第六章最佳平方逼近与最小二乘拟合OK
- 格式:ppt
- 大小:411.00 KB
- 文档页数:15
最小二乘拟合的概念-概述说明以及解释1.引言1.1 概述最小二乘拟合是一种常用的数据分析方法,通过最小化观测值与拟合值之间的残差平方和来求取最优拟合曲线或平面,从而描述数据的模式和趋势。
该方法被广泛应用于统计建模、机器学习、信号处理、金融分析等领域。
最小二乘法的核心思想是寻找一条曲线或平面,使得该曲线或平面与数据点的残差之和最小。
通过最小二乘法,我们可以得到最佳拟合曲线或平面,从而对数据进行更准确的描述和预测。
因此,最小二乘拟合在数据分析中具有重要的意义。
本文将详细介绍最小二乘拟合的定义、原理和应用,从而帮助读者更好地理解和运用这一重要的数据分析方法。
1.2 文章结构文章结构部分的内容如下:文章结构部分将介绍整篇文章的组织结构和主要内容安排,以便读者对文章的整体框架有一个清晰的认识。
在本文中,主要分为引言、正文和结论三个部分。
- 引言部分包括对最小二乘拟合的概念进行简要介绍,阐述本文撰写的目的和重要性。
- 正文部分将详细讨论最小二乘拟合的定义、原理和应用,以便读者全面了解这一重要的数据分析方法。
- 结论部分将对最小二乘拟合的重要性进行总结,探讨最小二乘法在数据分析中的价值,并展望最小二乘拟合在未来的发展趋势。
通过这样的结构安排,读者可以清晰地了解本文的主要内容和章节布局,有助于他们更好地理解和掌握最小二乘拟合的相关知识。
1.3 目的本文的主要目的是介绍最小二乘拟合这一重要的数学方法。
通过对最小二乘拟合的定义、原理和应用进行详细讨论,希望读者能够深入了解这一方法在数据分析和模型拟合中的重要性。
此外,本文还将探讨最小二乘法在实际问题中的应用,以及展望未来最小二乘拟合在数据分析领域的发展趋势。
通过阐述这些内容,旨在让读者更加深入地理解和应用最小二乘拟合方法,为其在数据分析和模型拟合中提供有效的工具和思路。
2.正文2.1 最小二乘拟合的定义最小二乘拟合是一种常用的数学方法,用于通过调整参数来拟合一个数学模型以最小化观测数据和模型之间的残差平方和。
数值分析课程设计:最佳平方逼近与最小二乘拟合给出函数f(x)=1/(1+25x^2)一:求f(x)在[-1,1]上的三次最佳平方逼近多项式以及均方误差。
Matlab编程代码如下:syms x;p=[1 x (1./2)*(3*x^2-1) (1./2)*(5*x^3-3*x) 1./(1+25*x^2)];for i =1:1:4jf = int((p(i)*p(5)),x,-1,1);a(i)=(2*(i-1)+1)/2*jf;endaf3=0;for i = 1:1:4f3= f3+a(i)*p(i);endsimplify(f3)f3syms xfun=(f(x)-f3)^2;int(fun,x,-1,1)输出结果为a =[ 1/5*atan(5), 0, 3/10-14/25*atan(5), 0]ans =12/25*atan(5)+9/20*x^2-3/20-21/25*atan(5)*x^2f3 =1/5*atan(5)+(3/10-14/25*atan(5))*(3/2*x^2-1/2)(最佳平方逼近多项式)ans =4/1625-642/3125*atan(5)^2+209/625*atan(5)化简均方误差可得ans =0.0742二.在[-1,1]上取5个和9个等距节点,做最小二乘拟合,得出均方误差。
五个节点时,matlab编码为:首先建立M文件,并保存function y=f(x)y=1/(1+25*x^2);endx=[-1 -0.5 0 0.5 1];for i=1:5y(i)=f(x(i));enda=polyfit(x,y,3)syms xf1=a(1)*x^3+a(2)*x^2+a(3)*x+a(4)x=[-1 -0.5 0 0.5 1];for i=1:5E(i)=(f(x(i))-(a(1)*x(i)^3+a(2)*x(i)^2+a(3)*x(i)+a(4)))^2 ;endsum(E)输出结果为a =-0.0000 -0.6063 -0.0000 0.5737f1 =-4878849915647781/1298074214633706907132624082305024*x^3-1600/2639*x^2-5348847520430703/64903710731685345356631204 1152512*x+1514/2639(拟合的多项式)ans =0.3534(均方误差)九个点的时候,matlab编码为:x=[-1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1];for i=1:9y(i)=f(x(i));enda=polyfit(x,y,3)syms xf2=a(1)*x^3+a(2)*x^2+a(3)*x+a(4)x=[-1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1];for i=1:5E1(i)=(f(x(i))-(a(1)*x(i)^3+a(2)*x(i)^2+a(3)*x(i)+a(4)))^ 2;endsum(E1)输出结果为:a =-0.0000 -0.5609 0.0000 0.4855f2 =-728732707776039/2535301200456458802993406410752*x^3-1263030908712921/ 2251799813685248*x^2+4915246442354361/2028240960365167042394725128601 6*x+1093229300764671/2251799813685248(最小二乘拟合多项式)ans =0.3350(均方误差)三:比较三个均方误差经比较发现,最佳平方逼近多项式拟合程度高,最小二乘逼近中,9点的比5点的均方误差小。
2曲线拟合的线性最小二乘法及其MATLAB?序例2给出一组数据点(X i, y i)列入表2中,试用线性最小二乘法求拟合曲线, 估计其误差,作出拟合曲线•解 (1)在MATLAB工作窗口输入程序>> x=[-2.5 -1.7 -1.1 -0.8 0 0.1 1.5 2.7 3.6];y=[-192.9 -85.50 -36.15 -26.52 -9.10 -8.43 -13.126.50 68.04];plot(x,y , 'r*'),lege nd( '实验数据(xi,yi)' )xlabel( 'x' ), ylabel( 'y'),title( '数据点(xi,yi) 的散点图’)运行后屏幕显示数据的散点图(略)(3)编写下列MATLAB程序计算f(x)在(X j,yj处的函数值,即输入程序>> syms al a2 a3 a4x=[-2.5 -1.7 -1.1 -0.8 0 0.1 1.5 2.7 3.6];fi=a1.*x.A3+ a2.*x.A2+ a3.*x+ a4运行后屏幕显示关于a1,a2, a3和a4的线性方程组fi =[ -125/8*a1+25/4*a2-5/2*a3+a4,-4913/1000*a1+289/100*a2-17/10*a3+a4,-1331/1000*a1+121/100*a2-11/10*a3+a4, -64/125*a1+16/25*a2-4/5*a3+a4,a4, 1/1000*a1+1/100*a2+1/10*a3+a4,27/8*a1+9/4*a2+3/2*a3+a4,19683/1000*a1+729/100*a2+27/10*a3+a4, 5832/125*a1+324/25*a2+18/5*a3+a4]编写构造误差平方和的MATLAB程序>> y=[-192.9 -85.50 -36.15 -26.52 -9.10 -8.43 -13.12 6.50 68.04];fi=[-125/8*a1+25/4*a2-5/2*a3+a4, -4913/1000*a1+289/100*a2-17/10*a3+a4, -1331/1000*a1+121/100*a2-11/10*a3+a4,-64/125*a1+16/25*a2-4/5*a3+a4, a4,1/1000*a1+1/100*a2+1/10*a3+a4,27/8*a1+9/4*a2+3/2*a3+a4,19683/1000*a1+729/100*a2+27/10*a3+a4,5832/125*a1+324/25*a2+18/5*a3+a4];fy=fi-y; fy2=fy.A2; J=sum(fy.A2)运行后屏幕显示误差平方和如下J=(-125/8*a1+25/4*a2-5/2*a3+a4+1929/10)A2+(-4913/1000*a1+289/100*a2-17/10*a3+a4+171/2)A2+(-1331/1000*a1+121/100*a2-11/10*a3+a4+723/20F2+(-64/125*a1+16/25*a2-4/5*a3+a4+663/25F2+(a4+91/10F2+(1/1000*a1+1/100*a2+1/10*a3+a4+843/100)A2+(27/8*a1+9/4*a2+3/2*a3+a4+328/25)A2+(19683/1000 *a1+729/100*a2+27/10*a3+a4-13/2F2+(5832/125*a1+324/25*a2 +18/5*a3+a4-1701/25F2为求31,32,33,34使J达到最小,只需利用极值的必要条件-丄 0 a k (k 1,2,3,4),得到关于31,32,33,34的线性方程组,这可以由下面的MATLAB程序完成,即输入程序>> syms a1 a2 a3 a4 J=(-125/8*a1+25/4*32-5/2*a3+34+1929/10)A2+(-4913/1000*a1+289/100*32-17/10*33+34...+171/2)A2+(-1331/1000*a1+1 21/100*a2-11/10*a3+34+723/20)A2+(-64/125*31+16/25*32-4/5*a3+34+663/25)A2+(34+91/10)A2+(1/1000*31+1/100*32+1/10*a3+a4+843/100)A2+(27/8*31+9/4*32+3/2*a3+34+328/25)A2+(19683/ 1000*a1+729/100*32+27/10*a3+34-13/2)A2+(5832/125*31+324/2 5*a2+18/5*a3+a4-1701/25)A2;Ja1=diff(J,a1); Ja2=diff(J,a2); Ja3=diff(J,a3);Ja4=diff(J,a4);Ja11=simple(Ja1), Ja21=simple(Ja2), Ja31=simple(Ja3),Ja41=simple(Ja4),运行后屏幕显示J分别对31, 32 ,33 ,34的偏导数如下Ja1仁56918107/10000*31+32097579/25000*32+1377283/2500*33+23667/250*34-8442429/625J321 =32097579/25000*31+1377283/2500*32+23667/250*33 +67*34+767319/625 J331 = 1377283/2500*31+23667/250*32+67*33+18/5*34-232638/125J341 = 23667/250*31+67*32+18/5*33+18*34+14859/25解线性方程组J311 =0,J321 =0,J331 =0,J341 =0,输入下列程序>>A=[56918107/10000, 32097579/25000, 1377283/2500,23667/250; 32097579/25000, 1377283/2500, 23667/250, 67; 1377283/2500, 23667/250, 67, 18/5; 23667/250, 67, 18/5, 18];B=[8442429/625, -767319/625, 232638/125, -14859/25];C=B/A, f=poly2sym(C)运行后屏幕显示拟合函数f及其系数C如下C = 5.0911 -14.1905 6.4102 -8.2574f=716503695845759/140737488355328*xA3-7988544102557579/562949953421312*xA2+1804307491277693/281474976710656*x -4648521160813215/562949953421312 故所求的拟合曲线为f (x) 5.0911 x314.1905 x2 6.4102 x 8.2574 .(4)编写下面的MATLAB 程序估计其误差,并作出拟合曲线和数据的图形.输入程序>> xi=[-2.5 -1.7 -1.1 -0.8 0 0.1 1.5 2.7 3.6]; y=[-192.9 -85.50 -36.15 -26.52 -9.10 -8.43 -13.12 6.50 68.04]; n=length(xi);f=5.0911.*xi.A3-14.1905.*xi.A2+6.4102.*xi -8.2574;x=-2.5:0.01: 3.6;F=5.0911.*x.A3-14.1905.*x.A2+6.4102.*x -8.2574;fy=abs(f-y); fy2=fy.A2; Ew=max(fy),E1=sum(fy)/n, E2=sqrt((sum(fy2))/n) plot(xi,y,'r*'), hold on, plot(x,F, 'b-'),hold off legend('数据点(xi,yi)','拟合曲线y=f(x)'),xlabel('x'), ylabel('y'),title(例2的数据点(xi,yi)和拟合曲线y=f(x)的图形')运行后屏幕显示数据(X i,yj与拟合函数f的最大误差平均误差E i和均方根误差E2及其数据点(X j,yj和拟合曲线y=f(x)的图形(略).Ew = E1 = E2 =3.105 4 0.903 4 1.240 96函数逼近及其MATLAB?序最佳均方逼近的MATLAB^程序function [yy1,a,WE]=zjjfbj(f,X,Y,xx) m=size(f);n=length(X);m=m(1);b=zeros(m,m); c=zeros(m,1);if n~=length(Y) error( 'X和丫的维数应该相同') end for j=1:m for k=1:mb(j,k)=0;for i=1:nb(j,k)=b(j,k)+feval(f(j,:),X(i))*feval(f(k,:),X(i));endendc(j)=0;for i=1:nc(j)=c(j)+feval(f(j,:),X(i))*Y(i);endenda=b\c;WE=0;for i=1:nff=0;for j=1:m ff=ff+a(j)*feval(f(j,:),X(i)); endWE=WE+(Y(i)-ff)*(Y(i)-ff);endif nargin==3return ;endyy=[];for i=1:ml=[];for j=1:length(xx) l=[l,feval(f(i,:),xx(j))]; end yy=[yy l'];endyy=yy*a; yy1=yy'; a=a';WE;例6. 1对数据X和Y,用函数y 1,y x, y x2进行逼近,用所得到的逼近函数计算在x 6.5处的函数值,并估计误差.其中X=(1 3 4 5 6 7 8 9); Y=(-11 -13 -11 -7 -1 7 17 29). 解在MATLA工作窗口输入程序>> X=[ 1 3 4 5 6 7 8 9]; Y=[-11 -13 -11 -7 -17 17 29];f=['fun0';'fun1';'fun2'];[yy,a,WE]=zjjfbj(f,X,Y,6.5) 运行后屏幕显示如下yy =2.75000000000003a =-7.00000000000010 -4.999999999999951.00000000000000WE =7.172323350269439e-027例 6.2 对数据X 和丫,用函数 y 1, y x, y x2,y cosx,y e x,y sinx进行逼近,其中X=(0 0.50 1.00 1.50 2.00 2.50 3.00 ),丫=(0 0.47940.8415 0.9815 0.9126 0.5985 0.1645 ) .解在MATLA工作窗口输入程序>> X=[ 0 0.50 1.00 1.50 2.00 2.50 3.00];丫=[0 0.4794 0.8415 0.9815 0.9126 0.1645];f=['fun0';'fun1';'fun2';'fun3';'fun4';'fun5'];xx=0:0.2:3;[yy,a,WE]=zjjfbj(f,X,Y,plot(X,Y,'ro',xx,yy,'b-')运行后屏幕显示如下(图略)yy = Columns 1 through 7-0.0005 0.2037 0.3939 0.5656 0.8348 0.9236Columns 8 through 140.9771 0.9926 0.9691 0.9069 0.6766 0.5191Columns 15 through 160.3444 0.1642 0.5985xx), 0.7141 0.8080a = 0.3828 0.4070 -0.3901 0.0765 -0.4598 0.5653 WE = 1.5769e-004 即,最佳逼近函数为y=0.3828+0.4070*x-0.3901*xA2+0.0765*exp(x) +0.5653*sin(x) .8随机数据点上的二元拟合及其MATLA 程序例 8 设节点 ( X,Y,Z ) 中的 X 和 Y 分别是在区间 [ 3,3] 和 [ 2.5,3.5]上的 5022个 随 机 数 , Z 是 函 数 Z=7-3 x 3e -x2 -y2 在 (X,Y ) 的 值 , 拟 合 点 ( X I ,Y I ) 中的 X I =-3:0.2:3, Y I =-2.5:0.2:3.5. 分别用二元拟合方法中最近邻内插法、三 角基线性内插法、三角基三次内插法和 MATLAB4 网格化坐标方法计算在 ( X I ,Y I ) 处的值,作出它们的图形,并与被拟和曲面进行比较 .解 (1 )最近邻内插法 .输入程序>> x=rand(50,1); y=rand(50,1); %生成50个一元均匀分布随机数x 和y , x , y .X=-3+(3-(-3))*x; %利用x 生成的随机变量.title( ' 用最近邻内插法拟合函数 z =7-3 xA3 exp(-xA2 - yA2) 的曲面和节点的图形 ' )%legend( ' 拟合曲面 ',' 节点 (xi,yi,zi)' )hold on%在当前图形上添加新图形面及其插值乙(略).(2)三角基线性内插法 输入程序>> x=rand(50,1); y=rand(50,1); %生成50个一元均匀分布随机数x 和y , x ,y .X=-3+(3-(-3))*x; %利用x 生成 上的随机变量.Y=-2.5+(3.5-(-2.5))*y;%利用 y 生成 上的随机变量 .Z=7-3* X.A3 .* exp(-X.A2 - Y.A2);%在每个随机点( X,Y )处计算Z 的值.-0.4598*cos(x)Y=-2.5+(3.5-(-2.5))*y;Z=7-3* X.A3 .* exp(-X.A2 - Y.A2);处计算Z 的值.X1=-3:0.2:3; Y1=-2.5:0.2:3.5;[XI,YI] = meshgrid(X1,Y1); ZI=griddata(X,Y,Z,XI,YI, (XI,YI )处的插值 ZI.mesh(XI,YI, ZI)xlabel( 'x' ), ylabel( 'y'%利用 y 生成的随机变量 .%在每个随机点( X,Y )%将坐标( XI,YI )网格化 .'nearest' ) %计算在每个插值点 %作二元拟合图形 . ), zlabel( 'z' ),plot3(X,Y,Z, 'bo' ) (X,Y,Z). hold of 运行后屏幕显示用最近邻内插法拟合函数%用兰色小圆圈画出每个节点 %结束在当前图形上添加新图形 .22Z=7-3 x 3e-x2 -y2在两组不同节点处的曲X1=-3:0.2:3;title('用三角基线性内插法拟合函数z =7-3 x A3 exp(-x A2 -y A2)的曲面和节点的图形’) %legend( ' 拟合曲面',' hold on plot3(X,Y,Z, 'bo' ) (X,Y,Z). hold of22运行后屏幕显示用三角基线性内插法拟合函数Z=7-3 x 3e-x -y在两组不同节点处的曲面和节点的图形及其插值 乙(略).(3)三角基三次内插法 . 输入程序>> x=rand(50,1); y=rand(50,1); %生成50个一元均匀分布随机数x 和y , x ,y .title( ' 用三角基三次内插法拟合函数 z =7-3 xA3 exp(-xA2 -22运行后屏幕显示用三角基三次内插法拟合函数 Z=7-3 x 3e -x -y 在两组不同节点处的曲面和节点的图形及其插值 Z I (略).( 4 ) MATLAB 4网格化坐标方法 . 输入程序>> x=rand(50,1); y=rand(50,1); %生成50个一元均匀分布随机数x 和y , x ,y .X=-3+(3-(-3))*x;%利用x 生成 上的随机变量.Y1=-2.5:0.2:3.5;[XI,YI] = meshgrid(X1,Y1); ZI=griddata(X,Y,Z,XI,YI,XI,YI )处的插值 ZI.mesh(XI,YI, ZI)xlabel( 'x' ), ylabel( 'y%将坐标( XI,YI )网格化 .'linear' ) %计算在每个插值点 %作二元拟合图形 . ), zlabel( 'z' ),节点 (xi,yi,zi)' )%在当前图形上添加新图形 .%用兰色小圆圈画出每个节点 %结束在当前图形上添加新图形 . X=-3+(3-(-3))*x; %利用x 生成上的随机变量.Y=-2.5+(3.5-(-2.5))*y;Z=7-3* X.A3 .* exp(-X.A2 - Y.A2);处计算Z 的值.X1=-3:0.2:3; Y1=-2.5:0.2:3.5;[XI,YI] = meshgrid(X1,Y1); ZI=griddata(X,Y,Z,XI,YI,( XI,YI )处的插值 ZI.mesh(XI,YI, ZI) xlabel( 'x' ), ylabel( 'y'%利用y 生成上的随机变量•%在每个随机点( X,Y )%将坐标( XI,YI )网格化 .'cubic' ) %计算在每个插值点 %作二元拟合图形 . ), zlabel( 'z' ),yA2) 的曲面和节点的图形 ' )%legend( ' 拟合曲面','hold on 节点 (xi,yi,zi)' )%在当前图形上添加新图形plot3(X,Y,Z,'bo' ) (X,Y,Z).hold of%用兰色小圆圈画出每个节点%结束在当前图形上添加新图形 .22运行后屏幕显示用MATLAB 网格化坐标方法拟合函数Z=7-3 x 3e -x-y 在两组不同 节点处的曲面和节点的图形及其插值 ZI (略).22(5) 作被拟合曲面Z=7-3x 3e -x-y 和节点的图形. 输入程序>> x=ra nd(50,1); y=rand(50,1); %生成50个一元均匀分布随机数x 和y , x ,y .X=-3+(3-(-3))*x; %利用x 生成随机变量.Y=-2.5+(3.5-(-2.5))*y;%利用y 生成随机变量.Z=7-3* X.A3 .* exp(-X.A2 - Y.A2);%在每个随机点( X,Y )处计算Z 的值.X1=-3.:0.1:3.;Y1=-2.5:0.1:3.5;[XI,YI] = meshgrid(X1,Y1);%将坐标( XI,YI )网格化 .ZI=7-3* XI.A3 .* exp(-XI.A2 - YI.A2); mesh(XI,YI, ZI) %作二元拟合图形 .xlabel( 'x'), ylabel('y' ), zlabel( 'z' ),title( ' 被拟合函数 z =7-3 xA3 exp(-xA2 - yA2) 的曲面和节点的图形 ' )%legend('被拟合函数曲面','节点(xi,yi,zi)' )hold on%在当前图形上添加新图形 .plot3(X,Y,Z, 'bo' )%用兰色小圆圈画出每个节点 (X,Y,Z).hold of%结束在当前图形上添加新图形 .22运行后屏幕显示被拟合函数 Z=7-3 x 3e -x-y 的曲面和节点的图形及其函数值 ZI(略) .Y=-2.5+(3.5-(-2.5))*y;Z=7-3* X.A3 .* exp(-X.A2 - Y.A2);处计算Z 的值.X1=-3:0.2:3; Y1=-2.5:0.2:3.5; [XI,YI] = meshgrid(X1,Y1); ZI=griddata(X,Y,Z,XI,YI, (XI,YI )处的插值 ZI.mesh(XI,YI, ZI) xlabel( 'x' ), ylabel( 'y' %利用y 生成上的随机变量.%在每个随机点( X,Y )'v4'%将坐标( XI,YI )网格化 . ) %计算在每个插值点%作二元拟合图形 . ), zlabel( 'z' ),' 用 MATLAB 4 网格化坐标方法 拟合函数 z =7-3 xA3 的曲面和节点的图形 ' )%legend( ' 拟合曲面 ',' 节点 (xi,yi,zi)' ) hold on %在当前图形上添加新图形 . plot3(X,Y,Z, 'bo' ) %用兰色小圆圈画出每个节点(X,Y,Z).hold oftitle(exp(-x A2 - y A2)'bo' ) %结束在当前图形上添加新图形 .。