如图,若旋转角度为α(45°≤α≤90°),连接AD,BF⊥AD,垂足为F.求证:C,E,F三点在同一直线上.【变式10-2】(2023春·重庆开州·九年级统考期末)如图,以直角三角形ABC的斜边AB为边在三角形ABC的同侧作正方形ABDE,正方形的对角线AD,BE相交于点O,连接CO,如果AC=1,CO=ABDE的面积为()A.20B.22C.24D.26【变式10-3】(2023春·吉林长春·九年级校考期末)如图,菱形ABCD的边长为8,∠A=60°,E是AD中点,动点P从点A出发,沿折线AB−BD以每秒1个单位长度的速度向终点D运动,连结PE,作A关于直线PE 的对称点A′,连结A′E、A′P.设P的运动时间为t秒.(1)点D到AB的距离是.(2)直接写出A′B的最小值.(3)当A′落在菱形ABCD的边上时,求△A′PE的面积.(4)当A′P垂直于菱形ABCD的一边时,直接写出t的值.。
中考数学复习----《圆周角定理》知识点总结与专项练习题(含答案)知识点总结1.圆心角、弦以及弧之间的关系:①定理:在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦也相等。
②推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等。
说明:同一条弦对应两条弧,其中一条是优弧,一条是劣弧,而在本定理和推论中的“弧”是指同为优弧或劣弧。
2.圆周角的定义:顶点在圆上,并且两边都与圆相交的角叫做圆周角。
3.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。
4.圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径。
5.圆的内接四边形:①定义:四个顶点都在圆上的四边形叫做圆的内接四边形。
②性质:I:圆内接四边形的对角互补。
II:圆内接四边形的任意一个外角等于它的内对角。
练习题1、(2022•襄阳)已知⊙O的直径AB长为2,弦AC长为2,那么弦AC所对的圆周角的度数等于.【分析】首先利用勾股定理逆定理得∠AOC=90°,再根据一条弦对着两种圆周角可得答案.【解答】解:如图,∵OA=OC=1,AC=,∴OA2+OC2=AC2,∴∠AOC=90°,∴∠ADC=45°,∴∠AD'C=135°,故答案为:45°或135°.2、(2022•日照)一圆形玻璃镜面损坏了一部分,为得到同样大小的镜面,工人师傅用直角尺作如图所示的测量,测得AB=12cm,BC=5cm,则圆形镜面的半径为.【分析】连接AC,根据∠ABC=90°得出AC是圆形镜面的直径,再根据勾股定理求出AC 即可.【解答】解:连接AC,∵∠ABC=90°,且∠ABC是圆周角,∴AC是圆形镜面的直径,由勾股定理得:AC===13(cm),所以圆形镜面的半径为cm,故答案为:cm.3、(2022•永州)如图,AB是⊙O的直径,点C、D在⊙O上,∠ADC=30°,则∠BOC=度.【分析】根据在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半求出∠AOC的度数,根据平角的定义即可得到∠BOC=180°﹣∠AOC的度数.【解答】解:∵∠ADC是所对的圆周角,∴∠AOC=2∠ADC=2×30°=60°,∴∠BOC=180°﹣∠AOC=180°﹣60°=120°.故答案为:120.4、(2022•苏州)如图,AB是⊙O的直径,弦CD交AB于点E,连接AC,AD.若∠BAC=28°,则∠D=°.【分析】如图,连接BC,证明∠ACB=90°,求出∠ABC,可得结论.【解答】解:如图,连接BC.∵AB是直径,∴∠ACB=90°,∴∠ABC=90°﹣∠CAB=62°,∴∠D=∠ABC=62°,故答案为:62.5、(2022•湖州)如图,已知AB 是⊙O 的弦,∠AOB =120°,OC ⊥AB ,垂足为C ,OC 的延长线交⊙O 于点D .若∠APD 是AB ⌒所对的圆周角,则∠APD 的度数是 .【分析】由垂径定理得出,由圆心角、弧、弦的关系定理得出∠AOD =∠BOD ,进而得出∠AOD =60°,由圆周角定理得出∠APD =∠AOD =30°,得出答案.【解答】解:∵OC ⊥AB ,∴,∴∠AOD =∠BOD ,∵∠AOB =120°,∴∠AOD =∠BOD =∠AOB =60°,∴∠APD =∠AOD =×60°=30°,故答案为:30°.6、(2022•徐州)如图,A 、B 、C 点在圆O 上,若∠ACB =36°,则∠AOB = .【分析】利用一条弧所对的圆周角等于它所对的圆心角的一半即可得出结论.【解答】解:∵∠ACB =∠AOB ,∠ACB =36°,∴∠AOB =2×∠ACB =72°.故答案为:72°.7、(2022•锦州)如图,四边形ABCD内接于⊙O,AB为⊙O的直径,∠ADC=130°,连接AC,则∠BAC的度数为.【分析】利用圆内接四边形的性质和∠ADC的度数求得∠B的度数,利用直径所对的圆周角是直角得到∠ACB=90°,然后利用直角三角形的两个锐角互余计算即可.【解答】解:∵四边形ABCD内接于⊙O,∠ADC=130°,∴∠B=180°﹣∠ADC=180°﹣130°=50°,∵AB为⊙O的直径,∴∠ACB=90°,∴∠CAB=90°﹣∠B=90°﹣50°=40°,故答案为:40°.8、(2022•雅安)如图,∠DCE是⊙O内接四边形ABCD的一个外角,若∠DCE=72°,那么∠BOD的度数为.【分析】根据邻补角的概念求出∠BCD,根据圆内接四边形的性质求出∠A,根据圆周角定理解答即可.【解答】解:∵∠DCE=72°,∴∠BCD=180°﹣∠DCE=108°,∵四边形ABCD内接于⊙O,∴∠A=180°﹣∠BCD=72°,由圆周角定理,得∠BOD=2∠A=144°,故答案为:144°.9、(2022•甘肃)如图,⊙O是四边形ABCD的外接圆,若∠ABC=110°,则∠ADC=°.【分析】根据圆内接四边形的对角互补即可得到结论.【解答】解:∵四边形ABCD内接于⊙O,∠ABC=110°,∴∠ADC=180°﹣∠ABC=180°﹣110°=70°,故答案为:70.。
圆周角(02)一、选择题1.如图,⊙O的直径AB=2,弦AC=1,点D在⊙O上,则∠D的度数是()A.30° B.45° C.60° D.75°2.如图,AB为⊙O直径,已知∠DCB=20°,则∠DBA为()A.50° B.20° C.60° D.70°3.如图,△ABD的三个顶点在⊙O上,AB是直径,点C在⊙O上,且∠ABD=52°,则∠BCD 等于()A.32° B.38° C.52° D.66°4.如图,在⊙O中,直径CD垂直于弦AB,若∠C=25°,则∠BOD的度数是()A.25° B.30° C.40° D.50°5.如图,△ABC的顶点A、B、C均在⊙O上,若∠ABC+∠AOC=90°,则∠AOC的大小是()A.30° B.45° C.60° D.70°6.如图,BD是⊙O的直径,弦AC⊥BD,垂足为E,∠AOB=60°,则∠BDC等于()A.30° B.45° C.60° D.90°7.如图,已知A,B,C在⊙O上,为优弧,下列选项中与∠AOB相等的是()A.2∠C B.4∠B C.4∠A D.∠B+∠C8.如图,已知AB是△ABC外接圆的直径,∠A=35°,则∠B的度数是()A.35° B.45° C.55° D.65°9.如图所示,点A,B,C在圆O上,∠A=64°,则∠BOC的度数是()A.26° B.116°C.128°D.154°10.如图,已知经过原点的⊙P与x、y轴分别交于A、B两点,点C是劣弧OB上一点,则∠ACB=()A.80° B.90° C.100°D.无法确定11.△ABC为⊙O的内接三角形,若∠AOC=160°,则∠ABC的度数是()A.80° B.160°C.100°D.80°或100°12.如图,AB是⊙O的直径,C、D是⊙O上的两点,分别连接AC、BC、CD、OD.若∠DOB=140°,则∠ACD=()A.20° B.30° C.40° D.70°13.如图,点A,B,C是⊙O上的三点,已知∠AOB=100°,那么∠ACB的度数是()A.30° B.40° C.50° D.60°14.如图,圆O是△ABC的外接圆,∠A=68°,则∠OBC的大小是()A.22° B.26° C.32° D.68°15.如图所示,MN是⊙O的直径,作AB⊥MN,垂足为点D,连接AM,AN,点C为上一点,且=,连接CM,交AB于点E,交AN于点F,现给出以下结论:①AD=BD;②∠MAN=90°;③=;④∠ACM+∠ANM=∠MOB;⑤AE=MF.其中正确结论的个数是()A.2 B.3 C.4 D.516.如图,⊙O是△ABC的外接圆,∠ACO=45°,则∠B的度数为()A.30° B.35° C.40° D.45°17.如图A,B,C是⊙O上的三个点,若∠AOC=100°,则∠ABC等于()A.50° B.80° C.100°D.130°18.如图,四边形ABCD为⊙O的内接四边形,已知∠BOD=100°,则∠BCD的度数为()A.50° B.80° C.100°D.130°二、填空题19.如图所示,A、B、C三点均在⊙O上,若∠AOB=80°,则∠ACB= °.20.如图,在⊙O中, =,∠DCB=28°,则∠ABC= 度.21.如图,点O为所在圆的圆心,∠BOC=112°,点D在BA的延长线上,AD=AC,则∠D= .22.如图,⊙O是△ABC的外接圆,AD是⊙O的直径,若⊙O的半径是4,sinB=,则线段AC的长为.23.如图,⊙O是△ABC的外接圆,连接OA,OB,∠OBA=48°,则∠C的度数为.24.若⊙O的弦AB所对的圆心角∠AOB=50°,则弦AB所对的圆周角的度数为.25.如图,点B、D、C是⊙A上的点,∠BDC=130°,则∠BAC= °.26.如图,是一个圆心人工湖的平面图,弦AB是湖上的一座桥,已知桥长100m,测得圆周角∠ACB=30°,则这个人工湖的直径为m.27.如图,点A,B,C是⊙O上的点,AO=AB,则∠ACB= 度.三、解答题28.如图,四边形ABCD内接于⊙O,点E在对角线AC上,EC=BC=DC.(1)若∠CBD=39°,求∠BAD的度数;(2)求证:∠1=∠2.29.如图,⊙O是△ABC的外接圆,AB是⊙O的直径,FO⊥AB,垂足为点O,连接AF并延长交⊙O于点D,连接OD交BC于点E,∠B=30°,FO=2.(1)求AC的长度;(2)求图中阴影部分的面积.(计算结果保留根号)30.如图,⊙O的直径AB的长为10,弦AC的长为5,∠ACB的平分线交⊙O于点D.(1)求的长.(2)求弦BD的长.。
3.5__圆周角__第2课时 圆周角定理的推论1.下列命题是假命题的是( ) A .同弧或等弧所对的圆周角相等 B .平分弦的直径垂直于弦 C .两条平行线间的距离处处相等 D .正方形的两条对角线互相垂直平分2.如图3-5-20,DC 是⊙O 的直径,弦AB ⊥CD 于F ,连接BC ,DB .则下列结论错误的是( )3-5-20A.AD ︵= BD ︵B .AF =BFC .OF =CFD .∠DBC =90°3.如图3-5-21,已知AB ,CD 是⊙O 的两条直径,∠ABC =20°,那么∠BAD =( )图3-5-21A .45°B .60°C .30°D .20°4.如图3-5-22,已知⊙O 是△ABD 的外接圆,AB 是⊙O 的直径,CD 是⊙O 的弦,∠ABD =58°,则∠BCD 等于( )3-5-22A .116°B .32°C .58°D .64°5.如图3-5-23,△ABC 是⊙O 的内接三角形,AC 是⊙O 的直径,∠C =50°,∠ABC 的平分线BD 交⊙O 于点D ,则∠BAD 的度数是( )图3-5-23A.45° B.85° C.90° D.95°6.如图3-5-24,在⊙O中,直径CD垂直于弦AB,垂足为E,若∠AOD=52°,则∠DCB=__ __.3-5-247.如图3-5-25,弦AB,CD相交于点O,连接AD,BC,在不添加辅助线的情况下,请在图中找出一对相等的角,它们是_ _.3-5-258.如图3-5-26,海边有两座灯塔A,B,暗礁分布在经过A,B两点的弓形(弓形的弧是⊙O的一部分)区域内,∠AOB=90°,为了避免触礁,轮船P与A,B的张角∠APB的最大值为__ __.图3-5-269.如图3-5-27,AB是⊙O的直径,点C,D都在⊙O上,连结CA,CB,DC,DB.已知∠D=30°,BC=3,则AB的长是__ __.图3-5-2710.如图3-5-20,AB 是半圆的直径,点D 是AC ︵的中点,∠ABC =50°,则∠DAB 等于3-5-2011.如图3-5-29,已知AB 为⊙O 的直径,AB =AC ,BC 交⊙O 于点D ,AC 交⊙O 于点E ,∠BAC =45°.图3-5-29(1)求∠EBC 的度数; (2)求证:BD =CD .12.如图3-5-34,AB 为⊙O 的直径,点C 在⊙O 上,延长BC 至点D ,使DC =CB .延长DA 与⊙O 的另一个交点为E ,连结AC ,CE . (1)求证:∠B =∠D ;(2)若AB =4,BC -AC =2,求CE 的长.3-5-3413.如图3-5-35,A ,P ,B ,C 是半径为8的⊙O 上的四点,且满足∠BAC =∠APC =60°. (1)求证:△ABC 是等边三角形; (2)求圆心O 到BC 的距离OD .图3-5-3514.如图3-5-36所示,AB 是⊙O 的直径,C 是BD ︵的中点,CE ⊥AB 于点E ,BD 交CE 于点F . (1)求证:CF =BF ;(2)若CD=6,AC=8,求⊙O的半径及CE的长.图3-5-3615.如图14,A,B是⊙O上的两个定点,P是⊙O上的动点(点P不与点A,B重合),我们称∠APB是⊙O上关于点A,B的滑动角.(1)已知∠APB是⊙O上关于点A,B的滑动角,①若AB是⊙O的直径,则∠APB=________;②若⊙O的半径是1,AB=2,求∠APB的度数.(2)已知O2 是⊙O1 外一点,以O2 为圆心作一个圆与⊙O1 相交于A,B两点,∠APB是⊙O1 上关于点A,B的滑动角,直线PA,PB分别交⊙O2 于点M,N(点M与点A,点N与点B均不重合),连结AN,试探索∠APB 与∠MAN,∠ANB之间的数量关系.图14第2课时 圆周角定理的推论1. B 2. C 3. D 4. B 5. B【解析】 ∵AC 是⊙O 的直径,∴∠ABC =90°.∵∠C =50°,∴∠BAC =40°.∵∠ABC 的平分线BD 交⊙O 于点D ,∴∠ABD =∠DBC =45°,∴∠CAD =∠DBC =45°,∴∠BAD =∠BAC +∠CAD =40°+45°=85°. 6. __26°__. 7. __∠A =∠C __. 8. __45°__ 9. __6__. 10. ∠DAB =65°.11.解:(1)∵AB =AC ,∴∠ABC =∠C . 又∵∠BAC =45°,∴∠C =∠ABC =12(180°-∠BAC )=67.5°.∵AB 是⊙O 的直径, ∴∠AEB =90°, ∴∠ABE =∠A =45°,∴∠EBC =∠ABC -∠ABE =67.5°-45°=22.5°. (2)证明:连结AD . ∵AB 是⊙O 的直径, ∴∠ADB =90°,即AD ⊥BC . ∵AB =AC , ∴BD =CD .12.解:(1)证明∵AB 为⊙O 的直径, ∴∠ACB =90°, ∴AC ⊥BC , ∵DC =CB ∴AD =AB , ∴∠B =∠D . (2)设BC =x ,则AC =x -2.在Rt △ABC 中,AC 2+BC 2=AB 2, ∴(x -2)2+x 2=42,解得x 1=1+7,x 2=1-7(舍去), ∵∠B =∠E ,∠B =∠D , ∴∠D =∠E , ∴CD =CE , ∵CD =CB∴CE =CB =1+7. 13.第17题答图解:(1)证明:∵∠APC =60°,∠APC =∠ABC , ∴∠ABC =60°,∴∠ACB =180°-∠BAC -∠ABC =180°-60°-60°=60°,∴∠BAC =∠ABC =∠ACB , ∴△ABC 是等边三角形. (2)如图,连结OB ,OC ,∵∠BAC =60°,∴∠BOC =2∠BAC =120°. ∵OB ⊥OC ,OD ⊥BC ,∴∠BOD =12∠BOC =60°,∴∠OBD =90°-∠BOD =30°, ∴OD =12OB =12×8=4.14.第18题答图解:(1)证明:∵A B 是⊙O 的直径, ∴∠ACB =90°,∴∠A =90°-∠ABC . 又∵CE ⊥AB ,∴∠CEB =90°, ∴∠2=90°-∠ABC ,∴∠2=∠A . 又∵C 是BD ︵的中点,∴CD ︵=CB ︵, ∴∠1=∠D =∠A , ∴∠1=∠2,∴CF =BF . (2)∵BC ︵=CD ︵,∴BC =CD =6.∵∠ACB =90°,∴AB =BC 2+AC 2=62+82=10, ∴⊙O 的半径为5.∵S △ABC =12AB ·CE =12BC ·AC ,∴CE =BC ·AC AB =6×810=245. 15.变形2答图(1)解:(1)①90°②如图(1),连结OA ,OB ,AB .∵⊙O 的半径是1,即OA =OB =1,AB =2,∴由勾股定理的逆定理可得△OAB 为直角三角形,∠AOB =90°, ∴∠APB =12∠AOB =45°.(2)①当点P 在优弧AB 上时,如左图,∠APB =∠MAN -∠ANB ; ②当点P 在劣弧AB 上时,如右图,∠APB =∠MAN +∠ANB .变形2答图(2)。
3.3圆周角第1题.在同一个圆中,同弧所对的圆周角和圆心角的关系是.答案:圆周角度数等于圆心角度数的一半第2题. 如图,直径垂直于弦,垂足为,,则的度数为 ,的度数为,的度数为,的度数为.答案:第3题. 如图,是半圆的直径,为圆心,是半圆上一点,且,是延长线上一点,与半圆相交于点,如果,则 ,,.答案:第4题. 如图,,则,,,.AB CD E 130AOC ∠=AD CBD CAD ∠ACD ∠1301005065CD O E 93EOD ∠=A DC AE B AB OC =EAD ∠=EOB ∠=ODE ∠=31564330':5:4ACB ADB =AOB ∠=ACB ∠=ADB ∠=CAD CBD ∠+∠=AOBDCEEBACODADBO答案:第5题. 如图,△内接于,,点,分别在和上,若,则,.答案:第6题. 下列说法正确中的是()A.顶点在圆周上的角称为圆周角 B.相等的圆周角所对的弧相等C.若三角形一边上的中线等于这边的一半,则这一边必为此三角形外接圆的直径 D.圆周角等于圆心角的一半 答案:C第7题. 在同圆中,同弦所对的两个圆周角()A.相等B.互补C.相等或互补D.互余答案:C 第8题. 在中,弦所对的劣弧为圆的,有以下结论:①为,②,③,④△为等边三角形,⑤弦的长等于这个圆的半径.其中正确的是()A.①②③④⑤ B.①②④⑤C.①②D.②④⑤答案:B第9题. ,,,,依次是上的四个点,,弦,的延16080100180ABC O AB AC =E F AC BC 50ABC ∠=BEC ∠=BFC ∠=80100O AB 16AB 6060AOB ∠=60AOB AB ∠==ABO AB A B C D O AB BC CD ==AB CD OBAECF长线交于点,若,则等于( )A. B.C.D.答案:C第10题. 如图,△为锐角三角形,△内接于圆,,是△的垂心,是的直径.求证:.答案:连结,,.是直径,.又,,.在Rt △中,,是△的垂心,,.又,,四边形为平行四边形.,. 第11题. 如图,为的直径,,垂足为,,与交于.(1)求证:;(2)若,把半圆三等分,,求的长.答案:(1)连.,,.P 60ABD ∠=P ∠40102030ABC ABC O 60BAC ∠=H ABC BD O 12AH BD =AD CD CH BD O 90BAD BCD ∠=∠=60BAC ∠=30CAD ∴∠=30DBC CAD ∠=∠=BCD 12CD BD =H ABC AH BC ⊥CH AB ⊥DC BC ⊥DA AB ⊥∴AHCD AH CD =12AH BD ∴=BC O AD BC ⊥D BA AF =BF AD E AE BE =A F 12BC =AE AC 90ACB ABC ∠+∠=90BAD ABD ∠+∠=ACB BAD ∴∠=∠OH BADCOCDBAFE,,,.(2)连.,,.,,△为正三角形.,为中点,,.在Rt △中,,,,.第12题. 如图,已知是外任意一点,过点作直线,,分别交于点,,,.求证:(的度数的度数).答案:连结,,.的度数等于的度数,的度数等于的度数,(的度数的度数). 第13题. 如图,是△的外角的平分线,交的延长线于,延长交△的外接圆于点,连结,. (1)求证:; (2)求证:;(3)若是△外接圆的直径,,,求的长.BA AF =ACB ABF ∴∠=∠BAE ABE ∴∠=∠AE BE =AO BA AF FC ==30ABF FBC ∴∠=∠=60ABO ∠=OA OB =60ABC ∠=∴AOB AD BO ⊥D ∴BO 162BO BC ==3BD =BDE 30EBD ∠=3BD =23cos BDBE EBD==∠23AE BE ∴==P O P PAB PCD O A B C D 12P ∠=BD AC -BC BCD P ABC ∠=∠+∠P BCD ABC ∴∠=∠-∠BCD ∠12BD ABC ∠12AC 12P ∴∠=BD AC -AD ABC EAC ∠BC D DA ABC F FB FC FB FC =2FB FA FD =AB ABC 120EAC ∠=6cm BC =AD ODCPABFAE答案:(1),,., ,,, ., ,.(2),,.又,△△,, 即.(3)是直径,.,,.在Rt △中,,,.在Rt △中,.第14题. 如图,,在以为直径的半圆上,,在上,为正方形,若正方形边长为1,,,则下列式子中,不正确的是( )A.B.C.D.答案:DEAD FAB ∠=∠FAB FCB ∠=∠EAD FCB ∴∠=∠FBC FBA CBA ∠=∠+∠CAD ACF AFC ∠=∠+∠FBA ACF ∠=∠CBA AFC ∠=∠CAD FBC ∴∠=∠EAD CAD ∠=∠FCB FBC ∴∠=∠FB FC ∴=FAB FCB ∠=∠FCB FBC ∠=∠FAB FBC ∴∠=∠AFB BFD ∠=∠∴AFB ∽BFD FA FBFB FD∴=2FB FA FD =AB 90ACB ∠=1602CAD EAC ∠=∠=30D ∴∠=18060BAC EAC ∠=-∠=ABC tan AC BAC BC ∠=tan 606AC =23AC =ACD 243cm AD AC ==D E AB F C AB CDEF AC a =BC b =1a b -=1ab =5a b +=225a b +=DBCAE第15题. 求证:三角形两边的积等于其外接圆的直径与第三边的高的积. 答案:已知:是△的外接圆,是△中边上的高,是直径.求证:.证明:连.是直径,.,,,,△△,,即.第16题. 如图反映某学校学生上学方式的扇形统计图,图中步行上学同学所占扇形圆心角的度数是 .答案:第17题. 如图,圆内接四边形的对角线,把四边形的四个内角分成八个角,这八个角中相等的角的对数至少有( ) A.1对 B.2对 C.3对 D.4对 答案:DO ABC AD ABC BC AE O AB AC AD AE =BE AE 90ABE ∠=AD BC ⊥90ADC ∠=ABE ADC ∠=∠C E ∠=∠ADC ∽ABE AC ADAE AB=AB AC AD AE =180ABCD AC BD D ACEBO 其他 20% 公共汽车30%步行 50%CDAB第18题. 如图,是的直径,,是的两条弦,且.如果,则的度数是( )A. B. C. D.答案:D第19题. 如图,四边形内接于,若,则的度数( )A. B. C. D. 答案:D第20题. 如图,已知:是△的外接圆,,,求的度数.答案:AC O AB CD O AB CD ∥32BAC ∠=AOD ∠16324864ABCD O 100BOD ∠=DAB ∠5080100130O ABC 50BAC ∠=47ABC ∠=AOB ∠166OABCDOADCBOCAB。
图13一、填空题:1. 如图1,A B 是O 的直径, BCBD =,若50BOD ∠= ,则A ∠的度数为 .图2. 如图2A,B,C 为O 上三点,若50OAB ∠=,则AC B ∠=度.4. 如图4,在O 中,50BOC OCAB ∠=,∥.则B D C ∠的度数为 . 5. 如图5,A B C △内接于O ,30B ∠=,2cm A C =,则O 半径的长为6. 如图6,A B 为O 圆的直径,点为其半圆上任意一点(不含、),点Q 为另一半圆上一定点,若P O A ∠为度,PQB ∠为度.则与的函数关系是 .7. 如图7,在100O AOB C AB ∠=中,,为优弧的中点,则C AB ∠=图图图1. 如图9,B D 是O 的直径,弦A C 与B D 相交于点,则下列结论一定成立的是()A.A B D A C D ∠=∠ B.A B D A O D ∠=∠ C.A O D A E D ∠=∠D.A B D B D C ∠=∠2. 如图10,四边形A B C D 内接于O ,若它的一个外角70DCE ∠=,则B O D ∠=()A.35B.70图图123. 如图11,A C B 、、是O 圆上三点,若40AOC ∠=,则A B C ∠的度数是 ( ) A.10B.20C.40D.804. 如图12,O 圆中弧A B 的度数为60,A C 是O 圆的直径,那么B O C ∠等于( )A .150B .130C .120D .605. 如图13,圆心角∠AOB =120︒,P 是 AB 上任一点(不与A ,B 重合),点C 在A P 的延长线上,则∠BPC 等于( )A.45︒B.60︒C.75︒D.85︒C ABBAE参考答案一、填空题:1. 如图1,A B 是O 的直径, BCBD =,若50BOD ∠= ,则A ∠的度数为 .答案:25图3AC2. 如图2,,,C 为O 上三点,若50OAB ∠=,则AC B ∠=度.答案:403. 如图3,P A 、P B 是O 圆的切线,点、为切点,A C 是O 圆的直径,20BAC ∠=,则P ∠的大小是 度. 答案:404. 如图4,在O 中,50BOC OC AB ∠=,∥.则B D C ∠的度数为 .答案:75图5. 如图5,A B C △内接于O ,30B ∠=,2cm A C =,则O 半径的长为答案:26. 如图6,A B 为O 圆的直径,点为其半圆上任意一点(不含、),点Q 为另一半圆上一定点,若P O A ∠为度,PQB ∠为度.则与的函数关系是 . 答案:1902y x =-+7. 如图7,在100O AOB C AB ∠=中,,为优弧的中点,则C AB ∠=答案:65图8. 如图8,A B 是O 圆的弦,P A 是O 圆的切线,是切点,如果∠=. 答案:60 二、选择题:1. 如图9,B D 是O 的直径,弦A C 与B D 相交于点,则下列结论一定成立的是()A.A B D A C D ∠=∠ B.A B D A O D ∠=∠C.A O D A E D ∠=∠D.A B D B D C ∠=∠ 答案:A2. 如图10,四边形A B C D 内接于O ,若它的一个外角70DCE ∠=,则B O D ∠=()A.35B.70C.110D.140答案:DPCAA B上三点,若40AOC∠= ,则A B C∠的度数是()A.10 B.20 C.40 D.80答案:B4. 如图12,O圆中弧A B的度数为60 ,A C是O圆的直径,那么B O C∠等于()A.150 B.130 C.120 D.60答案:C5. 如图,圆心角∠AOB=120︒,P是 AB上任一点(不与A,B重合),点C在A P的延长线上,则∠BPC等于()A.45︒B.60︒C.75︒D.85︒答案:B三、解答题:1. 如图,在O中,已知60ACB CDB∠=∠= ,3A C=答案:92. 如图,已知在O中,直径A B为10cm,弦A C为6cm,∠C,A D和B D的长.答案:8B C=cm,AD=cm,BD=3. 如图,O的直径8cmA B=,45CBD∠= ,求弦C DAE答案:连接O C ,O D ,则290COD CBD ∠=∠=,由已知得4cm O C O D ==,故C D ==.4. 如图,A B 为半圆O 的直径,弦A D ,B C 相交于点,若3C D =,4A B =,求sin A P C ∠的值.答案:连结A C ,BC D ∠=∠ C PD ∽△A P B .34P C C D P AA B∴==,由A B 3x =,则4P A x =,AC ∴==,sin 44AC APC PAx∴∠===.5. 如图,已知半圆O 的直径4A B =,将一个三角板的直角顶点固定在圆心O 上,当三角板绕着点O 转动时,三角板的两条直角边与半圆圆周分别交于C 、两点,连结A D 、B C 交于点.(1) 求证:A C E B D E △∽△; (2) 求证:BD D E =恒成立;(3) 设B D x =,求A E C △的面积与的函数关系式, 并写出自变量的取值范围.答案:.解:(1)A C D ∠ 与A D B ∠都是半圆所对的圆周角, 90,A C D A D B A E C D EB ∴∠=∠=∠=∠又(对顶角相等).所以.AC E BD E △∽△(2)9090DOC AOC BOD ∠=∴∠+∠=, 45BAD ABC ∴∠+∠=45BED BAD ABC ∴∠=∠+∠=. 又90BDE ∠=,B E D ∴△是等腰直角三角形, B D D E ∴=.(3)B D x B D D E == , ,,D E xA x A E A ∴=∴=- AOEDC,A C EB D E△∽△A E C∴△也是等腰直角三角形,)22AC AE x∴==.A C EB D E A C∴=△∽△,.)2221122y A C E C A C x x∴=⨯=-14(04)2x=-<<.(本题解答中,若用1452D BE D O C∠=∠= 来解答)6. 已知O圆的内接四边形A B C D中,A D B C∥.试判断四边形A B C D的形状,并加以证明.答案:(1)如图①,当A D B C=时,四边形A B C D为矩形.A DBC AD B C=∴∥,,四边形A B C D为平行四边形.四边形A B C D内接于.180.O B D∴∠+∠=90B D∴∠=∠= .四边形A B C D为矩形.(2)如图②,当AD BC≠时,四边形A B C D为等腰梯形,.A DBC A B CD A B C D∴∴=∥,=,A DB C≠.四边形A B C D为等腰梯形.7. 如图,已知在半圆AO B中,30AD DC CAB=∠=,,AC=A D的长度.答案:解:A B为直径,90ACB∴∠= ,13060..2C A B A B C B C A C∠=∴∠=∴=,1.2AD D C AD D C AC BC AD=∴==∴=,.B C A D∴=.在A B CRt△中30C AB AC∠==,tanB C A C C A B=∠.tan302BC∴==.2AD∴=.图②OBA。
专题3.5 圆周角定理【十大题型】【浙教版】【题型1 圆周角的度数等于它所对弧上的圆心角的一半的运用】 (2)【题型2 同弧或等弧所对的圆周角相等的运用】 (4)【题型3 直径所对的圆周角是90°的运用】 (8)【题型4 翻折中的圆周角的运用】 (12)【题型5 利用圆周角求最值】 (17)【题型6 圆周角中的证明】 (21)【题型7 圆周角中的多结论问题】 (28)【题型8 构造圆利用圆周角解决三角形或四边形中的问题】 (32)【题型9 圆周角与量角器的综合运用】 (36)【题型10 利用圆周角求取值范围】 (39)【题型1 圆周角的度数等于它所对弧上的圆心角的一半的运用】【例1】(2022•鼓楼区校级模拟)如图,CD是⊙O的直径,⊙O上的两点A,B分别在直径CD的两侧,且∠ABC=78°,则∠AOD的度数为( )A.12°B.22°C.24°D.44°【分析】利用圆周角定理求出∠AOC=156°,可得结论.【解答】解:∵∠AOC=2∠ABC,∠ABC=78°,∴∠AOC=156°,∴∠AOD=180°﹣∠AOC=24°,故选:C.【变式1-1】(2022•温州)如图,AB,AC是⊙O的两条弦,OD⊥AB于点D,OE⊥AC于点E,连结OB,OC.若∠DOE=130°,则∠BOC的度数为( )A.95°B.100°C.105°D.130°【分析】根据四边形的内角和等于360°计算可得∠BAC=50°,再根据圆周角定理得到∠BOC=2∠BAC,进而可以得到答案.【解答】解:∵OD⊥AB,OE⊥AC,∴∠ADO=90°,∠AEO=90°,∵∠DOE=130°,∴∠BAC=360°﹣90°﹣90°﹣130°=50°,∴∠BOC=2∠BAC=100°,故选:B.【变式1-2】(2022•蓝山县一模)如图,点A,B,C在⊙O上,∠1=40°,∠C=25°,则∠B=( )A.100°B.70°C.55°D.65°【分析】根据圆周角定理得出∠BOC=2∠1=80°,根据三角形内角和定理得出∠1+∠B+∠ADB=180°,∠C+∠BOC+∠ODC=180°,求出∠1+∠B=∠BOC+∠C即可.【解答】解:设OB交AC于D,∵∠1=40°,∴∠BOC=2∠1=80°,∵∠1+∠B+∠ADB=180°,∠C+∠BOC+∠ODC=180°,∠ADB=∠ODC,∴∠1+∠B=∠BOC+∠C,∵∠C=25°,∴40°+∠B=80°+25°,∴∠B=65°,故选:D.【变式1-3】(2022春•汉阳区校级月考)如图,AB,CD为⊙O的两条弦,若∠A+∠C=120°,AB=2,CD=4,则⊙O的半径为( )A.B.C D【分析】连接OB,OA,OC,OD,证明∠AOB+∠COD=90°,在⊙O上点D的右侧取一点E,使得DE=AB,过点E作ET⊥CD交CD的延长线于点T,则AB=DE,利用勾股定理求解即可.【解答】解:如图,连接OB,OA,OC,OD,∵∠BOC=2∠CAB,∠AOD=2∠ACD,∠CAB+∠ACD=120°,∴∠BOC+∠AOD=240°,∴∠AOB+∠COD=120°,在⊙O上点D的右侧取一点E,使得DE=AB,过点E作ET⊥CD交CD的延长线于点T,则AB=DE,∴∠AOB=∠DOE,∴∠COE=120°,∴∠CDE=120°,∴∠EDT=60°,∵DE=AB=2,∴DT=1,ET∴CT=CD+DT=4+1=5,∴CE===作OF⊥CE,则∠COF=60°,CF=∴OC=OE=故选:D.【题型2 同弧或等弧所对的圆周角相等的运用】【例2】(2022•保亭县二模)如图,AB为⊙O的直径,点C、D在圆上,CE⊥AB于点E,若∠D=48°,则∠1=( )A.42°B.45°C.48°D.52°【分析】连接AC,根据圆周角定理得出∠A=∠D=48°,∠ACB=90°,求出∠ABC,根据垂直求出∠CEB,再求出∠1即可.【解答】解:连接AC,由圆周角定理得:∠A=∠D,∵∠D=48°,∴∠A=48°,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ABC=90°﹣∠A=42°,∵CE⊥AB,∴∠BEC=90°,∴∠1=90°﹣∠ABC=48°,故选:C.【变式2-1】(2022•南充)如图,AB为⊙O的直径,弦CD⊥AB于点E,OF⊥BC于点F,∠BOF=65°,则∠AOD为( )A.70°B.65°C.50°D.45°【分析】先根据三角形的内角和定理可得∠B=25°,由垂径定理得:AC=AD,最后由圆周角定理可得结论.【解答】解:∵OF⊥BC,∴∠BFO=90°,∵∠BOF=65°,∴∠B=90°﹣65°=25°,∵弦CD⊥AB,AB为⊙O的直径,∴AC=AD,∴∠AOD=2∠B=50°.故选:C.【变式2-2】(2022•十堰二模)如图,在Rt△ABC中,∠ACB=90°,∠A=54°,以BC为直径的⊙O交AB于点D.E是⊙O上一点,且CE=CD,连接OE.过点E作EF⊥OE,交AC的延长线于点F,则∠F 的度数为( )A.92°B.108°C.112°D.124°【分析】连接OD,根据圆心角、弧、弦之间的关系得出∠DOC=∠EOC,根据直角三角形的两锐角互余得出∠B=90°﹣∠A=36°,根据圆周角定理求出∠DOC=2∠B=72°,求出∠EOC=∠DOC=72°,再根据四边形的内角和等于360°求出即可.【解答】解:解法一、连接OD,∵CD=CE,∴∠DOC=∠EOC,∵∠ACB=90°,∠A=54°,∴∠B=90°﹣∠A=36°,∴∠DOC=2∠B=72°,∴∠EOC=∠DOC=72°,∵OE⊥EF,∴∠OEF=90°,∵∠ACB=90°,∴∠BCF=90°,∴∠F=360°﹣∠OEF﹣∠BCF﹣∠EOC=360°﹣90°﹣90°﹣72°=108°;解法二、∵∠ACB=90°,∠A=54°,∴∠B=90°﹣∠A=36°,∵DC=CE,∴∠COE=2∠B=72°,∵OE⊥EF,∴∠OEF=90°,∵∠ACB=90°,∴∠BCF=90°,∴∠F=360°﹣∠OEF﹣∠BCF﹣∠EOC=360°﹣90°﹣90°﹣72°=108°;故选:B.【变式2-3】(2022•本溪模拟)如图,在⊙O中,AB=BC,直径CD⊥AB于点N,P是AC上一点,则∠BPD的度数是 30° .【分析】连接OA、OB,如图,先根据垂径定理得到AC=BC,所以AB=BC=AC,利用圆心角、弧、弦的关系得到∠AOC=∠BOC=∠AOB=120°,所以∠BOD=60°,然后根据圆周角定理求解.【解答】解:连接OA、OB,如图,∵CD⊥AB,∴AC=BC,∵AB=BC,∴AB=BC=AC,×360°=120°,∴∠AOC=∠BOC=∠AOB=13∴∠BOD=180°﹣120°=60°,∠BOD=30°.∴∠BPD=12故答案为:30°.【题型3 直径所对的圆周角是90°的运用】【例3】(2022•中山市三模)如图,AB是⊙O的直径,若AC=2,∠D=60°,则BC长等于( )A.4B.5C D.【分析】根据圆周角定理得出∠ACB=90°,∠CAB=∠D=60°,求出∠ABC=90°﹣∠CAB=30°,根据含30度角的直角三角形的性质求出AB=2AC=4,再根据勾股定理求出BC即可.【解答】解:∵AB是⊙O的直径,∴∠ACB=90°,∵∠D=60°,∴∠CAB=∠D=60°,∴∠ABC=90°﹣∠CAB=30°,∵AC=2,∴AB=2AC=4,∴BC==故选:D.【变式3-1】(2022•潍坊二模)如图,已知以△ABC的边AB为直径的⊙O经过点C,OD⊥AC交⊙O于点D,连接BD.若∠BAC=36°,则∠ODB的度数为( )A.32°B.27°C.24°D.18°【分析】设AC与OD相交于点E,根据直径所对的圆周角是直角可得∠ACB=90°,从而求出∠ABC=54°,再根据垂直定义可得∠AEO=90°,从而可得OD∥BC,然后利用等腰三角形和平行线的性质可得BD平分∠ABC,即可解答.【解答】解:设AC与OD相交于点E,∵AB是⊙O的直径,∴∠ACB=90°,∵∠BAC=36°,∴∠ABC=90°﹣∠BAC=54°,∵OD⊥AC,∴∠AEO=90°,∴∠AEO=∠ACB=90°,∴OD∥BC,∴∠ODB =∠DBC ,∵OD =OB ,∴∠ODB =∠OBD ,∴∠OBD =∠DBC =12∠ABC =27°,∴∠ODB =∠OBD =27°,故选:B .【变式3-2】(2022•江夏区校级开学)如图,⊙O 的直径AB 为8,D 为AC 上的一点,DE ⊥AC 于点E ,若CE =3AE ,∠BAC =30°,则DE 的长是( )A .85B 2CD .32【分析】在30°的直角三角形ABC 中求出AC =CE =3AE 得到AE =DF 、ME 、MF 的长度即可得解.【解答】解:如图,连接连接BC 、OD ,作OF ⊥DE ,交DE 的延长线于点F ,DF 、AB 交于点M ∵AB 为直径,∴∠ACB =90°,又∵∠BAC =30°,∴BC =4,AC =∵CE =3AE ,∴AE =∵DE ⊥AC ,∠BAC =30°,∴EM =1,AM =2,∴OM =OA ﹣AM =4﹣2=2,在Rt △OMF 中,∵∠OFM =90°,∠OMF =∠AME =90°﹣30°=60°,OM =2,∴MF =1,OF =∵∠F =90°,∴DF∴DE =DF ﹣ME ﹣MF =2.故选:B .【变式3-3】(2022秋•如皋市校级期中)在⊙O 中,AB 为直径,点C 为圆上一点,将劣弧沿弦AC 翻折交AB 于点D ,连接CD .(1)如图1,若点D 与圆心O 重合,AC =2,求⊙O 的半径r ;(2)如图2,若点D 与圆心O 不重合,∠BAC =25°,求∠DCA 的度数.【分析】(1)过点O 作OE ⊥AC 于E ,由垂径定理可知AE =12AC =12×2=1,根据翻折后点D 与圆心O 重合,可知OE =12r ,在Rt △AOE 中,根据勾股定理可得出r 的值;(2)连接BC ,根据直径所对的圆周角是直角求出∠ACB ,根据直角三角形两锐角互余求出∠B ,再根据翻折的性质得到ADC 所对的圆周角,然后根据∠ACD 等于ADC 所对的圆周角减去CD 所对的圆周角,计算即可得解.【解答】解:(1)如图1,过点O 作OE ⊥AC 于E则AE =12AC =12×2=1,∵翻折后点D与圆心O重合,r,∴OE=12在Rt△AOE中,AO2=AE2+OE2,r)2,解得r即r2=12+(12(2)连接BC,∵AB是直径,∴∠ACB=90°,∵∠BAC=25°,∴∠B=90°﹣∠BAC=90°﹣25°=65°,根据翻折的性质,AC所对的圆周角为∠B,ABC所对的圆周角为∠ADC,∴∠ADC+∠B=180°,∴∠B=∠CDB=65°,∴∠DCA=∠CDB﹣∠A=65°﹣25°=40°.【题型4 翻折中的圆周角的运用】【例4】(2022春•福田区校级月考)如图,AB是⊙O的直径,BC是⊙O的弦,先将BC沿BC翻折交AB 于点D,再将BD沿AB翻折交BC于点E.若BE=DE,则∠BCD的度数是( )A.22.5°B.30°C.45°D.60°【分析】证明∠CAB=3α,利用三角形内角和定理求出α,可得结论.【解答】解:设∠ABC=α,则DE,CD,AC的度数都为2α,∴BD的度数=4α,∵翻折,∴BD的度数=4α,∴CB的度数=2α+4α=6α,∵CB的度数+AC的度数=180°,∴2α+6α=180°,∴α=22.5°.∴BD的度数=90°∴∠BCD=45°.故选:C.【变式4-1】(2022秋•萧山区期中)如图,在⊙O中,AB为直径,点C为圆上一点,将劣弧AC沿弦AC 翻折交AB于点D,连结CD,若∠BAC=25°,则∠BDC的度数为( )A.45°B.55°C.65°D.70°【分析】解法一、补齐翻折后的弧为圆⊙P,根据圆周角定理得出BC=DC,求出∠BDC=∠DBC,根据圆周角定理求出∠ACB=90°,再求出∠ABC即可;解法二、过D作DE⊥AC于E,延长DE交⊙O于F,连接AF、CF、BC,根据圆周角定理得出∠ACB=90°,根据翻折变换得出∠FAC=∠BAC=25°,∠DCA=∠FCA,根据圆内接四边形的性质得出∠BAF+∠BCF=180°,求出∠ACF=40°,求出∠ACD =∠ACF=40°,再根据三角形的外角性质求出即可.【解答】解:解法一、补齐翻折后的弧为圆⊙P则⊙O和⊙P为等圆,∵∠BAC在⊙O和⊙P中分别对应弧BC和弧DC,∴BC=DC(在同圆或等圆中,相等的圆周角所对的弧相等),∴BC=DC,∴∠BDC=∠DBC,∵AB为⊙O直径,∴∠DBC=90°﹣∠BAC=65°,∴∠BDC=65°;解法二、过D作DE⊥AC于E,延长DE交⊙O于F,连接AF、CF、BC,∵AB是⊙O的直径,∴∠ACB=90°,∵将劣弧AC沿弦AC翻折交AB于点D,连结CD,∠BAC=25°,∴∠FAC=∠BAC=25°,∠DCA=∠FCA,∵点A、F、C、B四点共圆,∴∠BAF+∠BCF=180°,∴25°+25°+90°+∠ACF=180°,解得:∠ACF=40°,即∠ACD=∠ACF=40°,∵∠BAC=25°,∴∠BDC=∠BAC+∠ACD=25°+40°=65°,故选:C.【变式4-2】(2022秋•硚口区期末)如图,AB为⊙O的一条弦,C为⊙O上一点,OC∥AB.将劣弧AB 沿弦AB翻折,交翻折后的弧AB交AC于点D.若D为翻折后弧AB的中点,则∠ABC=( )A.110°B.112.5°C.115°D.117.5°【分析】如图,连接OA,OB,BD.设∠DAB=x.用x表示出∠BDC,∠BCD,∠DBC,利用三角形内角和定理,构建方程求解.【解答】解:如图,连接OA,OB,BD.设∠DAB=x.∵AD=BD,∴DA=DB,∵BD=BC,∴BD=CD,∴∠DAB=∠DBA=x,∠BDC=∠BCD=∠DAB+∠ABD=2x,∵OC∥AB,∴∠OCA=∠DAB=x,∵OA=OC=OB,∴∠OCB=∠OBC=3x,∠OAD=∠OCA=x,∠OAB=∠OBA=2x,∴∠OBD=x,∴∠CBD=4x,在△BDC中,∠BDC+∠DCB+∠DBC=180°,∴2x+2x+4x=180°,∴x=22.5°,∴∠ABC=5x=112.5°,故选:B.【变式4-3】(2022秋•丹江口市期中)已知⊙O的直径AB长为10,弦CD⊥AB,将⊙O沿CD翻折,翻折后点B的对应点为点B′,若AB′=6,CB′的长为( )A.B.C.D.【分析】分点B'在线段AB上,点B'在BA延长线上两种情况讨论,根据勾股定理可求MB'的长度.【解答】解:①如图1中:当点B'在线段AB上,连接OC.∵AB=10,AB'=6,∴AO=BO=5=OC,BB'=4,∴B'O=1,∵B,B′关于CD对称,∴BE=B'E=2,∴OE=OB′+EB′=3,在Rt△OCE中,CE2=OC2﹣OE2=25﹣9=16,在Rt△B'CE中,B'C===②若点B'在BA的延长线上,连接OC,∵AB'=6,AB=10,∴B'B=16,AO=BO=OC=5,∵B,B′关于CD对称,∴B'E=BE=8,∴OE=BE﹣BO=3,在Rt△CEO,CE2=CO2﹣OE2=25﹣9=16,在Rt△B'CE中,B'C==综上所述B'C=故选:B.【题型5 利用圆周角求最值】【例5】(2022•瑶海区三模)如图,AB是⊙O的直径,AB=8,点M在⊙O上,∠MAB=20°,N是弧MB的中点,P是直径AB上的一动点,若MN=2,则△PMN周长的最小值为( )A.4B.5C.6D.7【分析】根据轴对称的性质得到:点N关于AB的对称点N′,连接MN′交AB于P,此时PM+PN最小,即△PMN周长的最小,利用圆心角、弧、弦的关系以及轴对称的性质进行计算即可.【解答】解:如图,作点N关于AB的对称点N′,则点N′在⊙O上,连接MN′交AB于P,此时PM+PN 最小,即PM+PN=MN′,∵点N是BM的中点,∠BAM=20°,∴MN=NB=BN′,∴∠BAN′=10°,∴∠MAN′=20°+10°=30°,∴∠MON′=60°,∴△MON′是正三角形,AB=4,∴OM=ON′=MN′=12又∵MN=2,∴△PMN周长的最小值为2+4=6,故选:C.【变式5-1】(2022•陈仓区一模)如图,△ABC中,∠ABC=45°,∠ACB=75°,AB=4,D是边BC上的一个动点,以AD为直径画⊙O,分别交AB、AC于点E、F,连接EF,则线段EF长度的最小值为 【分析】如图,由题意当AD⊥BC时,⊙O的半径最小,因为∠EAF=60°,是定值,所以此时EF的值最小.【解答】解:如图,∵∠ABC=45°,∠ACB=75°,∴BAC=180°﹣75°﹣45°=60°,由题意当AD⊥BC时,⊙O的半径最小,∵∠EAF=60°,是定值,∴此时EF的值最小,过OD的中点K作MN⊥AD交⊙O于M、N,连接ON、AN、AM,则△AMN是等边三角形,在Rt△ABD中,∠ABC=45°,AB=4,∴AD=BD=∴OK=KD=ON=在Rt△ONK中,NK=KM∴MN=∴∠EAF=∠MAN=60°,∴EF=MN,∴EF=MN=∴EF【变式5-2】(2022秋•大连期末)如图,AB是⊙O的直径,AB=2,点C在⊙O上,∠CAB=30°,D为BC 的中点,E是直径AB上一动点,则CE+DE最小值为( )A.1B C D.2【分析】作点D关于AB的对称点为D′,连接OC,OD,OD′,CD′,交AB于点E,则CE+DE的最小值就是CD′的长度,根据已知易证∠COD′=90°,然后利用勾股定理进行计算即可解答.【解答】解:作点D关于AB的对称点为D′,连接OC,OD,OD′,CD′,交AB于点E,∴DE=D′E,∴CE+DE=CE+D′E=CD′,∵∠CAB=30°,∴∠COB=2∠CAB=60°,∵D为BC的中点,∴CD=DB,∵DB=BD′,∴CD=DB=DB′,∴∠COD=∠DOB=∠BOD′=30°,∴∠COD′=90°,∵AB=2,∴OC=OD′=1,∴CD′=∴CE+DE故选:B.,BC=AB2,E为射线BA上一动点,【变式5-3】(2022•杏花岭区校级三模)如图,矩形ABCD中,AB=32连接CE交以BE为直径的圆于点H,则线段DH长度的最小值为 3 .4【分析】取BC的中点G,连接BH,HG,DG.解直角三角形求出GH,DG,根据DH≥DG﹣GH即可判断.【解答】解:取BC 的中点G ,连接BH ,HG ,DG .∵四边形ABCD 是矩形,∴AB =CD =32,BC =AB 2=94,∠DCG =90°,∵CG =BG =98,∴DG =158,∵BE 是直径,∴∠BHE =∠BHC =90°,∵BG =GC ,∴HG =12BC =98,∵DH ≥DG ﹣HG ,∴DH ≥158―98=34,∴DH 的最小值为34.故答案为34.【题型6 圆周角中的证明】【例6】(2022秋•定陶区期末)如图1.在⊙O 中AB =AC ,∠ACB =70°,点E 在劣弧AC 上运动,连接EC ,BE ,交AC 于点F .(1)求∠E 的度数;(2)当点E 运动到使BE ⊥AC 时,连接AO 并延长,交BE 于点D ,交BC 于点G ,交⊙O 于点M ,依据题意在备用图中画出图形.并证明:G 为DM 的中点.【分析】(1)求出∠A=40°,利用圆周角定理解决问题即可;(2)证明BD=BM,BG⊥DM,利用等腰三角形的三线合一的性质证明即可.【解答】(1)解:如图1中,∵AB=AC,∴∠ABC=∠ACB=70°,∴∠BAC=180°﹣2×70°=40°,∵弧BC=弧BC,∴∠BEC=∠BAC=40°;(2)证明:依据题意画图如下:连接BM,CM.∵AB=AC,∴AB=AC,又∵AM=AM,∴BM=CM,∴BM=CM,AM⊥BC,∠BAM=∠CAM=20°,∴∠MBC=∠CAM=20°,∵BE⊥AC,AM⊥BC,∴∠BGD=∠AFD=90°,∴∠BDG=∠ADF=70°,∵AB=AB,∴∠BMA=∠ACB=70°,∴∠BMA=∠BDG=70°,∴BD=BM,又∵BG⊥DM,∴GD=GM,即点G为DM的中点.【变式6-1】(2022春•金山区校级月考)已知CD为⊙O的直径,A、B为⊙O上两点,点C为劣弧AB中点,连接DA、BA、AC,且∠B=30°.(1)求证:∠D=30°;(2)F、G分别为线段CD、AC上两点,满足DF=AG,连接AF、OG,取OG中点H,连接CH,请猜测AF与CH之间的数量关系,并证明.【分析】(1)利用圆周角定理证明即可;(2)结论:AF=2CH.延长DC到T,使得CT=CO,证明△CGT≌△OFA(SAS),推出AF=GT,再利用三角形中位线定理证明.【解答】(1)证明:∵∠ABC=30°,又∵∠D=∠ABC,∴∠D=30°;(2)解:结论:AF=2CH.理由:延长DC到T,使得CT=CO.∵∠AOC=2∠ABC=60°,OA=OC,∴△AOC是等边三角形,∴∠ACO=∠AOC=60°,AC=OA=OC,∴CT=OC=OA,∠AOF=∠GCT=120°,∵OA=AC,DF=AG,∴OF=CG,在△CGT和△OFA中,CG=OF∠GCT=∠AOF,CT=OA∴△CGT≌△OFA(SAS),∴AF=GT,∵OH=HG,OC=CT,∴GT=2CH,∴AF=2CH.【变式6-2】(2022•武汉)如图,以AB为直径的⊙O经过△ABC的顶点C,AE,BE分别平分∠BAC和∠ABC,AE的延长线交⊙O于点D,连接BD.(1)判断△BDE的形状,并证明你的结论;(2)若AB=10,BE=BC的长.【分析】(1)由角平分线的定义可知,∠BAE=∠CAD=∠CBD,∠ABE=∠EBC,所以∠BED=∠DBE,所以BD=ED,因为AB为直径,所以∠ADB=90°,所以△BDE是等腰直角三角形.(2)连接OC、CD、OD,OD交BC于点F.因为∠DBC=∠CAD=∠BAD=∠BCD.所以BD=DC.因为OB=OC.所以OD垂直平分BC.由△BDE是等腰直角三角形,BE=BD=OB=OD=5.设OF=t,则DF=5﹣t.在Rt△BOF和Rt△BDF中,52﹣t2=(2﹣(5﹣t)2,解出t的值即可.【解答】解:(1)△BDE为等腰直角三角形.理由如下:∵AE平分∠BAC,BE平分∠ABC,∴∠BAE=∠CAD=∠CBD,∠ABE=∠EBC.∵∠BED=∠BAE+∠ABE,∠DBE=∠DBC+∠CBE,∴∠BED=∠DBE.∴BD=ED.∵AB为直径,∴∠ADB=90°∴△BDE是等腰直角三角形.另解:计算∠AEB=135°也可以得证.(2)解:连接OC、CD、OD,OD交BC于点F.∵∠DBC=∠CAD=∠BAD=∠BCD.∴BD=DC.∵OB=OC.∴OD垂直平分BC.∵△BDE是等腰直角三角形,BE=∴BD=∵AB=10,∴OB=OD=5.设OF=t,则DF=5﹣t.在Rt△BOF和Rt△BDF中,52﹣t2=(2﹣(5﹣t)2,解得t=3,∴BF=4.∴BC=8.另解:分别延长AC,BD相交于点G.则△MBG为等腰三角形,先计算AG=10,BG=AD=BC.【变式6-3】(2022•南召县四模)阅读下面材料,完成相应的任务:阿基米德是有史以来最伟大的数学家之一、《阿基米德全集》收集了已发现的阿基米德著作,它对于了解古希腊数学,研究古希腊数学思想以及整个科技史都是十分宝贵的.其中论述了阿基米德折弦定理:从圆周上任一点出发的两条弦,所组成的折线,称之为该圆的一条折弦.一个圆中一条由两长度不同的弦组成的折弦所对的两段弧的中点在较长弦上的射影,就是折弦的中点.如图1,AB和BC是⊙O的两条弦(即ABC是圆的一条折弦),BC>AB.M是弧ABC的中点,则从M 向BC所作垂线之垂足D是折弦ABC的中点,即CD=AB+BD.小明认为可以利用“截长法”,如图2:在线段CB上从C点截取一段线段CN=AB,连接MA,MB,MC,MN.小丽认为可以利用“垂线法”,如图3:过点M作MH⊥AB于点H,连接MA,MB,MC.任务:(1)请你从小明和小丽的方法中任选一种证明思路,继续书写出证明过程.(2)就图3证明:MC2﹣MB2=BC•AB.【分析】(1)截长法:首先证明△MBA≌△MNC(SAS),进而得出MB=MN,再利用等腰三角形的性质得出BD=ND,即可得出答案;垂线法:证明△AHM≌△CDM(AAS),推出MH=DM,AH=CD,再证明Rt△BMH≌△BMD(HL),推出BH=BD,可得结论;(2)由(1)可知,AC=AM,BH=BD,AH=CD,整理等式即可证得结论.【解答】(1)截长法:证明:如图2,在CB上截取CN=AB,连接MA,MB,MC和MN.∵M是ABC的中点,∴MA=MC,在△MBA和△MGC中,BA=NC∠A=∠C,MA=MC∴△MBA≌△MGC(SAS),∴MB=MG,又∵MD⊥BC∴BD=GD,∴CD=GC+GD=AB+BD;垂线法:证明:如图3,过点M作MH⊥AB于点H,连接MA,MB,MC,∵M是ABC的中点,∴AM=CM,∵MH⊥AH,MD⊥BC,∴∠H=∠CDM=90°,∵∠A=∠C,在△AHM和△CDM中,∠H=∠CDM∠A=∠C,AM=CM∴△AHM≌△CDM(AAS),∴MH=DM,AH=CD,∵∠H=∠BDM=90°,BM=BM,∴Rt△BMH≌△BMD(HL),∴BH=BD,∴CD=AH=AB+BH=AB+BD;(2)在Rt△AHM中,AM2=AH2+MH2,在Rt△BHM中,BM2=BH2+MH2,由(1)可知,AC=AM,BH=BD,AH=CD,∴MC2﹣MB2=AM2﹣MB2=AH2+HM2﹣BH【题型7 圆周角中的多结论问题】【例7】(2022•兰陵县二模)如图,在⊙O中,AB是⊙O的直径,AB=10,AC=CD=DB,点E是点D 关于AB的对称点,M是AB上的一动点,下列结论:①∠BOE=30°;②∠DOB=2∠CED;③DM⊥CE;④CM+DM的最小值是10,上述结论中正确的个数是( )A.1B.2C.3D.4【分析】①错误,证明∠EOB=∠BOD=60°即可;②正确.证明∠CED=30°,可得结论;③错误,M是动点,DM不一定垂直CE;④正确,连接EM,证明ME=MD,推出MC+MD=MC+ME≥CE=10,可得结论.【解答】解:∵AC=CD=DB,∴∠AOC=∠COD=∠DOB=60°,∵E,D关于AB对称,∴∠EOB=∠BOD=60°,故①错误,∠COD=30°,∵∠CED=12∴∠DOB=2∠CED,故②正确,∵M是动点,∴DM不一定垂直CE,故③错误,连接EM.则ME=MD,∴CM+DM=MC+ME≥CE=10,故④正确,故选:B.【变式7-1】(2022秋•淅川县期末)如图,已知:点A、B、C、D在⊙O上,AB=CD,下列结论:①∠AOC=∠BOD;②∠BOD=2∠BAD;③AC=BD;④∠CAB=∠BDC;⑤∠CAO+∠CDO=180°.其中正确的个数为( )A.2B.3C.4D.5【分析】根据圆内接四边形的性质、圆周角定理和圆心角、弧、弦之间的关系逐个判断即可.【解答】解:∵AB=CD,∴CBD=BCA,∴AC=BD,∴∠AOC=∠BOD,故①正确;∵圆周角∠BAD和圆心角∠BOD都对着BD,∴∠BOD=2∠BAD,故②正确;∵AC=BD,∴AC=BD,故③正确;∵圆周角∠CAB和∠BDC都对着BC,∴∠CAB=∠BDC,故④正确;延长DO 交⊙O 于M ,连接AM ,∵D 、C 、A 、M 四点共圆,∴∠CDO +∠CAM =180°(圆内接四边形对角互补),∵∠CAM >∠CAO ,∴∠CAO +∠CDO <180°,故⑤错误;即正确的个数是4个,故选:C .【变式7-2】(2022秋•厦门期末)在△ABC 中,AB =AC ,以AB 为直径的⊙O 交BC 边于点D .要使得⊙O 与AC 边的交点E 关于直线AD 的对称点在线段OA 上(不与端点重合),需满足的条件可以是 ②④ .(写出所有正确答案的序号)①∠BAC >60°;②45°<∠ABC <60°;③BD >12AB ;④12AB <DE .【分析】结合等腰三角形的性质及圆周角定理对所给条件逐个进行分析判断.【解答】解:在△ABC 中,AB =AC ,①当∠BAC >60°时,若∠BAC =90°时,此时点E 与点A 重合,不符合题意,故①不满足;②当∠ABC ≤45°时,点E 与点A 重合,不符合题意,当∠ABC ≥60°时,点E 与点O 不关于AD 对称,当45°<∠ABC <60°时,点E 关于直线AD 的对称点在线段OA 上,故②满足条件;③当12AB ≤BD 时,点E 关于直线AD 的对称点在线段OA 上,故③不满足条件;④12AB <DE 时,点E 关于直线AD 的对称点在线段OA 上,故④满足条件;故答案为:②④.【变式7-3】(2022秋•东台市月考)如图,AB 是⊙O 的直径,C ,D 是⊙O 上的点,且OC ∥BD ,AD 与BC ,OC 分别相交于点E ,F ,则下列结论:①AD ⊥BD ;②∠AOC =∠AEC ;③CB 平分∠ABD ;④AF =DF ;⑤△CEF ≌△BED .其中一定成立的结论是 ①③④ .(填序号)【分析】①由直径所对圆周角是直角,②由于∠AOC是⊙O的圆心角,∠AEC是⊙O的圆内部的角,③由平行线得到∠OCB=∠DBC,再由同圆的半径相等得到结论判断出∠OBC=∠DBC;④用半径垂直于不是直径的弦,必平分弦;⑤得不到△CEF和△BED中对应相等的边,所以不一定全等.【解答】解:①∵AB是⊙O的直径,∴∠ADB=90°,∴AD⊥BD,故①正确;②∵∠AEC=∠ABC+∠A,∠AOC=∠ABC+∠C,根据图形及已知不能推出∠C=∠A,∴∠AOC≠∠AEC,故②不正确;③∵OC∥BD,∴∠OCB=∠DBC,∵OC=OB,∴∠OCB=∠OBC,∴∠OBC=∠DBC,∴BC平分∠ABD,故③正确;④∵AB是⊙O的直径,∴∠ADB=90°,∴AD⊥BD,∵OC∥BD,∴∠AFO=90°,∵点O为圆心,∴AF=DF,故④正确;⑤∵△CEF和△BED中,没有相等的边,∴△CEF 与△BED 不全等,故⑤不正确;综上可知:其中一定成立的有①③④,故答案为:①③④.【题型8 构造圆利用圆周角解决三角形或四边形中的问题】【例8】(2022春•杏花岭区校级月考)如图,A ,B 两点的坐标分别为(﹣2,0),(3,0),点C 在y 轴正半轴上,且∠ACB =45°,则点C 的坐标为( )A .(0,7)B .(0,C .(0,6)D .(0,【分析】在x 轴的上方作等腰直角△ABF ,FB =FA ,∠BAF =90°,以F 为圆心,FA 为半径作⊙F 交y轴于M ,首先证明点C 即为点M ,根据FC =【解答】解:在x 轴的上方作等腰直角△ABF ,FB =FA ,∠BAF =90°,以F 为圆心,FA 为半径作⊙F 交y 轴于M ,∵∠ACB =12∠AFB =45°,∴点C 即为点M ,∵A (﹣2,0),B (3,0),△ABF 是等腰直角三角形,∴F (12,52),FA =FB =FC C (0,m ),则(12)2+(52―m )22,解得m=6或﹣1(舍弃),∴C(0,6),故选:C.【变式8-1】(2022秋•秦淮区期末)如图,在四边形ABCD中,AB=BC=BD.若∠ABC=112°,则∠ADC = 124 °.【分析】根据AB=BD=BC得出A、D、C在以B为圆心,以AB为半径的圆上,作圆周角∠AEC,根据∠ABC=56°,根据圆内接四边形的性质得出∠ADC+∠E=180°,再求出答案即圆周角定理得出∠E=12可.【解答】解:∵AB=BD=BC,∴A、D、C在以B为圆心,以AB为半径的圆上,如图,作圆周角∠AEC,∵∠ABC=112°,∠ABC=56°,∴∠E=12∵四边形ADCE是⊙B的圆内接四边形,∴∠ADC+∠E=180°,∴∠ADC=180°﹣56°=124°,故答案为:124.【变式8-2】(2022•北京模拟)已知三角形ABC是锐角三角形,其中∠A=30°,BC=4,设BC边上的高为h,则h的取值范围是【分析】做出三角形的外接圆,根据h≤AO+OP求解即可.【解答】解:如图1,作△ABC的外接圆⊙O,连接OA,OB,OC,过O作OP⊥BC,∵∠BAC=30°,∴∠BOC=60°,∵OB=OC,∴△OBC是等边三角形,∵BC=4,∴OA=BC=4,PO=∴h≤AO+OP=如图2,A1B⊥BC,A2C⊥BC,则A1B=∵三角形ABC是锐角三角形,∴点A在A1A2之间,∴h的取值范围是:h≤故答案为:h≤【变式8-3】(2022春•西湖区校级月考)已知:如图,四边形ABCD中,AD∥BC,AB=BC=4,∠B=60°,∠C=105°,点E为BC的中点,以CE为弦作圆,设该圆与四边形ABCD的一边的交点为P,若∠CPE=30°,则EP+【分析】如图,连接AC,AE,根据已知条件得到△ABC是等边三角形,求得BE=CE=2,AE⊥BC,∠EAC=30°,推出AC是以CE为弦的圆的直径,设圆心为O,当⊙O与CD边交于P1,则∠EP1C=30°,过C作CH⊥P1E于H,解直角三角形得到P1E+⊙O与AD交于P2,A(P3),由AD∥CE,推出四边形AECP2是矩形,得到P2E=AC=4,P3E=1E=⊙O与AB交于P4,得到△BP4E 是等边三角形,求得P4E=BE=2,于是得到结论.【解答】解:如图,连接AC,AE,∵AB=BC=4,∠B=60°,∴△ABC是等边三角形,∵点E为BC的中点,∴BE=CE=2,AE⊥BC,∠EAC=30°,∴AC是以CE为弦的圆的直径,设圆心为O,当⊙O与CD边交于P1,则∠EP1C=30°,∵∠ECP1=105°,∴∠P1EC=45°,过C作CH⊥P1E于H,∴EH=CH=∴P1H=∴P1E=当⊙O与AD交于P2,A(P3),∵AD∥CE,∴∠ECP2=∠AP2C=90°,∴四边形AECP2是矩形,∴P2E=AC=4,P3E=P2C=当⊙O与AB交于P4,∵∠AP4C=90°,∠EP4C=30°,∴∠BP4E=60°,∴△BP4E是等边三角形,∴P4E=BE=2,综上所述,若∠CPE=30°,则EP4或2,4或2.【题型9 圆周角与量角器的综合运用】【例9】(2022•南召县模拟)以O为中心点的量角器与直角三角板ABC按如图方式摆放,量角器的0刻度线与斜边AB重合.点D为斜边AB上一点,作射线CD交弧AB于点E,如果点E所对应的读数为50°,那么∠BDE的大小为( )A.100°B.110°C.115°D.130°【分析】由圆周角定理得出∠ACE=25°,进而得出∠BCE=65°,再由外角的性质得出∠BDE=∠BCE+∠CBD,代入计算即可得出答案.【解答】解:如图,连接OE,∵点E 所对应的读数为50°,∴∠AOE =50°,∵AB 为直径,∠ACB =90°,∴点C 在⊙O 上,∴∠ACE =12∠AOE =12×50°=25°,∴∠BCE =90°﹣25°=65°,∵∠BDE 是△BDC 的外角,∴∠BDE =∠BCE +∠DBC =65°+45°=110°,故选:B .【变式9-1】(2022秋•南京期中)将量角器按如图所示的方式放置在三角形纸片上,使点O 在半圆圆心上,点B 在半圆上,边AB ,AO 分别交半圆于点C ,D ,点B ,C ,D 对应的读数分别为160°、72°、50°,则∠A = 24° .【分析】以EF 为直径作半圆,延长BO 交圆于M ,连接OC ,根据已知度数求出∠BOA 、∠BOF 、∠AOB 的度数,根据圆周角定理求出∠B ,根据三角形内角和定理求出即可.【解答】解:如图,以EF 为直径作半圆,延长BO 交圆于M ,连接OC ,∵点B,C,D对应的读数分别为160°、72°、50°,∴∠BOA=160°﹣50°=110°,∠BOF=180°﹣160°=20°,∠COE=72°,∴∠COM=72°+20°=92°,∠COM=46°,∴∠B=12∴∠A=180°﹣∠B﹣∠AOB=180°﹣110°﹣46°=24°.故答案为:24°.【变式9-2】(2022秋•高港区期中)如图,一块直角三角板ABC的斜边AB与量角器的直径重合,点D对应的刻度值为50°,则∠BCD的度数为 65° .【分析】根据圆周角定理分别求出∠ACB、∠ACD,计算即可.×50°=25°,∠ACB=90°,【解答】解:由圆周角定理可知,∠ACD=12∴∠BCD=∠ACB﹣∠ACD=65°,故答案为:65°.【变式9-3】(2022秋•北京期末)如图,量角器的直径与直角三角尺ABC的斜边AB重合,其中量角器0刻度线的端点N与点A重合,射线CP从CA处出发沿顺时针方向以每秒3°的速度旋转,CP与量角器的半圆弧交于点E,则第20秒点E在量角器上对应的读数是 120 °.【分析】首先连接OE,由∠ACB=90°,易得点E,A,B,C共圆,然后由圆周角定理,求得点E在量角器上对应的读数.【解答】解:连接OE,∵∠ACB=90°,AB为半圆的直径,∴E、A、C、B四点共圆,∴∠ACP=3°×20=60°,∴∠AOE=2∠ACP=120°,即第20秒点E在量角器上对应的读数是120°,故答案为:120.【题型10 利用圆周角求取值范围】【例10】(2022•观山湖区模拟)如图,OB是⊙O的半径,弦AB=OB,直径CD⊥AB.若点P是线段OD 上的动点,点P不与O,D重合,连接PA.设∠PAB=β,则β的取值范围是 60°<β<75° .【分析】当P点与D点重合是∠DAB=75°,与O重合则OAB=60°,∠OAB<∠PAB<∠DAB,即可得出结果.【解答】解:连接DA,OA,则△OAB是等边三角形,∴∠OAB=∠AOB=60°,∵DC是直径,DC⊥AB,∴∠AOC=1∠AOB=30°,2∴∠ADC=15°,∴∠DAB=75°,∵∠OAB<∠PAB<∠DAB,∴60°<β<75°;故答案为:60°<β<75°.【变式10-1】(2022•河南三模)如图,点O是以AC为直径的半圆的圆心,点B在AC上,∠ACB=30°,AC=2.点D是直径AC上一动点(与点A,C不重合),记OD的长为m.连接BD,点A关于BD的对称点为点A′,当点A′落在由直径AC,弦AB,BC围成的封闭图形内部时(不包含边界),m的取 .值范围是 0<m<12【分析】直径所对的圆周角是直角,在直角三角形中,30°所对的直角边是斜边的一半,根据点A关于BD的对称点为点A′,得到DA=DA′,考虑点A′进入该区域和离开该区域的两个m的值即可得出答案.【解答】解:如图,∵AC是半圆的直径,∴∠ABC=90°,∵∠ACB=30°,AC=2,∴AB=1,∵点A关于BD的对称点为点A′,∴DA=DA′,当点D与点O重合时,DA=DA′=r,点A′在BC上,m=0;,当点D在AO中点时,点A′在直径AC上,m=12.∴m的取值范围为:0<m<12故答案为:0<m<12.【变式10-2】(2022秋•台州期中)如图,已知AB是⊙O的一条弦,点C是⊙O的优弧ACB上的一个动点(不与A,B不重合),(1)设∠ACB的平分线与劣弧AB交于点P,试猜想点P劣弧AB上的位置是否会随点C的运动而变化?请说明理由(2)如图②,设AB=8,⊙O的半径为5,在(1)的条件下,四边形ACBP的面积是否为定值?若是定值,请求出这个定值;若不是定值,请求出ACBP的面积的取值范围.【分析】(1)点P位置不会随点C的运动而变化,根据角平分线的定义得到∠ACP=∠BCP,于是得到AP=BD,即P是劣弧AB的中点.即可得到点P位置不会变化.(2)如图,连接OP,交AB于E,根据垂径定理得到OP⊥AB,AE=12AB=4.根据勾股定理得到OE==3,PE=2.求得S△ABP =12×8×2.于是得到当CP经过圆心O时,如图,C到AB距离最大,即△ABC的AB边上的最大高线是CE=8.求得四边形ACBP的最大面积是40.即可得到结论.【解答】解:(1)点P位置不会随点C的运动而变化,理由:如图1,∵CP平分∠ACB,∴∠ACP=∠BCP,∴AP=BD,即P是劣弧AB的中点.∴点P位置不会变化.(2)∵△ABC的面积不是定值,△ABP的面积为定值∴四边形ACBP的面积不是定值.如图,连接OP,交AB于E,∵AP=PB,OP是半径.∴OP⊥AB,AE=12AB=4.∵OA=5.∴OE3,PE=2.∴S△ABP =12×8×2.∴当CP经过圆心O时,如图,C到AB距离最大,即△ABC的AB边上的最大高线是CE=8.∵AB=8,∴△ABC的最大面积是32.∴四边形ACBP的最大面积是40.综上,四边形ACBP的面积不是定值,它的取值范围是8<S四边形ACBP≤40.【变式10-3】(2022秋•高新区校级期末)如图,A、B为⊙O上的两个定点,P是⊙O上的动点(P不与A、B重合),我们称∠APB是⊙O上关于A、B的滑动角.若⊙O的半径是1≤AB≤APB的取值范围为 45°≤∠APB≤60°或120°≤∠APB≤135° .【分析】首先连接OA,OB,AB,先假设AB APB的度数,同理得出当AB=APB 的度数即可.【解答】解:连接OA,OB,AB,假设AB=∵圆O半径为1,AB∴OA2+OB2=AB2,∴∠AOB=90°,∠AOB=45°,若点P在优弧AB上,则∠APB=12若点P在劣弧AB上,则∠AP′B=180°﹣∠APB=135°.∴∠APB的度数为45°或135°.假设AB∵圆O半径为1,∴∠OAB=30°,∴∠AOB=120°,∠AOB=60°,∴若点P在优弧AB上,则∠APB=12若点P在劣弧AB上,则∠AP′B=180°﹣∠APB=120°.故∠APB的取值范围为:45°≤∠APB≤60°或120°≤∠APB≤135°.故答案为:45°≤∠APB≤60°或120°≤∠APB≤135°.。
圆周角同步练习1A组1. 如图,四边形ABCD内接于⊙O,∠BOD=1600, 则∠BAD的度数是,∠BCD的度数是.(第3题)2. 如图,正方形ABCD内接于⊙O,点P在AB上,则∠DPC =.3. 如图,已知AB是⊙O的直径,点C为AB的一个三等分点,则BC : AC : AB.4. BD是⊙O的直径,OA,OC是⊙O的半径,且OA,OC在BD两侧.如果∠AOD:∠COD=4:1,那么∠ABD:∠CBD.5.如图, AB是⊙O的直径,弦CD⊥AB, E是AD上一点,若∠BCD=350,求∠AED的度数.6. 已知,A, B, C是⊙O上的三点,∠AOC=1000, 则∠ABC =.7. 如图,弦AB, CD相交于点E , AD=600, BC=400,则∠AED=.8. 如图,P为圆外一点,PA交圆于点A,B,PC交圆于点C, D, BD=750,AC=150,则∠P=9. 如图,AB, AC 是⊙O的两条弦,且AB=AC.延长CA到点D.使AD=AC,连结DB并延长,交⊙O于点E.求证:CE是⊙O的直径.B组1. 如图,AB是半圆直径,∠BAC=200,D是AC的中点,则∠DAC的度数是()A . 300B. 350 C. 450D . 7002. 下面每X方格纸上都画有一个圆,只用不带刻度的直尺就能确定圆心位置的是()3. 已知AB是⊙O的直径,AC, AD是弦,且AB=2, AC=2,AD=1,则圆周角∠CAD的度数是 ( )A. 450或600B. 600 C . 1050 D. 150或10504. 如图,A, B, C为⊙O上三点,∠ABO=650,则∠BCA 等于()A. 250B. 0 C . 300 D. 4505. 已知:如图,四边形ABCD是⊙O的内接四边形,∠BOD=1400,则∠DCE=.6. 如图,AB是⊙O的直径,C, D, E都是⊙O上的点,则∠1+∠2 =.7. 如图,已知AB为⊙O的直径,AC为弦,OD//BC交AC于点D, AC=6cm,则DC=cm .8. 如图,OC经过原点且与两坐标轴分别交于点A与点B, 点A的坐标为(0, 4 ) , M是圆上一点,∠BMO=120.求:⊙C的半径和圆心C的坐标.9.如图, AB,AC是⊙O的两条弦,且AB=AC, D是BC上一点, P是AC上一点,若∠BDC=1500, 则∠APC.10. 在⊙O中,己知∠AOB=1000 , C为AB的中点,D在圆上,则∠ADC=.11. 如图,PB交⊙O于点A , B,PD交⊙O于点C , D,已知DQ=420 , BQ=380,则∠P+∠Q的度数为.(第9题)BD BC CE DE ,则∠A的12. 如图,∠A的两边交⊙O于点B . C , E , D,若:::1:3:4:4度数为.13. 如图,在⊙O中AB是直径, CD是弦,AB⊥CD.(1)P是CAD上一点(不与C, D重合).求证:∠CPD=∠COB;(2)点P’在劣弧CD上(不与C , D重合)时,∠CP/D与∠COD有什么数量关系?请证明你的结论.。
圆周角(01)
一、选择题
1.如图,P是⊙O外一点,PA、PB分别交⊙O于C、D两点,已知和所对的圆心角分别为90°和50°,则∠P=()
A.45° B.40° C.25° D.20°
2.如图,在⊙O中,弦AC∥半径OB,∠BOC=50°,则∠OAB的度数为()
A.25° B.50° C.60° D.30°
3.如图,将⊙O沿弦AB折叠,圆弧恰好经过圆心O,点P是优弧上一点,则∠APB的度数为()
A.45° B.30° C.75° D.60°
4.如图,⊙O的半径是2,AB是⊙O的弦,点P是弦AB上的动点,且1≤OP≤2,则弦AB 所对的圆周角的度数是()
A.60° B.120°C.60°或120°D.30°或150°
5.如图,在⊙O中,直径AB⊥CD,垂足为E,∠BOD=48°,则∠BAC的大小是()
A.60° B.48° C.30° D.24°
6.如图,已知AB=AC=AD,∠CBD=2∠BDC,∠BAC=44°,则∠CAD的度数为()
A.68° B.88° C.90° D.112°
7.如图,△ABC内接于⊙O,∠OBC=40°,则∠A的度数为()
A.80° B.100°C.110°D.130°
8.如图,⊙O为△ABC的外接圆,∠A=72°,则∠BCO的度数为()
A.15° B.18° C.20° D.28°
9.如图,在⊙O中, =,∠AOB=50°,则∠ADC的度数是()
A.50° B.40° C.30° D.25°
10.如图,BC是⊙O的直径,点A是⊙O上异于B,C的一点,则∠A的度数为()
A.60° B.70° C.80° D.90°
11.如图,A,B,C是⊙O上三点,∠ACB=25°,则∠BAO的度数是()
A.55° B.60° C.65° D.70°
12.如图,AB是⊙O的直径,CD为弦,CD⊥AB且相交于点E,则下列结论中不成立的是()
A.∠A=∠D B. =C.∠ACB=90°D.∠COB=3∠D
二、填空题
13.如图,AB是⊙O的直径,BC是⊙O的弦,若∠AOC=80°,则∠B= .
14.如图,四边形ABCD是⊙O的内接四边形,若∠C=130°,则∠BOD= °.
15.如图,点A,B,C在⊙O上,CO的延长线交AB于点D,∠A=50°,∠B=30°,则∠ADC 的度数为.
16.如图,边长为1的小正方形构成的网格中,半径为1的⊙O在格点上,则∠AED的正切值为.
17.如图,已知AB是⊙O的直径,点C在⊙O上,若∠CAB=40°,则∠ABC的度数为.
18.如图,四边形ABCD内接于⊙O,AB为⊙O的直径,点C为的中点.若∠A=40°,则∠B= 度.
19.如图,一块直角三角板ABC的斜边AB与量角器的直径恰好重合,点D对应的刻度是58°,则∠ACD的度数为.
20.如图,在⊙O中,AB为直径,CD为弦,已知∠ACD=40°,则∠BAD= 度.
21.如图,A、B、C三点在⊙O上,且∠AOB=70°,则∠C= 度.
22.如图,线段AB是⊙O的直径,点C在圆上,∠AOC=80°,点P是线段AB延长线上的一动点,连接PC,则∠APC的度数是度(写出一个即可).
23.如图,AB为⊙O的直径,AB=AC,BC交⊙O于点D,AC交⊙O于点E,∠BAC=45°,给出
以下五个结论:①∠EBC=22.5°;②BD=DC;③AE=2EC;④劣弧是劣弧的2倍;⑤AE=BC,其中正确的序号是.
24.如图,正五边形ABCDE内接于⊙O,则∠CAD= 度.
25.如图,点A,B,C是⊙O上的点,OA=AB,则∠C的度数为.
26.将量角器按如图所示的方式放置在三角形纸板上,使顶点C在半圆上,点A、B的读数分别为100°、150°,则∠ACB的大小为度.
三、解答题
27.如图,以△ABC的一边AB为直径的半圆与其它两边AC,BC的交点分别为D、E,且=.(1)试判断△ABC的形状,并说明理由.
(2)已知半圆的半径为5,BC=12,求sin∠ABD的值.
28.在⊙O中,直径AB=6,BC是弦,∠ABC=30°,点P在BC上,点Q在⊙O上,且OP⊥PQ.(1)如图1,当PQ∥AB时,求PQ的长度;
(2)如图2,当点P在BC上移动时,求PQ长的最大值.
29.如图,⊙O的半径为1,A,P,B,C是⊙O上的四个点,∠APC=∠CPB=60°.
(1)判断△ABC的形状:;
(2)试探究线段PA,PB,PC之间的数量关系,并证明你的结论;
(3)当点P位于的什么位置时,四边形APBC的面积最大?求出最大面积.
30.已知:如图,AB为⊙O的直径,点C、D在⊙O上,且BC=6cm,AC=8cm,∠ABD=45°.(1)求BD的长;
(2)求图中阴影部分的面积.
圆周角(01)
参考答案
一、选择题(共12小题)
1.D;2.A;3.D;4.C;5.D;6.B;7.D;8.B;9.D;10.D;11.C;12.D;
二、填空题(共14小题)
13.40°;14.100;15.110°;16.;17.50°;18.70;19.61°;20.50;21.35;22.30;23.①②④;24.36;25.30°;26.25;
三、解答题(共4小题)
27.;28.;29.等边三角形;30.;。