沪教版六年级数学教案第六章
- 格式:doc
- 大小:992.50 KB
- 文档页数:63
第六章 一次方程(组)和一次不等式(组)【学习目标】1.了解等式的概念,掌握等式的基本性质。
2.了解方程、方程的解及解方程的概念。
4.了解分式方程的概念。
5.掌握可化为一元一(二)次方程的分式方程的解法,会用去分母法或换元法求方程的解。
6.了解分式方程产生增根的原因,掌握验根的方法。
7.能够列出可化为一元二次方程的分式方程解应用题。
【学习重难点】1.了解一元一次方程及其标准形式、最简形式,掌握一元一次方程的解法,并会检验。
2.会列一元一次方程解应用题,并根据应用题的实际意义检验求值是否合理。
3.掌握简单的三元一次方程组的解法。
4.能正确地列二元一次方程组解应用题。
5.能熟练正确地解不等式(组),并会求其特殊解。
6.能利用转化思想、数形结合的思想解一元一次不等式(组)综合题、应用题。
【学习过程】1.方程的相关概念。
(1)方程:含有未知数的等式。
(2)方程的解:使方程左右两边的值相等的未知数的值。
只含有一个未知数的方程的解也叫做该方程的根。
(3)解方程:求方程的解或说明方程无解的过程。
(4)一元一次方程:只含有一个未知数,且含未知数的项的最高次数为1,化成标准形式)0(0≠=+a b ax 的整式方程。
例1.如果2x =是方程112x a +=-的根,那么a 的值是( ) A .0;B .2;C .2-;D .6-2.一元一次方程的解法。
(1)等式的性质:①等式两边同时加上(减去)同一个整式,等式仍然成立;②等式两边同时乘以(除以)同一个数(除数不能为0),等式仍然成立。
(2)解一元一次方程的一般步骤:①去分母;②去括号;③移项;④合并同类项;⑤系数化为1。
例2.方程063=+x 的解的相反数是( )A .2;B .-2;C .3;D .-3。
3.一元一次方程的应用。
(1)列一元一次方程解应用题的一般步骤:①审题;②设未知数;③找出相等关系;④列出方程;⑤解方程;⑥检验作答。
(2)列一元一次方程解应用题的常见题型:①等积变形问题,注意变形前后的面积(体积)关系;②比例问题,通常设每份数为未知数;③利润率问题,数量关系复杂,要特别注意,常用的相等关系是利润的两种不同表示方法,即利润=售价-进价=进价×利润率;④数字问题,注意数的表示方法;⑤工程问题,注意单位“1”的确定;⑥行程问题,分为相遇、追击、水流问题;⑦年龄问题等。
第六章一次方程(组)及一次不等式(组)第一课时1、用字母x、y、等表示所要求的未知的数量,这些字母称为未知数。
含有未知数的等式叫做方程。
在方程中,所含的未知数又称为元。
知识点:方程中的项、系数、次数等概念(1)项:在方程中,被“+”、“-”,号隔开的每一部分(包括这部分前面的“十”、“-”号在内)称为一项.(2)未知数的系数:在一项中,写在未知数前面的数字或表示已知数的字母叫做未知数的系数.(3)项的次数:在一项中,所有未知数的指数和称为这一项的次数.(4)常数项:不含未知数的项,称为常数项.为了求得未知数,在未知数和已知数之间建立一种等量关系式,就是列方程。
一个长方形篮球场的周长为86米,长是宽的2倍少2米,这个篮球场的长与宽分别是多少米?用两种方法列式:方程:设这个篮球场的宽为x米,则长为(2x-2)米2(2x-2+x)=86想一想:你能再列一种方程吗?你还能用列式计算吗?根据下列条件列出方程:(1)某数比它的大(2)某数比它的2倍小3(3)数a的70%与数b的120%的和是902、如果未知数所取的某个值能使方程左右两边的值相等看,那么这个未知数的值叫做方程的解注意:(1)方程的解一定能使方程左右两边的值相等(2)方程的解和解方程是两个不同的概念,它们一个是求得的结果,一个是变形的过程,要区别开,方程的解中的“解”是名词,解方程概念中“解”是一个动词判断一个数是否是方程的解(2x+3=9)(x=3)方法:检验:将x=3代入原方程左边=2×3+3=9右边=9∵左边=右边∴x=3是原方程的解3、只含有一个未知数且未知数的次数是一次的方程叫做一元一次方程知识点:(1)概念:在一个方程中,只含有一个未知数,并且未知数的次数是一次的方程叫一元一次方程。
如:(2)一元一次方程的最简形式:()(3)一元一次方程的标准形式:(4)注意:理解一元一次方程的概念应把握:(5)是一个方程;(6)只含有一个未知数(7)未知数的次数是1(8)化简后未知数的系数不能为0(9)分母不能含有未知数例题.有以下式子:(1)(2)(3)(4)=9;(5) (6) (7)2(z+1)=2 (8),其中一元一次方程的个数是( ).4、等式性质1:等式两边同时加上(或减去)同一个数或一个含有字母的式子,说得结果仍是等式。
沪教版数学六年级下册第六章《一次方程(组)和一次不等式(组)》教学设计一. 教材分析《一次方程(组)和一次不等式(组)》是沪教版数学六年级下册第六章的内容。
本章主要介绍一次方程(组)和一次不等式(组)的概念、解法及其应用。
通过本章的学习,学生能够理解一次方程(组)和一次不等式(组)的定义,掌握解法,并能运用其解决实际问题。
二. 学情分析六年级的学生已经具备了一定的代数基础,对解方程和不等式有一定的了解。
但在解决实际问题时,还需要进一步培养学生的抽象思维能力和解决问题的能力。
此外,学生可能对一次方程(组)和一次不等式(组)的解法掌握不够熟练,需要通过大量的练习来巩固。
三. 教学目标1.知识与技能:理解一次方程(组)和一次不等式(组)的概念,掌握解法,并能运用其解决实际问题。
2.过程与方法:通过自主学习、合作交流,培养学生的抽象思维能力和解决问题的能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识。
四. 教学重难点1.重点:一次方程(组)和一次不等式(组)的概念、解法及其应用。
2.难点:一次方程(组)和一次不等式(组)的解法,以及如何运用其解决实际问题。
五. 教学方法1.自主学习:鼓励学生自主探究,发现问题,解决问题。
2.合作交流:引导学生与他人合作,共同探讨问题,分享解题经验。
3.案例分析:通过分析实际问题,培养学生运用数学知识解决实际问题的能力。
4.巩固练习:通过大量练习,巩固所学知识。
六. 教学准备1.教学课件:制作课件,展示一次方程(组)和一次不等式(组)的概念、解法及应用。
2.练习题:准备适量的一次方程(组)和一次不等式(组)的练习题,用于巩固所学知识。
3.小组讨论:安排学生分组,进行合作交流。
七. 教学过程1.导入(5分钟)利用实例引入一次方程(组)和一次不等式(组)的概念,激发学生的学习兴趣。
2.呈现(15分钟)展示一次方程(组)和一次不等式(组)的定义、解法及应用,让学生初步了解其基本概念和解题方法。
沪教版六年级数学教案第六章6.1 列方程教学目标1.知道什么是方程,会区分方程和等式.2.会寻找未知数和已知数之间的等量关系,列方程.教学重点与难点:会寻找未知数和已知数之间的等量关系,列方程. 教学用具准备: 投影仪、电脑 教学流程设计教学过程设计 一、情景引入问题小丽2月份的零花钱花掉了25.4元,还剩下60元,那么小丽二月份有多少零花钱?分析一 列式可得25.4+60=85.4.分析二 设小丽二月份有x 元零花钱.x-25.4=60.二、学习新课 1.概念辨析方程:含有未知数的等式叫做方程.在方程中,所含的未知数又称为元.练习1判断:下列各式哪些是方程?哪些不是方程?并说明为什么.列方程:为了求得未知数,在未知数和已知数之间建立一种等量关系式,就是列方程. 2.例题分析例题 1 根据下列条件列出方程:(1) 一个正方形的边长为x 厘米,周长为36厘米; (2) 25减去数x 的一半是56. 解(1)方程是436x = (2)方程是25652x -= 例题2一个数与它的一半的和是 34,求这个数.分析 设这个数为x ,那么它的一半是 2x ,两数的和为2x x +,根据22(1)2; (2)0; (3)-1+2=1;34(4)32; (5)3507x x x x x x +-=+=--+=题意可以列出等量关系式324x x +=. 例题3某水果店有苹果与香蕉共152千克,其中苹果的重量是香蕉重量的3倍,求该水果店的苹果与香蕉各有多少千克? 三、巩固练习 练习2 1.列方程:(1)x 的25与6的和为2; (2)x 的相反数减去5的差为5; (3)y 的3次方与x 的和为0;(4)x 、y 的积减去13所的差的一半为23. 2.在下列问题中引入未知数,列出方程: (1) 某数的两倍与-9的和等于15,求这个数.(2) 长方形的宽是长的13,长方形的周长是24厘米,求长方形的长. (3) 小明用10元钱买了15本练习本,找回了1元钱,求每本练习本的价格. 四、课堂小结 五、作业布置 练习册6.11、有一所寄宿制学校,开学安排宿舍时,如果每间宿舍安排住4人,将会空出5间宿舍;如果每间宿舍安排住3人,就有100人没床位,那么在学校住宿的学生有多少人?2、请你自编一道应用题,要求语句通顺,所编问题要具有一定的实际意义,且所列的方程应为x+(3x-6)=503、甲仓库存粮200吨,乙仓库存粮70吨.若甲仓库每天运出15吨粮,乙仓库每天运进25吨粮,经过多少天,乙仓库的存粮是甲仓库的两倍?【分析】根据题意,设经过x天,乙仓库的存粮是甲仓库的两倍,可得下表:解:设经过x天,乙仓库的存粮是甲仓库的两倍.这时,甲仓库存粮为(200—15x)吨,乙仓库存粮为(70+25x)吨.根据题意,得方程2(200-15x)=70+25x4、甲步行,乙骑自行车,两人同时从相距45千米的A、B两地相向而行,2.5小时后两人相遇.已知骑自行车的速度是步行速度的2倍.求甲步行的速度.【分析】根据题意,设甲步行的速度为每小时x千米,可得下表:解:设甲步行的速度为每小时x千米,根据题意,得方程2.5x+2.5×2x=45,x=6.答:甲步行的速度为每小时6千米.6.2方程的解教学目标1、了解方程的解的定义.2、会判断某个数是否是一个方程的解.教学重点与难点:会判断某个数是否是一个方程的解,即学会检验.教学用具准备:投影仪、电脑教学流程设计教学过程设计教学过程: 一、新课导入1)等式:用“=”表示相等关系的式子;如1+2=3,2x+3=37 2)方程:含有未知数的等式叫做方程 如2x+3=37, y+2=3 3)判断:下列各式哪些是方程?哪些不是方程?并说明为什么.2、学习新课六年级(2)班共有学生48人,其中女生比男生多8人,这个班的男生有多少人?分析:如果设男生有X 人,那么女生有(X+8)人,可以得到方程 X+(X+8)=48把1、2、3、4、5、6......代入方程,用1代替X 时,方程的两边的值不相等,那么1就不是方程22(1)3; (2)320; (3)3350;(4)4532; (5)578; (6)3537;(7)32x y x y x x x x x x y xy x y+-=-+=+=-+=+=--=X+(X+8)=48的解;......用19代替X时,方程的两边的值不相等,那么19就不是方程X+(X+8)=48的解;用20代替X时,方程的两边的值相等,那么20就是方程X+(X+8)=48的解,可以说这个方程的一个解是X=20;二、方程的解: 如果未知数所取的某个值能使方程左右两边都相等,那么这个未知数的值叫做方程的解.例1:-3、1是不是方程7=-的解?42-9x2x解:把x= - 3分别代入方程的左边和右边,得左边=27右边= -13因为左边≠右边所以x= -3 不是方程7=42--的解.xx29把X=1分别代入方程的左边和右边,得左边= -5右边= -5因为左边 = 右边所以x= 1 是方程7=42--的解.xx29例2:检验下列各数是不是方程7x+1=10-2x的解:⑴x=1;⑵x=-2.解:⑴将x=1分别代入方程的左、右两边,得左边=7×1+1=8,右边=10-2×1=8,∵左边=右边,∴x=1是方程7x+1=10-2x的解.⑵将x=-2分别代入方程的左、右两边,得左边=7×(-2)+1=-13,右边=10-2×(-2)=14,∵左边≠右边,∴x=-2不是方程7x+1=10-2x的解.三、练习1、检验下列各题括号里的数哪些是它前面的方程的解?1)12x-7=9x-4 ( 1,4)2)18+x=4-x (5,-7)2、x=2是不是方程3x-9=x-5和方程8+的解?x2=43、写出一个方程,使它的解是 3,这样的方程可以写出多少个?四、小结:同学口答略.6.3(1)一元一次方程及其解法教学目标1.会运用等式的两条基本性质对等式进行变形;2.运用等式的性质和移项法则解一元一次方程;3.掌握一元一次方程的有关概念,并会检验一个数是不是方程的解.教学重点及难点运用等式的基本性质对等式进行变形. 移项法则及方程解的检验.教学用具准备:黑板、粉笔、学生准备课堂练习本. 教学流程设计教学过程设计 一、引入新课一个长方形篮球场的周长为86米,长是宽的2倍少2米,这个篮球场的长与宽分别是多少米? 我们如何通过设未知数列方程的方法来解决这道题目呢?设这个篮球场的宽为x 米,那么长为(2x-2)米,可以得到方程2(2x-2+x )=86教师:下面我们来仔细观察一下这个方程含有几个未知数?含有未知数的项的次数是几次的?学生:含有一个未知数、含有未知数的项的次数是一次的. 教师:同学们回答的很好,把同学们所找到的特点归纳在一起就是今天我们要学习的一元一次方程的概念.只含有一个未知数且含有未知数的项的次数是一次的方程叫做一元一次方程(linear equation in one variable ) 二、新课讲授例1、判断下列方程是不是一元一次方程,如果不是,请简要说明理由.(1)05=x (2)562=-y x(3)06212=-x (4)15)9(2=+-y y 解:(1)是.(2)不是,这个方程含有两个未知数.(3)不是,这个方程中含有未知数的项的次数是二次. (4)是.巩固练习:判断下列方程是不是一元一次方程: (1)103=x (2)35745=-y x (3)0142=-x (4)1)2(34=+-z z 2、寻找解一元一次方程的方法教师:如何求05=x 和159=-x 的解呢?请同学们分组讨论一下,选代表回答.学生:对于05=x ,我们可以在方程的左右两边同时除以5;对于159=-x 我们可以在方程的左右两边同时加上9.教师:同学们回答的非常好,你们知道刚刚这几位同学的方法是运用了什么数学知识吗?学生:等式的基本性质.教师:很好,下面让我们一起回顾一下等式的基本性质: 等式性质一:等式两边同时加上(或减去)同一个数或同一个含有字母的式子,所得结果仍是等式.等式性质二:等式两边同时乘以同一个数(或除以同一个不为0的数),所得结果仍是等式.教师:运用等式性质和运算性质就可以求出方程的解. 3、解一元一次方程 例题2、解方程:x x 2184-=. 解: x x x x 221824+-=+x+x4=182x6=18x=3教师:你能确定求得的结果是正确的吗?我们可以将3x分别代入原方程的左边和右边,看它们的值是否=相等.格式如下:检验:将3x分别代入原方程的两边=⨯=左边;4=312⨯==右边;--61218=1832左边=右边.所以3x是原方程的解.=在以上方程的解的过程中:=→184=x+x24-x2x18-改变符号后从等号的一边移到另一边,这种变形过程叫做移项.x2求方程的解的过程叫做解方程.三、巩固练习:练习6.3(1)2、3四、课堂小结:什么叫一元一次方程;等式的基本性质;如何检验一个数是不是方程的解;什么叫移项;什么叫解方程.6.3(2)一元一次方程及解法教学目标1.理解和掌握去括号的法则;2.会解含有括号的一元一次方程.教学重点及难点:掌握去括号的法则并应用这个法则求含有括号的一元一次方程的解.教学用具准备:黑板、粉笔、练习本.教学流程设计教过程设计一、复习旧知,引入新课 大家还记得去括号法则吗?去括号的法则是:括号前面带“+”号,去掉括号和“+”号,括号内各项都不变号.括号前面带“-”号,去掉括号和“-”号,括号内各项都变号.下面让我们来看看含有括号的一元一次方程该如何求解. 二、新课讲授例题3、解方程:)37(2015--=+x x x 解:372015+-=+x x x ,137205-=+-x x x , 28=-x ,41-=x ,检验:将41-=x 代入原方程的左右两边, 左边=411)41(5-=+-⨯,右边=41)419(5]3)41(7[)41(20-=---=--⨯--⨯, 所以41-=x 是原方程的解.下面请同学们自己解下面一道例题. 例题4、解方程:)2(355)2(4--=+-x x 解:235584+-=+-x x ,+=+x5+x,4-82355=x,40=x,8检验:将8x代入原方程的左右两边,=左边=29=+-,+8(4=245)25右边=29=--,-35=35)28(6左边=右边,所以8x是原方程的解.=教师:一元一次方程一定有解吗?(同学此时会有争论)现在让我们来看下面一道例题.例题5、解方程:)2-xxx=2-33(-解:2=-xxx,-2+33-,23=这个等式不成立,所以原方程无解.三、巩固练习:练习6.3(2)1、2四、课堂小结:今天我们学了哪些内容?(去括号的法则)五、回家作业:练习册习题6.3(2)6.3(3)一元一次方程及解法教学目标1.掌握含有分母的一元一次方程的解法;2.通过一元一次方程三节内容的学习,归纳出解一元一次方程的一般步骤.教学重点及难点掌握含有分母的一元一次方程的解法及解一元一次方程的一般步骤.教学用具准备 黑板、粉笔、练习本. 教学流程设计教学过程设计一、通过问题,引入新课 教师:如何解方程35207+=xx 呢? 学生:根据等式的基本性质,方程两边同乘以20,得:32052020720⨯+⨯=⨯xx , 即6047+=x x .二、新课讲授教师:同学们说的非常好.在以上求方程解的过程中,在方程两边同时乘以20,去掉分数的分母的变形过程,我们把它叫做去分母.我们就是利用化归的思想,利用去分母把含有分母的一元一次方程转化成不含分母的一元一次方程,然后利用我们学过的知识求解.下面让我们一起看一道例题: 例题6 解方程:285416++=x x . 解:32)54(2++=x x ,32108++=x x , 427-=x , 6-=x ,所以6-=x 是原方程的解. 三、巩固练习练习6.3(3)1、2 四、课堂小结同学们已经学习了普通的一元一次方程,带有括号的一元一次方程及带有分母的一元一次方程的解法,下面让我们一起来归纳一下解一元一次方程的一般步骤:1、 去分母;2、 去括号;3、 移项;4、 化成)0(≠=a b ax 的形式;5、 两边同除以未知数的系数,得到方程的解abx =. 五、布置回家作业 练习册6.3(3)6.4(1)一元一次方程的应用教学目标1.在解决实际问题的过程中,初步掌握一元一次方程解简单应用题的方法和步骤;并会列出一元一次方程解简单的应用题.2.能正确的分析问题,从问题中找出已知量和未知量之间的数量关系.3.具有一定的观察能力,提高分析问题和解决问题的能力.4.初步养成正确思考问题的良好习惯. 教学重点及难点1.元一次方程解简单的应用题的方法和步骤. 2.找等量关系.3.于未知量之间存在比的关系如何设元 教学用具准备:奥运图片 教学流程设计教学过程设计一、情景引入,了解列方程解应用题优越性 看一看:北京奥运的会标和吉祥物. 想一想:2008年中国将举办北京奥运会.中国政府提出了“节俭办奥运”的新理念,将建造国家体育馆的预算资金调整为26亿元,比原预算节约资金35%,问原建造国家体育馆的预算资金为多少亿元? (学生独立完成,选择用算术方法解题和列方程解题的同学板演.) 解法一:26÷(1-35%)=40(亿元)解法二:设原建造国家体育馆的预算资金为x 亿元.x-35%x=26 解方程,得x=40答:原建造国家体育馆的预算资金为40亿元. 想一想:在小学算术中,我们已经学习了用算术方法解决实际问题的有关知识,而实际问题也能应用一元一次方程来解决呢.用一元一次方程解应用题与用算术方法解应用题相比较,它有什么优越性呢?归纳:算术方法不易思考,而应用设未知数,列出方程并通过解方程求得应用题的解的方法,有一种化难为易之感,这就是我们学习运用一元一次方程解应用题的目的之一.方程是一个含有未知数的等式,而等式表示了一个相等关系.因此对于任何一个应用题中提供的条件,应首先从中找出一个相等关系,然后再将这个相等关系表示成方程.本节课,我们就通过实例来说明怎样寻找一个相等的关系和把这个相等关系转化为方程的方法和步骤.二、研究列方程解应用题的一般步骤和方法图片引出问题:在2004年雅典奥运会闭幕式上,中国表演队必须用8分49秒表演舞动北京、中华武术、少儿京剧等节目,其中表演的时间之比是10:8:5,那么舞动北京、中华武术、少儿京剧等节目表演的时间各是多少秒?师生共同分析:1.本题中给出的已知量和未知量各是什么?2.已知量与未知量之间存在着怎样的相等关系?舞动北京的表演时间+中华武术的表演时间+少儿京剧的表演时间=8分49秒3.若设舞动北京的表演时间为x秒,那么中华武术的表演时间和少儿京剧的表演时间如何用x表示?4.若设舞动北京的表演时间为10x秒,那么中华武术的表演时间和少儿京剧的表演时间如何用x表示?这里的x表示什么?5.在解决这个实际问题时还需要注意哪个问题?(单位问题)解:设舞动北京的表演时间为10x秒,那么中华武术的表演时间和少儿京剧的表演时间分别为8x秒和5x秒.10x+8x+5x=52923x=529x=23所以,10x=230,8x=184,5x=115.答:舞动北京的表演时间为230秒,中华武术的表演时间为184秒,少儿京剧的表演时间为115秒.练一练:书P49 1、2三、列方程解应用题方法归纳1、想一想:你能根据刚才列方程解应用题的过程说一说列方程解应用题的一般步骤吗?设未知数(元)列方程解方程检验并作答许多实际问题中的已知量与未知量之间存在着等量关系,把这种等量关系式写出来,得到方程的解,通过检验获得实际问题的解,称这样的方法为方程的思想方法.2、想一想:当实际问题中未知量之间存在比的关系时,我们如何设元?四、自主小结:今天这节课你最大的收获是什么?五、布置作业:略6.4(2)一元一次方程的应用教学目标1.在解决储蓄问题和折扣问题的过程中,进一步掌握列一元一次方程解简单应用题的方法和步骤.2.能正确的分析问题,从问题中寻找已知量和未知量之间的数量关系.3.养成一定的观察能力,提高分析问题和解决问题的能力.4.初步养成正确思考问题的良好习惯.教学重点及难点1.正确的寻找储蓄问题和折扣问题中的等量关系.2.能正确的求出方程的解.教学用具准备:多媒体教学流程设计教学过程设计 一.复习方法1.列方程解应用题的一般步骤是什么?其中最关键的是哪一步? 2.当未知量之间存在比的关系时我们如何设元? 二.学习新课 1、热身操:(1)小杰2月初到银行将积攒的300元零用钱定期储蓄一年,到期时小杰得到的税前本利和是多少?税后本利和是多少?(2)永乐商场以700元的进价购入一批MP3,商场加价20%的作为售价,那么这款MP3的实际售价是多少? (学生独立完成)归纳:储蓄问题中的一些基本数量关系: 利息=(本金)×(利率)×(期数) 税前本利和=(本金)+(利息)税后本利和=(本金)+(税后利息)=(本金)+(利息)×(1-适用税率)销售问题中的基本数量关系售价=(成本价)+(盈利)=(成本价)×(1+盈利率) 折后售价=(原售价)×(折扣) (问题以填空形式出现)2、牛刀小试问题一:小明的妈妈在银行里存入人民币5000元,国家规定存款利息的纳税办法是:利息税=利息×20%,储户取款时由银行代扣代收,存期一年,到期可得人民币5090元,求这项储蓄的年利率是多少?分析:(1)问题中给出的已知量和未知量各是什么?(2)已知量与未知量之间存在着怎样的相等关系?本金+利息×1-适用税率=税后本利和解设这项储蓄的年利率是x.根据题意,得 5000+5000×x×1×(1-20%)=50905000+4000x=50904000x=90x=0.0225所以x=2.25%答:这项储蓄的年利率是2.25%.问题二:一种节能型冰箱,商店按原售价的九折出售,降价后的新售价是每台2430元,因为商店按进价加价20%作为售价,所以降价后商店还能赚钱,请问,这种节能型冰箱的进价是多少元?按降价后的新售价出售,商店每台还可赚多少元?分析:(1)问题中给出的已知量和未知量各是什么?(2)已知量与未知量之间存在着怎样的相等关系?原售价×折扣=折后售价(3)如果设这种节能型冰箱的进价是x元,那么这台节能型冰箱的原售价如何用x表示呢?解设这种节能型冰箱的进价是x元,那么每台冰箱原售价是(1+20%)x.根据题意,得(1+20%)x·90%=24301.08x=2430x=22502430-2250=180(元)答:这种节能型冰箱的进价是2250元.按降价后的新售价出售,商店每台还可赚180元.1、练一练:P51 1、2三.学习心得交流1、今天我学会了解决哪些实际问题?2、这些实际问题中存在哪些基本数量关系?四.布置作业:1、基本作业:略2、拓展作业:请自编一道有关储蓄问题和销售问题的应用题.6.4(3)一元一次方程的应用教学目标1.在解决行程问题的过程中,进一步掌握列一元一次方程解简单应用题的方法和步骤.2.在不同类型的行程问题中能正确的分析问题,从问题中寻找已知量和未知量之间的数量关系.3.提高分析问题和解决问题的能力,初步体会分类讨论的数学思想.4.初步养成正确思考问题的良好习惯.教学重点及难点:在不同类型的行程问题中能正确的分析问题,从问题中寻找已知量和未知量之间的数量关系.教学用具准备:多媒体设备、课前体育课中的跑步竞赛 教学过程设计 一.复习旧知识1、在小学你会解决哪些实际问题?在行程问题中的基本数量关系是什么?路程=速度×时间 速度=路程÷时间=时间路程时间=路程÷速度=速度路程(S=vt 、t S v =、v St =其中,S:路程,v:速度,t:时间)2、看你行不行(学生独立完成)甲,乙两地相距162千米,甲地有一辆货车,速度为每小时48千米,乙地有一辆客车,速度为每小时60千米,求: (1)若两车同时相向而行,多长时间可以相遇? (2)若两车同时背向而行,多长时间两车相距270千米?(3)若两车相向而行,货车先开1小时,再过多长时间可以相遇? 分析:在行程问题,我们可以先画示意图,从图中就可以得到等量关系解(1)设x 小时可以相遇则由题意可列:48x+60x=162 解得x=1.5答:1.5小时后可以相遇. (2)设x 小时两车相距270千米则由题意可列:48x+162+60x=270 解得x=1答:1小时后两车相距270千米. (3)设再过x 小时两车可以相遇则由题意可列:48(x+1)+60x=162 解得1819x答:1819小时两车可以相遇.二.学习新课1、回顾跑步比赛:在环行跑道上游戏,老师安排了几种比赛形式?这两种不同的的形式有什么区别?2、解决新问题:问题一:如右图:小杰、小丽分别在400米环形跑道上练习跑步与竞走,小杰每分钟跑320米,小丽每分钟跑120米,两人同时由同一点出发,问几分钟后,小丽与小杰第一次相遇?分析:(1)问题中给出的已知量和未知量各是什么?(2)图中给出了什么信息?(3)如果设x分钟后,小丽与小杰第一次相遇,请试着完成下表:(4)已知量与未知量之间存在着怎样的相等关系?小杰跑的路程-小丽走的路程=环形跑道一周的长解:设x分钟后,小丽与小杰第一次相遇.320x-120x=400解方程得 x=2答:2分钟后,小丽与小杰第一次相遇.问题二:小杰、小丽分别在400米环形跑道上练习跑步与竞走,小杰每分钟跑320米,小丽每分钟跑120米,两人同时由同一点反向而跑,问几分钟后,小丽与小杰第一次相遇?分析:已知量与未知量之间存在着怎样的相等关系?小杰跑的路程+小丽走的路程=环形跑道一周的长解:设x分钟后,小丽与小杰第一次相遇.320x+120x=40010解方程得 x=1110分钟后,小丽与小杰第一次相遇.答:11问题三:小杰、小丽分别在400米环形跑道上练习跑步与竞走,小杰每分钟跑320米,小丽每分钟跑120米,两人同时由同一点出发,问几分钟后,小丽与小杰第一次相遇?分析:此问题会有几种情况出现?已知量与未知量之间存在着怎样的相等关系?情况一:小杰跑的路程-小丽走的路程=环形跑道一周的长情况二:小杰跑的路程+小丽走的路程=环形跑道一周的长3、练一练:P 51 3、4三.自主小结1.今天我学会解决了哪一类的行程问题?2.在分析行程问题中的等量关系时我们有哪几种方法?3.在解决行程问题中我们要注意什么?(单位换算问题)四、布置作业1.基本练习:略2.拓展练习:甲,乙两地相距162千米,甲地有一辆货车,速度为每小时48千米,乙地有一辆客车,速度为每小时60千米,求:(1)若两车同时相向而行,货车在路上耽误了半小时,多长时间可以相遇?(3)若两车相向而行,同时出发,多长时间两车相距54千米?6.5不等式及其性质教学目标:掌握不等式的基本性质,并能正确运用它们将不等式变形;体验观察、比较、归纳的过程,渗透类比的思维方法,形成一定的语言表达能力;形成团结协作能力。
沪教版数学六年级下册6.7《一元一次不等式组》教学设计一. 教材分析《一元一次不等式组》是沪教版数学六年级下册第六章第七节的内容。
在此之前,学生已经学习了不等式的概念、性质以及一元一次不等式的解法。
本节课的内容是在此基础上,引导学生学习一元一次不等式组的概念、解法及其应用。
通过本节课的学习,学生能了解一元一次不等式组在实际生活中的应用,提高解决实际问题的能力。
二. 学情分析六年级的学生已经具备了一定的逻辑思维能力和抽象思维能力,对不等式的基本概念和性质有一定的了解。
但在解决实际问题时,还需要进一步引导他们将数学知识与生活实际相结合。
此外,由于不等式组的概念和解法较为抽象,学生可能在学习过程中存在一定的困难,因此需要教师在教学中给予充分的引导和帮助。
三. 教学目标1.知识与技能:使学生了解一元一次不等式组的概念,学会解一元一次不等式组,并能应用于实际问题中。
2.过程与方法:通过探究、合作、交流,培养学生解决实际问题的能力,提高学生的数学思维水平。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生勇于探究、积极向上的学习态度。
四. 教学重难点1.重点:一元一次不等式组的概念及其解法。
2.难点:如何将实际问题转化为不等式组,并运用解法求解。
五. 教学方法1.情境教学法:通过生活实例引入课题,激发学生的学习兴趣。
2.启发式教学法:引导学生主动探究、发现规律,培养学生的思维能力。
3.合作学习法:鼓励学生互相讨论、交流,提高解决问题的能力。
4.反馈评价法:及时了解学生的学习情况,针对性地进行教学调整。
六. 教学准备1.教学课件:制作课件,展示相关知识点和实例。
2.练习题:准备适量的一元一次不等式组练习题,用于巩固所学知识。
3.小组讨论材料:准备一些实际问题,供学生小组讨论和交流。
七. 教学过程1.导入(5分钟)利用生活实例,如购物时优惠活动,引入一元一次不等式组的概念。
展示课件,简要回顾不等式和一元一次不等式的相关知识。
沪教版数学六年级下册第六章《一次方程(组)和一次不等式(组)》教学设计一. 教材分析沪教版数学六年级下册第六章《一次方程(组)和一次不等式(组)》是本册教材的重要内容,它是在学生已经掌握了四则运算、平面几何等知识的基础上进行的一次方程(组)和一次不等式(组)的学习。
本章内容主要包括一次方程(组)和一次不等式(组)的定义、性质、解法及其应用。
通过本章的学习,使学生能够掌握一次方程(组)和一次不等式(组)的基本概念和解法,能够运用它们解决实际问题,为后续的数学学习打下坚实的基础。
二. 学情分析六年级的学生已经具备了一定的数学基础,对于方程和不等式的概念已经有了一定的了解。
但是,对于一次方程(组)和一次不等式(组)的解法及其应用还需要进一步的引导和培养。
因此,在教学过程中,需要结合学生的实际情况,采用生动有趣的教学方法,引导学生主动探究,培养学生的动手操作能力和思维能力。
三. 教学目标1.知识与技能:使学生掌握一次方程(组)和一次不等式(组)的基本概念和解法,能够运用它们解决实际问题。
2.过程与方法:通过观察、操作、猜想、验证等活动,培养学生的动手操作能力和思维能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识和克服困难的勇气。
四. 教学重难点1.重点:一次方程(组)和一次不等式(组)的基本概念和解法。
2.难点:一次方程(组)和一次不等式(组)的解法及其应用。
五. 教学方法1.情境教学法:通过生活情境的创设,激发学生的学习兴趣,引导学生主动探究。
2.启发式教学法:通过提问、引导、讨论等方式,启发学生的思维,培养学生解决问题的能力。
3.动手操作法:通过学生的动手操作,培养学生的实践能力,加深学生对知识的理解。
六. 教学准备1.教学课件:制作精美的教学课件,辅助教学。
2.教学素材:准备一些实际问题,作为教学的案例。
3.学具:为学生准备一些学习用具,如纸、笔、剪刀、胶水等。
七. 教学过程1.导入(5分钟)利用生活情境,引出一次方程(组)和一次不等式(组)的概念,激发学生的学习兴趣。
沪教版数学六年级下册6.6《一元一次不等式的解法》教学设计一. 教材分析《一元一次不等式的解法》是沪教版数学六年级下册第六章第六节的内容。
这一节主要让学生掌握一元一次不等式的解法,培养学生解决实际问题的能力。
教材通过生活中的实例引入一元一次不等式,然后引导学生通过观察、分析、归纳等方法,探索并掌握一元一次不等式的解法。
教材内容由浅入深,循序渐进,既注重了知识的发生发展过程,又重视了学生能力的培养。
二. 学情分析六年级的学生已经具备了一定的代数基础,对一元一次方程有一定的了解。
但是,对于一元一次不等式,他们还是初次接触,需要通过具体的生活实例来理解其意义。
另外,学生在解决实际问题时,常常会受到具体情境的干扰,难以将实际问题转化为数学问题。
因此,在教学过程中,我需要关注学生对一元一次不等式的理解,引导他们通过观察、分析、归纳等方法,探索并掌握一元一次不等式的解法。
三. 教学目标1.知识与技能:使学生理解一元一次不等式的概念,掌握一元一次不等式的解法,能够运用一元一次不等式解决实际问题。
2.过程与方法:培养学生观察、分析、归纳的能力,提高学生解决实际问题的能力。
3.情感态度与价值观:培养学生对数学的兴趣,使学生体验到数学在生活中的应用,增强学生自信心。
四. 教学重难点1.重点:一元一次不等式的概念,一元一次不等式的解法。
2.难点:一元一次不等式在实际问题中的应用。
五. 教学方法采用情境教学法、启发式教学法、小组合作学习法等,充分调动学生的学习积极性,引导学生通过观察、分析、归纳等方法,探索并掌握一元一次不等式的解法。
六. 教学准备1.教具:课件、黑板、粉笔。
2.学具:练习本、铅笔、橡皮。
七. 教学过程1.导入(5分钟)通过一个生活中的实际问题,引入一元一次不等式的概念。
例如:小华买了一本书,原价是12元,商店搞活动满30元减10元,小华需要花多少钱买这本书?引导学生列出不等式,解决问题。
2.呈现(10分钟)通过多媒体课件,呈现一组一元一次不等式,引导学生观察、分析,发现一元一次不等式的解法。
一元一次方程教学目标1、使学生进一步理解一元一次方程的有关概念。
2、掌握一元一次方程的解法步骤,熟练地解一元一次方程。
重点、难点一元一次方程的概念的应用与解法掌握考点及考试要求一元一次方程的概念的应用与解法掌握教学内容一、解一元一次方程的一般步骤:(1)去分母;(方程两边同时)(2)去括号;(括号外面是负号,去括号时要注意括号里面的每一项都要)(3)移项;(移项要注意)(4)合并同类项,(化为最简形式;)(5)系数化1;(方程两边同,得出方程的解.)例题讲解题型一:一元一次方程概念的理解:例1:若是关于x的一元一次方程,则方程的解是。
变式练习1:1.是关于x的一元一次方程,则代数式的值为。
例2、.已知关于的方程与的解互为倒数,则的值是。
变式练习2:关于的方程的解是的解的3倍,则,这两个方程的解分别是。
例3、.若,则= 。
变式练习3:已知方程,则代数式的值是。
题型二:方程的解的讨论:当方程中的系数是用字母表示时,这样的方程叫含字母系数的方程,含字母系数的一元一次方程总可以化为ax=b的形式,继续求解时,一般要对字母系数a、b进行讨论。
(1)当时,方程有唯一解;(2)当时,方程无解;(3)当时,方程有无数个解。
例4:已知关于的方程无解,试求的值。
变式练习 4如果为定值,关于的方程,无论为何值,它的根总是,求的值。
例5、.解方程变式练习5:a为何值时,方程有无数多个解?a为何值时,该方程无解?题型三:绝对值方程:例6、解方程:(1)(2)变式练习6:解方程:(1)(2)三、课堂练习:1. 解方程:若方程和方程的解相同,则的值为多少?3.若关于的一元一次方程的解是,则的值是()A. B.1 C.- D.04.问当满足什么条件时,方程;(1)有唯一解;(2)有无数解;(3)无解。
5.解下列方程签字确认学员教师班主任。
沪教版数学六年级下册6.3《一元一次方程及其解法》教学设计一. 教材分析《一元一次方程及其解法》是沪教版数学六年级下册第六章第三节的内容。
本节课的主要内容是一元一次方程的定义、性质、解法以及应用。
这一部分内容是学生学习数学的重要基础,也是进一步学习代数和数学分析的基础。
教材通过具体的例子引入一元一次方程,使学生了解其意义和应用,然后引导学生通过代数方法解决方程,培养学生解决实际问题的能力。
二. 学情分析学生在学习本节课之前,已经学习了代数的基本概念,如代数表达式、运算等,对代数有一定的认识。
但是,对于一元一次方程的定义、性质和解法可能还比较陌生。
因此,在教学过程中,需要通过具体的例子和实际应用,使学生理解和掌握一元一次方程的知识。
三. 教学目标1.知识与技能:使学生理解一元一次方程的定义和性质,学会解一元一次方程的方法,能够应用一元一次方程解决实际问题。
2.过程与方法:通过实际问题和代数方法,培养学生的抽象思维和解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识和自主学习能力。
四. 教学重难点1.重点:一元一次方程的定义、性质和解法。
2.难点:一元一次方程的解法和应用。
五. 教学方法1.情境教学法:通过实际问题和情境,引导学生理解和掌握一元一次方程的知识。
2.合作学习法:通过小组讨论和合作,培养学生的团队合作意识和自主学习能力。
3.引导发现法:通过教师的问题和引导,激发学生的思考和发现,培养学生的抽象思维能力。
六. 教学准备1.教材和教案:准备沪教版数学六年级下册的教材和教案。
2.课件和教学资源:准备与教学内容相关的课件和教学资源,如图片、视频等。
3.练习题和作业:准备与教学内容相关的练习题和作业,以便巩固和检测学生的学习效果。
七. 教学过程1.导入(5分钟)利用实际问题引入一元一次方程,如“小明买了一本书,原价是20元,他给了店员30元,店员应该找给他多少元?”引导学生思考和解答这个问题,引出一元一次方程的概念。
沪教版数学六年级下册6.4《一元一次方程的应用》教学设计一. 教材分析《一元一次方程的应用》是沪教版数学六年级下册第六章的内容。
本节课主要让学生掌握一元一次方程的应用,通过解决实际问题,让学生了解一元一次方程在生活中的应用,培养学生解决实际问题的能力。
教材通过丰富的例题和练习题,帮助学生巩固知识,提高解题技能。
二. 学情分析六年级的学生已经掌握了代数的基础知识,对一元一次方程有一定的理解。
但是,学生在应用一元一次方程解决实际问题时,还存在着一定的困难。
因此,在教学过程中,教师需要引导学生将理论知识与实际问题相结合,提高学生解决问题的能力。
三. 教学目标1.知识与技能:让学生掌握一元一次方程的应用,能够解决实际问题。
2.过程与方法:通过解决实际问题,培养学生运用一元一次方程解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生积极解决问题的态度。
四. 教学重难点1.重点:让学生掌握一元一次方程的应用。
2.难点:如何引导学生将实际问题转化为一元一次方程,并解决问题。
五. 教学方法采用问题驱动法、案例教学法和小组合作法。
通过提出问题,引导学生思考,运用案例教学法讲解实际问题,让学生在解决实际问题的过程中掌握一元一次方程的应用。
同时,采用小组合作法,让学生在小组内讨论、交流,提高学生的合作能力和解决问题的能力。
六. 教学准备1.准备相关案例和练习题,用于引导学生解决问题。
2.准备多媒体教学设备,用于展示案例和讲解。
七. 教学过程1.导入(5分钟)教师通过提出一个问题:“小明买了一些苹果,比梨多3倍,如果小明买了45个梨,那么他买了多少个苹果?”引发学生的思考,引导学生进入本节课的主题。
2.呈现(10分钟)教师通过多媒体展示几个实际问题,让学生尝试解决。
例如:“一家商店卖出一件衣服,赚了20元,卖出一双鞋子,赚了15元。
如果商店一天卖出了3件衣服和2双鞋子,那么商店一共赚了多少钱?”学生在解决问题的过程中,教师进行讲解和指导。
教学设计:一元一次方程的应用【课程】初中数学【教材】上海市九年义务教育课本《数学》(上海教育出版社)【年级】六年级第二学期【教学内容】第六章6.4《一元一次方程的应用》【教学任务分析】1、教材分析本节内容,是在前面已经学习了一元一次方程的解法、一元一次方程的应用两课时的基础之上,应用一元一次方程的有关知识,对从报刊、图书、网络、媒体等收集的一些实际数据,分析其中的等量关系,编成问题,再用一元一次方程解决这些问题。
本节内容,对于培养学生用数学的眼光观察现实世界,分析数据起着重要的作用。
一方面,可以锻炼学生运用所学的一元一次方程的知识解决实际问题的能力,另一方面也引导学生关注生活实际中隐含的数学问题,培养学生的数学敏锐性,为以后学习新的数学知识、时刻能联系实际做好准备。
2、学情分析六年级学生已经具备一定的运算能力、阅读能力和简单的分析问题的能力,这时候学生已具备一定的运用一元一次方程解决问题的能力,对于这个年龄段的孩子来说,对新鲜事物充满好奇,他们对生活实际与数学学习相结合是充满期待的。
面对这个年龄阶段的学生,我们需要通过深层挖掘身边的实际素材,帮助学生体会从算术到代数是数学的发展,增强用数学的意识。
通过自主分析实际问题,列方程解决问题,体验方程思想在我们生活实际中的作用,培养学生勇于探索的意识和解决问题的能力。
3、德育渗透本节课通过高铁相关问题,从“富强”、“和谐”、“法治”、“爱国”、“敬业”、“友善”等方面渗透社会主义核心价值观,重点培养学生爱党爱国情感,增强国家意识和社会责任意识,增强中国特色社会主义道路自信。
通过本节课的学习,再一次引导学生用数学的眼光观察现实世界,感受祖国建设日新月异的变化。
通过问题1中高铁列车速度、时间等相关数据的比较,让学生感受祖国高铁列车的飞速发展,综合国力的逐步提升,从“富强”、“爱国”两方面渗透社会主义核心价值观;通过问题2中高铁列车的票价和编组问题的解决,对祖国的高铁列车有进一步的了解,同时“帮爷爷奶奶买票”的问题,引导学生继承祖国优良的文化传统,对长辈的孝敬、关爱的情感态度,从“和谐”这一方面渗透社会主义核心价值观;通过问题3中对“一带一路”的高铁建设的了解,体会“知识产权”的重要性,感受这些年伴随习主席走向世界舞台的步伐,一张张“中国名片”亮相世界的民族自豪感,培养学生的社会责任意识,增强中国特色社会主义道路自信,从“法治”、“敬业”、“友善”三个方面渗透社会主义核心价值观。
教学过程设计 一、情景引入问题小丽2月份的零花钱花掉了25.4元,还剩下60元,那么小丽二月份有多少零花钱? 分析一 列式可得25.4+60=85.4. 分析二 设小丽二月份有x 元零花钱.x-25.4=60.二、学习新课 1.概念辨析方程:含有未知数的等式叫做方程.在方程中,所含的未知数又称为元. 练习1判断:下列各式哪些是方程?哪些不是方程?并说明为什么.列方程:为了求得未知数,在未知数和已知数之间建立一种等量关系式,就是列方程. 2.例题分析22(1)2; (2)0; (3)-1+2=1;34(4)32; (5)3507x x x x x x +-=+=--+=例题 1 根据下列条件列出方程:(1) 一个正方形的边长为x 厘米,周长为36厘米;(2) 25减去数x 的一半是56. 解(1)方程是436x =(2)方程是25652x-=例题2一个数与它的一半的和是 34,求这个数. 分析 设这个数为x,那么它的一半是 2x ,两数的和为2xx +,根据题意可以列出等量关系式324x x +=.例题3某水果店有苹果与香蕉共152千克,其中苹果的重量是香蕉重量的3倍,求该水果店的苹果与香蕉各有多少千克? 三、巩固练习 练习2 1.列方程: (1)x 的25与6的和为2; (2)x 的相反数减去5的差为5; (3)y 的3次方与x 的和为0; (4)x 、y 的积减去13所的差的一半为23. 2.在下列问题中引入未知数,列出方程: (1) 某数的两倍与-9的和等于15,求这个数. (2) 长方形的宽是长的13,长方形的周长是24厘米,求长方形的长. (3) 小明用10元钱买了15本练习本,找回了1元钱,求每本练习本的价格. 四、课堂小结 五、作业布置 练习册6.11、有一所寄宿制学校,开学安排宿舍时,如果每间宿舍安排住4人,将会空出5间宿舍;如果每间宿舍安排住3人,就有100人没床位,那么在学校住宿的学生有多少人?2、请你自编一道应用题,要求语句通顺,所编问题要具有一定的实际意义,且所列的方程应为x+(3x -6)=503、甲仓库存粮200吨,乙仓库存粮70吨.若甲仓库每天运出15吨粮,乙仓库每天运进25吨粮,经过多少天,乙仓库的存粮是甲仓库的两倍?【分析】根据题意,设经过x天,乙仓库的存粮是甲仓库的两倍,可得下表:解:设经过x天,乙仓库的存粮是甲仓库的两倍.这时,甲仓库存粮为(200—15x)吨,乙仓库存粮为(70+25x)吨.根据题意,得方程2(200-15x)=70+25x4、甲步行,乙骑自行车,两人同时从相距45千米的A、B两地相向而行,2.5小时后两人相遇.已知骑自行车的速度是步行速度的2倍.求甲步行的速度.【分析】根据题意,设甲步行的速度为每小时x千米,可得下表:解:设甲步行的速度为每小时x千米,根据题意,得方程2.5x+2.5×2x =45, x=6.12教学过程设计 教学过程: 一、新课导入1)等式:用“=”表示相等关系的式子;如1+2=3,2x+3=37 2)方程:含有未知数的等式叫做方程 如2x+3=37, y+2=3 3)判断:下列各式哪些是方程?哪些不是方程?并说明为什么.2、学习新课六年级(2)班共有学生48人,其中女生比男生多8人,这个班的男生有多少人?分析:如果设男生有X 人,那么女生有(X+8)人,可以得到方程 X+(X+8)=48把1、2、3、4、5、6......代入方程,用1代替X 时,方程的两边的值不相等,那么1就不是方程X+(X+8)=48的解;22(1)3; (2)320; (3)3350;(4)4532; (5)578; (6)3537;(7)32x y x y x x x x x x y xy x y+-=-+=+=-+=+=--=......用19代替X 时,方程的两边的值不相等,那么19就不是方程X+(X+8)=48的解; 用20代替X 时,方程的两边的值相等,那么20就是方程X+(X+8)=48的解,可以说这个方程的一个解是X=20;二、方程的解: 如果未知数所取的某个值能使方程左右两边都相等,那么这个未知数的值叫做方程的解.例1:-3、1是不是方程7x 29x42-=-的解?解:把x= - 3分别代入方程的左边和右边, 得 左边=27 右边= -13 因为左边 ≠ 右边 所以x= -3 不是方程7x 29x42-=-的解.把X=1分别代入方程的左边和右边, 得 左边= -5 右边= -5 因为左边 = 右边 所以x= 1 是方程7x 29x42-=-的解.例2:检验下列各数是不是方程7x+1=10-2x 的解:⑴x=1; ⑵x=-2.解:⑴将x=1分别代入方程的左、右两边,得左边=7×1+1=8, 右边=10-2×1=8, ∵ 左边=右边,∴x=1是方程7x+1=10-2x 的解.⑵将x=-2分别代入方程的左、右两边,得 左边=7×(-2)+1=-13,右边=10-2×(-2)=14, ∵ 左边≠右边,∴x=-2不是方程7x+1=10-2x 的解.三、练习1、检验下列各题括号里的数哪些是它前面的方程的解? 1)12x-7=9x-4 ( 1,4) 2)18+x=4-x (5,-7)2、x=2是不是方程3x-9=x-5和方程84x2=+的解?3、写出一个方程,使它的解是 3,这样的方程可以写出多少个? 四、小结:同学口答略.6.3(1)一元一次方程及其解法教学目标1.会运用等式的两条基本性质对等式进行变形; 2.运用等式的性质和移项法则解一元一次方程;3.掌握一元一次方程的有关概念,并会检验一个数是不是方程的解. 教学重点及难点运用等式的基本性质对等式进行变形. 移项法则及方程解的检验.教学用具准备:黑板、粉笔、学生准备课堂练习本.教学过程设计一、引入新课一个长方形篮球场的周长为86米,长是宽的2倍少2米,这个篮球场的长与宽分别是多少米?我们如何通过设未知数列方程的方法来解决这道题目呢?设这个篮球场的宽为x 米,那么长为(2x-2)米,可以得到方程2(2x-2+x )=86教师:下面我们来仔细观察一下这个方程含有几个未知数?含有未知数的项的次数是几次的? 学生:含有一个未知数、含有未知数的项的次数是一次的.教师:同学们回答的很好,把同学们所找到的特点归纳在一起就是今天我们要学习的一元一次方程的概念.只含有一个未知数且含有未知数的项的次数是一次的方程叫做一元一次方程(linear equation in one variable ) 二、新课讲授例1、判断下列方程是不是一元一次方程,如果不是,请简要说明理由. (1)05=x(2)562=-y x (3)06212=-x(4)15)9(2=+-y y解:(1)是.(2)不是,这个方程含有两个未知数.(3)不是,这个方程中含有未知数的项的次数是二次. (4)是.巩固练习:判断下列方程是不是一元一次方程: (1)103=x (2)35745=-y x (3)0142=-x(4)1)2(34=+-z z2、寻找解一元一次方程的方法教师:如何求05=x 和159=-x 的解呢?请同学们分组讨论一下,选代表回答.学生:对于05=x ,我们可以在方程的左右两边同时除以5;对于159=-x 我们可以在方程的左右两边同时加上9.教师:同学们回答的非常好,你们知道刚刚这几位同学的方法是运用了什么数学知识吗? 学生:等式的基本性质.教师:很好,下面让我们一起回顾一下等式的基本性质:等式性质一:等式两边同时加上(或减去)同一个数或同一个含有字母的式子,所得结果仍是等式.等式性质二:等式两边同时乘以同一个数(或除以同一个不为0的数),所得结果仍是等式. 教师:运用等式性质和运算性质就可以求出方程的解. 3、解一元一次方程 例题2、解方程:x x 2184-=. 解: x x x x 221824+-=+1824=+x x 186=x 3=x教师:你能确定求得的结果是正确的吗?我们可以将3=x 分别代入原方程的左边和右边,看它们的值是否相等.格式如下: 检验:将3=x 分别代入原方程的两边1234=⨯=左边;126183218=-=⨯-=右边;左边=右边.所以3=x 是原方程的解.在以上方程的解的过程中:x x 2184-=→1824=+x xx 2-改变符号后从等号的一边移到另一边,这种变形过程叫做移项.求方程的解的过程叫做解方程. 三、巩固练习:练习6.3(1)2、3四、课堂小结:什么叫一元一次方程;等式的基本性质;如何检验一个数是不是方程的解;什么叫移项;什么叫解方程.6.3(2)一元一次方程及解法教学目标1.理解和掌握去括号的法则;2.会解含有括号的一元一次方程.教学重点及难点:掌握去括号的法则并应用这个法则求含有括号的一元一次方程的解.教学用具准备:黑板、粉笔、练习本.教过程设计一、复习旧知,引入新课 大家还记得去括号法则吗?去括号的法则是:括号前面带“+”号,去掉括号和“+”号,括号内各项都不变号.括号前面带“-”号,去掉括号和“-”号,括号内各项都变号.下面让我们来看看含有括号的一元一次方程该如何求解. 二、新课讲授例题3、解方程:)37(2015--=+x x x 解:372015+-=+x x x ,137205-=+-x x x ,28=-x ,41-=x ,检验:将41-=x 代入原方程的左右两边,左边=411)41(5-=+-⨯,右边=41)419(5]3)41(7[)41(20-=---=--⨯--⨯,所以41-=x 是原方程的解.下面请同学们自己解下面一道例题.例题4、解方程:)2(355)2(4--=+-x x 解:235584+-=+-x x ,582354-++=+x x , 405=x , 8=x ,检验:将8=x 代入原方程的左右两边, 左边=295245)28(4=+=+-,右边=29635)28(35=-=--, 左边=右边,所以8=x 是原方程的解.教师:一元一次方程一定有解吗?(同学此时会有争论)现在让我们来看下面一道例题.例题5、解方程:)2(332--=-x x x 解:2332+-=-x x x ,23=-,这个等式不成立,所以原方程无解.三、巩固练习:练习6.3(2)1、2四、课堂小结:今天我们学了哪些内容?(去括号的法则) 五、回家作业:练习册习题6.3(2)6.3(3)一元一次方程及解法教学目标1.掌握含有分母的一元一次方程的解法;2.通过一元一次方程三节内容的学习,归纳出解一元一次方程的一般步骤. 教学重点及难点掌握含有分母的一元一次方程的解法及解一元一次方程的一般步骤. 教学用具准备 黑板、粉笔、练习本.教学过程设计一、通过问题,引入新课 教师:如何解方程35207+=xx 呢? 学生:根据等式的基本性质,方程两边同乘以20,得:32052020720⨯+⨯=⨯xx ,即6047+=x x .二、新课讲授教师:同学们说的非常好.在以上求方程解的过程中,在方程两边同时乘以20,去掉分数的分母的变形过程,我们把它叫做去分母.我们就是利用化归的思想,利用去分母把含有分母的一元一次方程转化成不含分母的一元一次方程,然后利用我们学过的知识求解.下面让我们一起看一道例题:例题6 解方程:285416++=x x . 解:32)54(2++=x x ,32108++=x x ,427-=x , 6-=x ,所以6-=x 是原方程的解. 三、巩固练习 练习6.3(3)1、2 四、课堂小结同学们已经学习了普通的一元一次方程,带有括号的一元一次方程及带有分母的一元一次方程的解法,下面让我们一起来归纳一下解一元一次方程的一般步骤:1、 去分母;2、 去括号;3、 移项;4、 化成)0(≠=a b ax 的形式;5、两边同除以未知数的系数,得到方程的解ab x =. 五、布置回家作业 练习册6.3(3)6.4(1)一元一次方程的应用教学目标1.在解决实际问题的过程中,初步掌握一元一次方程解简单应用题的方法和步骤;并会列出一元一次方程解简单的应用题.2.能正确的分析问题,从问题中找出已知量和未知量之间的数量关系.3.具有一定的观察能力,提高分析问题和解决问题的能力.4.初步养成正确思考问题的良好习惯. 教学重点及难点1.元一次方程解简单的应用题的方法和步骤. 2.找等量关系.3.于未知量之间存在比的关系如何设元 教学用具准备:奥运图片 教学流程设计教学过程设计一、情景引入,了解列方程解应用题优越性看一看:北京奥运的会标和吉祥物. 想一想:2008年中国将举办北京奥运会.中国政府提出了“节俭办奥运”的新理念,将建造国家体育馆的预算资金调整为26亿元,比原预算节约资金35%,问原建造国家体育馆的预算资金为多少亿元?(学生独立完成,选择用算术方法解题和列方程解题的同学板演.)解法一:26÷(1-35%)=40(亿元)解法二:设原建造国家体育馆的预算资金为x 亿元.x-35%x=26 解方程,得x=40答:原建造国家体育馆的预算资金为40亿元.想一想:在小学算术中,我们已经学习了用算术方法解决实际问题的有关知识,而实际问题也能应用一元一次方程来解决呢.用一元一次方程解应用题与用算术方法解应用题相比较,它有什么优越性呢?归纳:算术方法不易思考,而应用设未知数,列出方程并通过解方程求得应用题的解的方法,有一种化难为易之感,这就是我们学习运用一元一次方程解应用题的目的之一.方程是一个含有未知数的等式,而等式表示了一个相等关系.因此对于任何一个应用题中提供的条件,应首先从中找出一个相等关系,然后再将这个相等关系表示成方程.本节课,我们就通过实例来说明怎样寻找一个相等的关系和把这个相等关系转化为方程的方法和步骤.二、研究列方程解应用题的一般步骤和方法图片引出问题:在2004年雅典奥运会闭幕式上,中国表演队必须用8分49秒表演舞动北京、中华武术、少儿京剧等节目,其中表演的时间之比是10:8:5,那么舞动北京、中华武术、少儿京剧等节目表演的时间各是多少秒?师生共同分析:1.本题中给出的已知量和未知量各是什么?2.已知量与未知量之间存在着怎样的相等关系?舞动北京的表演时间+中华武术的表演时间+少儿京剧的表演时间=8分49秒3.若设舞动北京的表演时间为x秒,那么中华武术的表演时间和少儿京剧的表演时间如何用x表示?4.若设舞动北京的表演时间为10x秒,那么中华武术的表演时间和少儿京剧的表演时间如何用x表示?这里的x表示什么?5.在解决这个实际问题时还需要注意哪个问题?(单位问题)解:设舞动北京的表演时间为10x秒,那么中华武术的表演时间和少儿京剧的表演时间分别为8x秒和5x秒.10x+8x+5x=52923x=529x=23所以,10x=230,8x=184,5x=115.答:舞动北京的表演时间为230秒,中华武术的表演时间为184秒,少儿京剧的表演时间为115秒. 练一练:书P49 1、2三、列方程解应用题方法归纳1、想一想:你能根据刚才列方程解应用题的过程说一说列方程解应用题的一般步骤吗?设未知数(元)列方程解方程检验并作答许多实际问题中的已知量与未知量之间存在着等量关系,把这种等量关系式写出来,得到方程的解,通过检验获得实际问题的解,称这样的方法为方程的思想方法.2、想一想:当实际问题中未知量之间存在比的关系时,我们如何设元?四、自主小结:今天这节课你最大的收获是什么?五、布置作业:略6.4(2)一元一次方程的应用教学目标1.在解决储蓄问题和折扣问题的过程中,进一步掌握列一元一次方程解简单应用题的方法和步骤.2.能正确的分析问题,从问题中寻找已知量和未知量之间的数量关系.3.养成一定的观察能力,提高分析问题和解决问题的能力.4.初步养成正确思考问题的良好习惯.教学重点及难点1.正确的寻找储蓄问题和折扣问题中的等量关系.2.能正确的求出方程的解.教学用具准备:多媒体 教学流程设计教学过程设计 一.复习方法1.列方程解应用题的一般步骤是什么?其中最关键的是哪一步? 2.当未知量之间存在比的关系时我们如何设元? 二.学习新课 1、热身操:(1)小杰2月初到银行将积攒的300元零用钱定期储蓄一年,到期时小杰得到的税前本利和是多少?税后本利和是多少?(2)永乐商场以700元的进价购入一批MP3,商场加价20%的作为售价,那么这款MP3的实际售价是多少? (学生独立完成)归纳:储蓄问题中的一些基本数量关系: 利息=(本金)×(利率)×(期数) 税前本利和=(本金)+(利息)税后本利和=(本金)+(税后利息)=(本金)+(利息)×(1-适用税率) 销售问题中的基本数量关系售价=(成本价)+(盈利)=(成本价)×(1+盈利率)折后售价=(原售价)×(折扣)(问题以填空形式出现)2、牛刀小试问题一:小明的妈妈在银行里存入人民币5000元,国家规定存款利息的纳税办法是:利息税=利息×20%,储户取款时由银行代扣代收,存期一年,到期可得人民币5090元,求这项储蓄的年利率是多少?分析:(1)问题中给出的已知量和未知量各是什么?(2)已知量与未知量之间存在着怎样的相等关系?本金+利息×1-适用税率=税后本利和解设这项储蓄的年利率是x.根据题意,得 5000+5000×x×1×(1-20%)=50905000+4000x=50904000x=90x=0.0225所以x=2.25%答:这项储蓄的年利率是2.25%.问题二:一种节能型冰箱,商店按原售价的九折出售,降价后的新售价是每台2430元,因为商店按进价加价20%作为售价,所以降价后商店还能赚钱,请问,这种节能型冰箱的进价是多少元?按降价后的新售价出售,商店每台还可赚多少元?分析:(1)问题中给出的已知量和未知量各是什么?(2)已知量与未知量之间存在着怎样的相等关系?原售价×折扣=折后售价(3)如果设这种节能型冰箱的进价是x元,那么这台节能型冰箱的原售价如何用x表示呢?解设这种节能型冰箱的进价是x元,那么每台冰箱原售价是(1+20%)x.根据题意,得 (1+20%)x ·90%=2430 1.08x=2430x=22502430-2250=180(元)答:这种节能型冰箱的进价是2250元.按降价后的新售价出售,商店每台还可赚180元. 1、练一练:P51 1、2三.学习心得交流1、今天我学会了解决哪些实际问题?2、这些实际问题中存在哪些基本数量关系?四.布置作业:1、基本作业:略 2、拓展作业:请自编一道有关储蓄问题和销售问题的应用题.6.4(3)一元一次方程的应用教学目标1.在解决行程问题的过程中,进一步掌握列一元一次方程解简单应用题的方法和步骤.2.在不同类型的行程问题中能正确的分析问题,从问题中寻找已知量和未知量之间的数量关系.3.提高分析问题和解决问题的能力,初步体会分类讨论的数学思想.4.初步养成正确思考问题的良好习惯.教学重点及难点:在不同类型的行程问题中能正确的分析问题,从问题中寻找已知量和未知量之间的数量关系.教学用具准备:多媒体设备、课前体育课中的跑步竞赛 教学过程设计 一.复习旧知识1、在小学你会解决哪些实际问题?在行程问题中的基本数量关系是什么? 路程=速度×时间速度=路程÷时间=时间路程时间=路程÷速度=速度路程(S=vt 、t S v =、v S t =其中,S :路程,v :速度,t :时间) 2、看你行不行(学生独立完成)甲,乙两地相距162千米,甲地有一辆货车,速度为每小时48千米,乙地有一辆客车,速度为每小时60千米,求:(1)若两车同时相向而行,多长时间可以相遇? (2)若两车同时背向而行,多长时间两车相距270千米? (3)若两车相向而行,货车先开1小时,再过多长时间可以相遇? 分析:在行程问题,我们可以先画示意图,从图中就可以得到等量关系解(1)设x 小时可以相遇则由题意可列:48x+60x=162 解得x=1.5答:1.5小时后可以相遇. (2)设x 小时两车相距270千米则由题意可列:48x+162+60x=270 解得x=1答:1小时后两车相距270千米. (3)设再过x 小时两车可以相遇则由题意可列:48(x+1)+60x=162解得1819x 答:1819小时两车可以相遇.二.学习新课1、回顾跑步比赛:在环行跑道上游戏,老师安排了几种比赛形式?这两种不同的的形式有什么区别?2、解决新问题: 问题一:如右图:小杰、小丽分别在400米环形跑道上练习跑步与竞走,小杰每分钟跑320米,小丽每分钟跑120米,两人同时由同一点出发,问几分钟后,小丽与小杰第一次相遇? 分析:(1) 问题中给出的已知量和未知量各是什么? (2) 图中给出了什么信息?(3)如果设x 分钟后,小丽与小杰第一次相遇,请试着完成下表:(4)已知量与未知量之间存在着怎样的相等关系?小杰跑的路程-小丽走的路程=环形跑道一周的长解:设x 分钟后,小丽与小杰第一次相遇.320x-120x=400解方程得 x=2答:2分钟后,小丽与小杰第一次相遇. 问题二:小杰、小丽分别在400米环形跑道上练习跑步与竞走,小杰每分钟跑320米,小丽每分钟跑120米,两人同时由同一点反向而跑,问几分钟后,小丽与小杰第一次相遇? 分析:已知量与未知量之间存在着怎样的相等关系? 小杰跑的路程+小丽走的路程=环形跑道一周的长 解:设x 分钟后,小丽与小杰第一次相遇.320x+120x=400解方程得 x=1110 答:1110分钟后,小丽与小杰第一次相遇. 问题三:小杰、小丽分别在400米环形跑道上练习跑步与竞走,小杰每分钟跑320米,小丽每分钟跑120米,两人同时由同一点出发,问几分钟后,小丽与小杰第一次相遇?分析:此问题会有几种情况出现?已知量与未知量之间存在着怎样的相等关系?情况一:小杰跑的路程-小丽走的路程=环形跑道一周的长情况二:小杰跑的路程+小丽走的路程=环形跑道一周的长3、练一练:P 51 3、4三.自主小结1.今天我学会解决了哪一类的行程问题?2.在分析行程问题中的等量关系时我们有哪几种方法?3.在解决行程问题中我们要注意什么?(单位换算问题)四、布置作业1.基本练习:略2.拓展练习:甲,乙两地相距162千米,甲地有一辆货车,速度为每小时48千米,乙地有一辆客车,速度为每小时60千米,求:(1)若两车同时相向而行,货车在路上耽误了半小时,多长时间可以相遇?(3)若两车相向而行,同时出发,多长时间两车相距54千米?6.5不等式及其性质教学目标:掌握不等式的基本性质,并能正确运用它们将不等式变形;体验观察、比较、归纳的过程,渗透类比的思维方法,形成一定的语言表达能力;形成团结协作能力。
沪教版六年级数学下册教学计划及进度教学内容:这一册教材包括下面一些内容:有理数、一次方程(组)和一次不等式(组)、线段与角的画法、长方体的再认识。
教学目标:1.理解有理数以及相反数、倒数、绝对值的概念,会用数轴上的点表示有理数。
2.学习负数的运算,经历确立有理数的加、减、乘、除、乘方运算法则的过程,归纳有关的运算性质,并能灵活运用这些法则和性质进行计算。
3.经历运用等式的性质和有理数的运算法则探索一元一次方程解法的过程,掌握一元一次方程的解法。
4.会用“消元法”解二元一次方程和三元一次方程组,初步体会化归思想,会用一次方程组解简单的应用题。
5.掌握一次不等式(组)的解法,会用数轴表示不等式的解集,通过不等式与方程的类比,发展类比思想。
6.通过操作实践,掌握直尺、三角尺、圆规、量角器的使用方法,会用直尺、圆规进行线段相等、角相等的作图。
7.会用尺规做线段的中点、角的平分线,会求已知脚的余角或补角。
8.通过系统的整理和复习,加深对小学阶段所学的数学知识的理解和掌握,形成比较合理的、灵活的计算能力,发展思维能力和空间观念,提高综合运用所学数学知识解决问题的能力。
9.体会学习数学的乐趣,提高学习数学的兴趣,建立学好数学的信心。
10.养成认真作业、书写整洁的良好习惯。
教材分析:在数与代数方面,这一册教材安排了有理数这个单元。
结合生活实例使学生初步认识负数,了解负数在实际生活中的应用。
一次方程(组)和一次不等式(组)的教学,使学生理解一次方程(组)和一次不等式(组)的概念,会解一次方程(组)和一次不等式(组)知识解决问题。
在空间与图形方面,这一册教材安排了线段与角的画法、长方体的再认识的教学,在已有知识和经验的基础上,使学生通过对线段与角的画法、长方体的特征和有关知识的探索与学习,掌握有关线段与角的画法的基本方法,促进空间观念的进一步发展。
本册教材根据学生所学习的数学知识和生活经验,安排了多个数学综合应用的实践活动,让学生通过小组合作的探究活动或有现实背景的活动,运用所学知识解决问题,体会探索的乐趣和数学的实际应用,感受用数学的愉悦,培养学生的数学应用意识和实践能力。
数学六年级(下) 第六章 一次方程(组)和一次不等式(组)6.11一次方程组的应用(1)一、填空题1. 一个三位数,个位数字为a ,十位数字为b ,个位数字为c ,则这个三位数可表示为 。
2. 两个数的和是17,差为-9,这两个数分别是 。
3. 鸡兔同笼,同有头40个,脚96只,则笼中鸡有 只,兔有 只。
4、两数之差为9,又知此两数各扩大3倍后的和为51,则这样的两个数分别为________.5、武炜购买8分与10分邮票共16枚,花了一元四角六分,购买8分和10分的邮票的枚数分别为_________.6、在1996年全国足球甲级A 组的前11轮(场)比赛中,大连万达队保持连续不败,共积23分,按比赛规则,胜一场得3分,平一场得1分,那么该队共胜了________场.7、某车间有28名工人,生产一种螺栓和螺母,每人每天平均能生产螺栓12只或螺母18只,要求一个螺栓配两个螺母,应分配______人生产螺栓,____人生产螺母,才能使螺栓与螺母恰好配套. 8、已知甲、乙两人从相距18千米的两地同时出发,相向而行,154小时相遇.如果甲比乙先走32小时,那么在乙出发后23小时两人相遇.设甲、乙两人速度分别为每小时x 千米和y 千米,则x =________,y =________.9、一个两位数,十位上的数字与个位上的数字之和为9,如果把个位上的数字与十位上的数字对调,则所得的新的两位数比原来的两位数大9。
设个位上的数字为x ,十位上的数字为y ,根据题意列方程组是 .10、某彩电原价1998元,若价格上涨x%,那么彩电的新价格是________元,若价格下降y%,那么彩电的新价格是____________元.11、一个两位数,若个位上数字为x,十位上的数字比个位数字的3倍多1,则这个两位数为____________。
12. 汽车从A 地到B 地,如果每小时行驶50千米就要迟到半小时,如果每小时行驶60千米就要提前半小时到达,则A 、B 相距 千米。
沪教版数学六年级下册6.7《一元一次不等式组》教学设计一. 教材分析《一元一次不等式组》是沪教版数学六年级下册第六章第七节的内容。
在此之前,学生已经学习了不等式的基本概念和性质,以及一元一次方程的解法。
本节课的内容是在此基础上,引入一元一次不等式组的概念,让学生学会解一元一次不等式组,并能够应用其解决实际问题。
二. 学情分析sixth-grade students have already learned the basic concepts and properties of inequalities and the solution methods of linear equations. However, they may still find it difficult to understand the concept of a system of linear inequalities and howto solv e it. Therefore, teachers need to analyze the students’ learning situation and adapt their teaching methods accordingly.三. 教学目标By the end of this lesson, students should be able to:1.Understand the concept of a system of linear inequalities and itssolution method.2.Be able to solve problems related to systems of linear inequalities.3.Develop logical thinking and problem-solving skills through the studyof systems of linear inequalities.四. 教学重难点1.Understanding the concept of a system of linear inequalities.2.Learning the method of solving a system of linear inequalities.3.Applying systems of linear inequalities to solve real-world problems.五. 教学方法1.Teaching Method: The teacher will use a combination of directteaching, guided discovery, and problem-solving methods to help studentsunderstand the concept and method of solving systems of linear inequalities.2.Learning Method: Students will actively participate in classdiscussions, work in groups to solve problems, and share their solutions with the class.六. 教学准备1.Prepare teaching materials and examples.2.Prepare the classroom environment for group work.七. 教学过程导入(5分钟)•The teacher will review the concepts of inequalities and linear equations with the students, leading them to think about the relationship between inequalities and equations.•Time: 5 minutes呈现(10分钟)•The teacher will present the concept of a system of linear inequalities and its solution method through examples and explanations.•Time: 10 minutes操练(15分钟)•Students will work in groups to solve examples of systems of linear inequalities given by the teacher.•The teacher will roam the classroom, providing guidance and help to the students if needed.•Time: 15 minutes巩固(10分钟)•The teacher will select several solutions from the students’ work and discuss them with the class to ensure understanding.•Students will individually complete a summary of the key points of the lesson.•Time: 10 minutes拓展(10分钟)•The teacher will present a real-world problem related to systems of linear inequalities, and students will work in groups to solve it.•Each group will present their solution to the class, and the teacher will lead a discussion on the different solutions.•Time: 10 minutes小结(5分钟)•The teacher will summarize the mn points of the lesson with the students, emphasizing the concept and method of solving systems of linearinequalities.•Students will complete a self-evaluation of their understanding of the lesson.•Time: 5 minutes家庭作业(5分钟)•The teacher will assign homework related to systems of linear inequalities, including solving examples and applying them to real-worldproblems.•Time: 5 minutes板书( Throughout the lesson)•The teacher will use the blackboard to present the mn points of the lesson, including the definition of a system of linear inequalities, its solutionmethod, and examples of its application.•Time: Throughout the lesson教学反思是教师在教学过程中对教学活动进行思考、评价和总结的过程,旨在提高教学质量和个人教学水平。
沪教版六年级数学教案第六章
6.1 列方程
教学目标
1.知道什么是方程,会区分方程和等式.
2.会寻找未知数和已知数之间的等量关系,列方程.
教学重点与难点:会寻找未知数和已知数之间的等量关系,列方程. 教学用具准备: 投影仪、电脑
教学流程设计
教学过程设计
一、情景引入
问题
小丽2月份的零花钱花掉了25.4元,还剩下60元,那么小丽二月份有多少零花钱?
分析一 列式可得
25.4+60=85.4.
分析二 设小丽二月份有x 元零花钱.
x-25.4=60.
二、学习新课
1.概念辨析
方程:含有未知数的等式叫做方程.在方程中,所含的未知数又称为元. 练习1
判断:下列各式哪些是方程?哪些不是方程?并说明为什么.
列方程:为了求得未知数,在未知数和已知数之间建立一种等量关系式,就是列方程.
2.例题分析
例题 1 根据下列条件列出方程:
(1) 一个正方形的边长为x 厘米,周长为36厘米;
(2) 25
减去数x 的一半是56. 解(1)方程是436x =
(2)方程是25652
x -= 例题2
一个数与它的一半的和是
34
,求这个数. 分析 设这个数为x,那么它的一半是 2x ,两数的和为2x x +,根据题意可以列出等量关系式
324
x x +=. 例题3
某水果店有苹果与香蕉共152千克,其中苹果的重量是香蕉重量的3倍,。