七升八数学暑假衔接讲义
- 格式:doc
- 大小:2.17 MB
- 文档页数:82
七升八暑假衔接学习讲义公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]一、图形的全等1.定义:能够完全重合的两个图形称为全等图形.观察右面两组图形,它们是不是全等图形为什么2. 由全等图形类比得出:能够完全重合的两个三角形叫做全等三角形。
比如,在图中,△ABC与△DEF能够完全重合,它们是全等的。
其中顶点A,D重合,它们是对应顶点;AB边与DE边重合,它们是对应边;A∠重合,它们是对应角.∠与D△ABC与△DEF全等,我们把它记作“△ABC≌△DEF”.记两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上.全等三角形的对应边,对应角。
全等三角形的对应边上的中线,对应边上的高,对应角的角平分线;全等三角形的周长,面积。
几何语言:()∠A= , ∠C= ,∠B= .()练习:1.如图6,△ABC≌△AEC,∠B=75°, ∠ACB=55°,求出△AEC各内角的度数。
解:A2.如图7,△ABD ≌△EBC ,AB=3 cm ,AC=8 cm ,求DE解: 3.判断:○1全等三角形的边相等,角相等,中线相等,角平分线相等.( )○2全等三角形的周长相等.( ) ○3周长相等的两个三角形是全等三角形.( ) ○4全等三角形的面积相等.( )○5面积相等的两个三角形是全等三角形.( ) 4.填空:如图所示,已知△AOB ≌△COD ,∠C =∠A ,AB =CD ,则另外两组对应边为________________,另外两组对应角为________________。
5.如图3,已知CD ⊥AB 于D , BE ⊥AC 于E,△ABE ≌△ACD ,∠C=20°,AB=10,AD=4,G 为AB 延长线上的一点,求∠ABE 的度数和简记为"边角边",符号表示:"SAS" 例1. 下列哪组三角形能完全重合(全等)例2.如图,在△ABC 和△A ′B ′C ′中,已知AB =A ′B ′,∠B =∠B ′,BC =B ′C ′.这两个三角形全等吗例3. 在△ABC 和△A ′B ′C ′中(自己画图)(1)⎪⎩⎪⎨⎧''='∠=∠''=C B BC B B B A AB (2) ⎪⎩⎪⎨⎧='∠=∠''=______A A B A ABA BC(图ADB GACDBOA D CB FEAD ∴C B A ABC '''∆≅∆( SAS ) ∴C B A ABC '''∆≅∆( )(3) ⎪⎩⎪⎨⎧''=∠=∠''=C B BC C A AC ____∴C B A ABC '''∆≅∆( ) 练习1:1.根据题目条件,判断下面的三角形是否全等 (1) AC =DF , ∠C =∠F , BC =EF ; (2) BC =BD , ∠ABC =∠ABD . 2. 如图2,△AOB 和△COD 全等吗为什么 3. 如图,在△ABC 中,AB =AC , AD 平分∠BAC ,求证:△ABD ≌△ACD .4. 如图3,已知AD ∥BC ,AD =CB ,证明:△ABC ≌△CDA.5.如图4,已知AB =AC ,AD =AE ,∠1=∠2,证明:△ABD ≌ACE.6. 如图,已知AB=AC ,AE=AD ,那么图中哪两个三角形全等并进行证明.7.已知: AD ∥BC ,AD = CB(如图).现有条件能证明△ADC ≌△CBA 吗如果能请写出证明过程,若不能,那么还需添加怎样的条件才能证明 练习21.已知:如图,AC=AD ,∠CAB=∠DAB ,求证:△ACB ≌△ADB 2.已知:AD ∥BC ,AD=CB 求证:△ADC ≌△CBA3.已知:AD ∥BC ,AD=CB ,AE=CF求证:△AFD ≌△CEB4.已知:EA=EC ,ED=EB ,A DC B FEA DCBE12求证:△AED ≌△CEB5.已知:AC=DB ,AE=DF ,EA ⊥AD ,FD ⊥AD ,求证:△EAB ≌△FDC6.已知:AB=AC ,AD=AE ,∠1=∠2求证:∠B=∠C三、三角形的判定定理:角边角定理定理:两个三角形的两组对应角相等且它们的夹边也相等,那么这两个三角形全等,简记为"角边角",符号表示:"ASA"例1. 如图所示,某同学把一块三角形的玻璃不小心打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带哪块去 例2.如图,AD ∥BC ,BE ∥DF ,AE =CF ,试说明:△ADF ≌△CBE .例3.如图,在△ABC 中,AD ⊥BC 于点D ,BE ⊥AC 于与BE 交于F ,若BF =AC ,试说明:△ADC ≌△BDF .例4.在△ABC 中,∠BAC =90°,AB =AC ,直线m 经过点A ,BD ⊥直线m ,CE ⊥直线m ,垂足分别为点D 、E .试说明:(1)△BDA ≌△AEC ; (2)DE =BD +CE . 练习:1. 如图,已知AO =DO ,∠AOB 与∠DOC 是对顶角,还需补充条件_________=___________,就可根据“ASA ”说明△AOB ≌△DOC ;或者补充条件_______________=_______________,就可根据“SAS ”,说明△AOB ≌△D OCABoAB CDEF2. 已知:点D 在AB 上,点E 在AC 上,BE 和CD 相交于点O ,AB=AC ,∠B=∠C 。
第十九讲:专题六:全等、等腰三角形综合运用(拔高)第一部分【能力提升】一、如图, BD= CD,∠ B=∠ C,求证: AD均分∠ BAC.ADB C二、如图, Rt △ ABC,∠ C= 90°, AB的垂直均分线交( 1)求证:△ ADE≌△ BDC;( 2)求∠ A 的度数 .三、如图,在△ABC中, AB=2BC,∠ B=2∠ A,求证:△AC于点 D,连接 BD, BD均分∠ ABC.AEDB C ABC为直角三角形 .AB C四、如图,在Rt △ ABC中,∠ ACB=90°, AD均分∠ BAC, DE⊥ AB, F 为 AC上一点,DF=DB,求证: CF=BE.CDFA E B第二部分【综合运用】五、如图,在Rt △ ABC中,∠ C=90°, AC=BC, D是斜边 AB上任意一点, AE⊥ CD于点 E, BF⊥CD交 CD的延长线于点 F, CH⊥AB 于点 H,交 AE于点 G,求证: BD=CG.CEGDA H BF六、如图,在△ ABC中,∠ BAC的均分线与BC的垂直均分线 PQ订交于点 P,过点 P 分别作AB、AC(或它们的延长线 ) 的垂线,垂足分别为 N、 M,求证: BN=CM.NB PQA M C七.如图,△ ABC中,∠ A=50°, AB> AC,D、E 分别在 AB、AC上,且 BD=CE,∠ BCD=∠ CBE,若 BE、 CD订交于 O点,求∠ BOC的度数 .AEDOB C八、如图, AB⊥ BC,EC⊥ BC,D 在 BC上, AD=DE, AB=a,CE=b,∠ ADB=75°,∠ EDC=45°,求 BD的长 . (用含 a、 b 的代数式表示)AEB D C九、如图,正方形ABCD中, E、 F 分别为 BC、 CD上的两点,∠EAF=45° .( 1)求证: BE+DF=EF;(若正方形的连长为a,则△ CEF的周长等于2a)( 2)求证: AE均分∠ BEF; AF 均分∠ DFE;A( 3)作 AH⊥ EF,求证: AH=AB.45DFB E C十、如图,正方形 ABCD中, E 为 BC边上一点,沿直线AE折叠正方形 ABCD,使点 B 落在形内的点 H,延长 EH交 CD于点 F.A D ( 1)求证:∠ EAF=45°;( 2)求证: BE+DF=EF;( 3)求证: AF均分∠ DFE.FB E HC十一、研究与猜想:(1)如图 1,等腰 Rt△ ABC和等腰 Rt△ ADE,∠ ACB=∠ ADE=90°, D 点在 AB 上, E 点在 AC上, P 为 BE 的中点,则线段 PD、PC能否存在某种确立的数目关系和位置关系?请写出你的结论(不需要证明);( 2)若将图 1 中的等腰 Rt△ ADE绕 A 点逆时针旋转 45°获得图2(此时点 E 在 AB 上),其他条件不变,试问:线段PD、PC能否存在某种确立的数目关系和地点关系?写出你的结论并证明;B BPD PDEA E C AC图1图2( 3)若将图 1 中的等腰 Rt △ADE绕 A点顺时针任意旋转一个角度获得图3(此时点 E 在 AC的下方),其他条件不变,试问:线段 PD、PC能否存在某种确立的数目关系和地点关系?请你完成图3,写出你的结论并证明;BA CE图3。
七升【1 】八数学暑假课本目录第一讲订交线与平行线的相干概念第二讲直线订交时有关角的求法第三讲订交线与平行线中的拐角问题第四讲订交线与平行线中的折叠问题第五讲平面直角坐标系中的相干结论第六讲图形的平移及点的坐标的变更第七讲实数平分类评论辩论的数学思惟第八讲实数中数形联合的数学思惟第九讲实数中整体代入的数学思惟第十讲方程组的解法(代入.加减)第十一讲用二元一次方程组解应用题第十二讲不等式的解及不等式的解集第十三讲现实问题与一元一次不等式组第十四讲抽样查询拜访与频数散布直方图DCBA第一讲:订交线与平行线的相干概念一.常识框架二.典范例题1.下列说法精确的有( )①对顶角相等;②相等的角是对顶角;③若两个角不相等,则这两个角必定不是对顶角; ④若两个角不是对顶角,则这两个角不相等.2.如图所示,下列说法不精确的是( )3.下列说法精确的有( )①在平面内,过直线上一点有且只有一条直线垂直于已知直线; ②在平面内,过直线外一点有且只有一条直线垂直于已知直线; ③在平面内,过一点可以随意率性画一条直线垂直于已知直线; ④在平面内,有且只有一条直线垂直于已知直线.AB1 EF 2 CPDFEDCBAl 3l 2l 1 O 34l 3l 2l 1124.一学员驾驶汽车,两次拐弯后,行驶的偏向与本来的偏向雷同, 这两次拐弯的角度可能是( )A. 第一次向左拐30°第二次向右拐30°B. 第一次向右拐50°第二次向左拐130°C. 第一次向右拐50°第二次向右拐130°D. 第一次向左拐50°第二次向左拐130° 5.6.如图,已知AB ∥CD,直线EF 分离交AB,CD 于E,F,EG•等分∠BEF,若∠1=72°,则∠2=_________.7.如图,AB ∥EF ∥CD,EG ∥BD,则图中与∠1相等的角(∠1除外)共有( )8.如图,直线l 1.l 2.l 3交于O 点,图中消失了几对对顶角,若n 条直线订交呢?10. 如图所示,L 1,L 2,L 3交于点O,∠1=∠2,∠3:∠1=8:1,求∠4的度数.( 方程思惟)11. 如图所示,已知AB ∥CD,分离摸索下列四个图形中∠P 与∠A,∠C 的关系,•请你证实所得的四个关系.PDCBAP DCB A P DCB A PDCB A(1) (2) (3) (4)12.如图,若AB//EF,∠C= 90°,求x+y-z 度数. 剖析:如图,添加帮助线 证出:x+y-z=90°13.已知:如图,∠+∠=∠=∠BAP APD 18012, 求证:∠=∠E F第二讲:平面直角坐标系一.常识要点:1.特别地位的点的特点(1)各个象限的点的横.纵坐标符号(2)坐标轴上的点的坐标:x 轴上的点的坐标为)0,(x ,即纵坐标为0;y 轴上的点的坐标为),0(y ,即横坐标为0;2.具有特别地位的点的坐标特点设),(111y x P.),(222y x P 1P .2P 两点关于x 轴对称⇔21x x =,且21y y -=; 1P .2P 两点关于y 轴对称⇔21x x -=,且21y y =; 1P .2P 两点关于原点轴对称⇔21x x -=,且21y y -=.3.距离(1)点A ),(y x 到轴的距离:点A 到x 轴的距离为|y |;点A 到y 轴的距离为|x |; (2)统一坐标轴上两点之间的距离:A )0,(A x .B )0,(B x ,则||B A x x AB -=;A ),0(A y .B ),0(B y ,则||B A y y AB -=;二.典范例题1.已知点M 的坐标为(x,y ),假如xy<0 , 则点M 的地位( ) A .第二.第三象限 B .第三.第四象限 C .第二.第四象限 D .第一.第四象限2.点P (m,1)在第二象限内,则点Q (-m,0)在( )A .x 轴正半轴上B .x 轴负半轴上C .y 轴正半轴上D .y 轴负半轴上 3.已知点A (a,b )在第四象限,那么点B (b,a )在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 4.点P (1,-2)关于y 轴的对称点的坐标是( )A .(-1,-2)B .(1,2)C .(-1,2)D .(-2,1)5.假如点M (1-x,1-y )在第二象限,那么点N (1-x,y-1)在第_________象限, 点Q (x-1,1-y )在第_________象限.6.如图是中国象棋的一盘残局,假如用(4,o)暗示帅的地位,用(3,9)暗示将的地位,那么炮的地位应暗示为( ) A .(8,7) B .(7,8) C .(8,9)D .(8,8)7.在平面直角坐标系中,平行四边形ABCD 的极点A.B.D 的坐标分离为(0,0), (5,0),(2,3)则极点C 的坐标为( ) A .(3,7) B .(5,3) C .(7,3) D .(8,2)A 9A 10A 5A 4A 7A 6A 8A 3A 2A 1oyx8.已知点P (x ,x),则点P 必定 ()A .在第一象限B .在第一或第四象限C .在x 轴上方D .不在x 轴下方9.三角形ABC 三个极点的坐标分离是A (-4,-1),B (1,1),C (-1,4),将三角形ABC 向右平移2个单位长度,再向上平移3个单位长度,则平移后三个极点的坐标是( ) A .(2,2),(3,4),(1,7) B .(-2,2),(4,3),(1,7) C .(-2,2),(3,4),(1,7) D .(2,-2),(3,3),(1,7)11.“若点P.Q 的坐标是(x 1,y 1).(x 2,y 2),则线段PQ 中点的坐标为(122x x +122y y +,).” 已知点A.B.C 的坐标分离为(-5,0).(3,0).(1,4),应用上述结论求线段AC.BC 的中点D.E 的坐标,并断定DE 与AB 的地位关系.12.如图,在平面直角坐标系中,A 点坐标为(34),,将OA 绕原点O 逆时针扭转90得到OA ',则点A '的坐标是( )A.(43)-,B.(34)-,C.(34)-,D.(43)-, 剖析:13.如图,三角形AOB 中,A.B 两点的坐标分离为(-4,-6),(-6,-3),求三角形AOB 的面积. 解:做帮助线如图.14.如图,四边形ABCD 各个极点的坐标分离为 (–2,8),(–11,6),(–14,0),(0,0). (1)肯定这个四边形的面积,你是怎么做的? (2)假如把本来ABCD 各个极点纵坐标保持不变,横坐标增长2,所得的四边形面积又是若干?15.如图,已知A 1(1,0). A 2(1,1).A 3(-1,1).A 4(-1,-1). A 5(2,-1),…,则点A 2007的坐标为______________________.第三讲:二元一次方程组一.相干常识点1、 二元一次方程的界说:经由整顿今后,方程只有两个未知数,未知数的次数都是1,系数都不为0,如许的整式方程称为二元一次方程.2.二元一次方程的尺度式:()00,0ax by c a b ++=≠≠3、 一元一次方程的解的概念:使二元一次方程阁下双方的值相等的一对x 和y 的值,叫做这个方程的一个解. 4、 二元一次方程组的界说:方程组中共有两个未知数,每个方程都是一次方程,如许的方程组称为二元一次方程组. 5、 二元一次方程组的解:使二元一次方程组的二个方程阁下双方的值相等的两个未知数的值,叫做二元一次方程组的解.二.典范例题1.下列方程组中,不是二元一次方程组的是( C )A.123x y =⎧⎨+=⎩,.B.10x y x y +=⎧⎨-=⎩,.C.10x y xy +=⎧⎨=⎩,.D.21y x x y =⎧⎨-=⎩,.2.有如许一道标题:断定31x y =⎧⎨=⎩,是否是方程组2502350x y x y +-=⎧⎨+-=⎩,的解?小明的解答进程是:将3x =,1y =代入方程250x y +-=,等式成立.所所以31x y =⎧⎨=⎩,方程组2502350x y x y +-=⎧⎨+-=⎩,的解.小颖的解答进程是:将3x =,1y =分离代入方程250x y +-=和2350x y +-=中,得250x y +-=,2350x y +-≠.所以31x y =⎧⎨=⎩,不是方程组2502350x y x y +-=⎧⎨+-=⎩,的解.你以为上面的解答进程哪个对?为什么?3.若下列三个二元一次方程:3x-y=7;2x+3y=1;y=kx-9有公共解,那么k 的取值应是( ) A .k=-4 B .k=4 C .k=-3 D .k=34.解方程组()()63101321002m n m n -+=⎧⎪⎨+-=⎪⎩办法一:(代入消元法) 办法二:(加减消元法) 办法三:(整体代入法)5.已知方程组⎩⎨⎧=+=-9.30531332b a b a 的解是⎩⎨⎧==2.13.8b a ,则方程组()()()()⎩⎨⎧=-++=--+9.301523131322y x y x 的解是( )12A .⎩⎨⎧==2.13.8y x B .⎩⎨⎧==2.23.10y x C .⎩⎨⎧==2.23.6y x D .⎩⎨⎧==2.03.10y x 6.4513453x y x y⎧+=⎪⎪⎨⎪-=⎪⎩7.解方程组()():3:213532x y x y =⎧⎪⎨-=⎪⎩8.解三元一次方程组(1)(2)(3)++=⎧⎪-=-⎨⎪+=+⎩x 2y z 8x y 1x 2z 2y 3方程段(下一个) 节 19(1)当a 为何值时,方程组2133ax y x y +=⎧⎨+=⎩有独一的解.(2)当m 为何值时,方程组2122x y x my +=⎧⎨+=⎩有无限多解.10.一副三角板按如图方法摆放,且1∠的度数比2∠的度数大50,若设1∠的度数为x,2∠的度数为y,则得到的方程组为A .50180x y x y =-⎧⎨+=⎩,B .50180x y x y =+⎧⎨+=⎩,C .5090x y x y =-⎧⎨+=⎩,D .5090x y x y =+⎧⎨+=⎩, 11.为了改良住房前提,小奥的怙恃考核了某小区的A.B 两套楼房,A 套楼房在第3层楼,B 套楼房在第5层楼,B 套楼房的面积比A 套楼房的面积大24平方米,两套楼房的房价雷同.第3层楼和第5层楼的房价分离是平均价的1.1倍和0.9倍.为了盘算两套楼房的面积,小奥设A 套楼房的面积为x 平方米,B 套楼房的面积为y 平方米,根据以上信息列出下列方程组,个中精确的是( )A .⎩⎨⎧=-=241.19.0x y y xB .⎩⎨⎧=-=249.01.1y x y xC .⎩⎨⎧=-=241.19.0y x y xD .⎩⎨⎧=-=249.01.1x y y x12.某生果批发市场喷鼻蕉的价钱如下表:若干千克?剖析:由题意知,第一次购置喷鼻蕉数小于25千克,则单价分为两种情形进行评论辩论. 解:设张强第一次购置喷鼻蕉x 千克,第二次购置喷鼻蕉y 千克,由题意0<x<25,(1)当0<x ≤20,y ≤40时,由题意可得:⎩⎨⎧=+=+2645650y x y x ,解得⎩⎨⎧==3614y x(2)当0<x ≤20,y>40时,由题意可得:⎩⎨⎧=+=+2644650y x y x ,解得⎩⎨⎧==1832y x (不合题意,舍去) (3)当20<x<25时,则25<y<30,由题意可得:⎩⎨⎧=+=+2645550y x y x ,方程组无解由(1)(2)(3)可知,张强第一次.第二次分离购置喷鼻蕉14千克.36千克.第四讲:一元一次不等式一.常识链接:1.不等式的基赋性质经由过程比较不等式和方程的性质,使学生学会用类比的办法看问题.性质1:不等式的双方同时加上(或减去)统一个数或统一个整式,不等号偏向不转变. 若a>b,则a+c>b+c (a-c>b-c ).性质2:不等式的双方同时乘以(或除以)统一个正数,不等号偏向不变. 若a>b 且c>0,则ac>bc.性质3:不等式的双方同时乘以(或除以)统一个负数,不等号偏向转变. 若a>b 且c<0,则ac<bc. 2.同解不等式假如几个不等式的解集雷同,那么这几个不等式称为同解不等式. 3.一元一次不等式的界说:像276x x -<,39x ≤等只含有一个未知数,且含未知数的式子是整式,未知数的次数是1,系数不为0,如许的不等式叫做一元一次不等式. 4.一元一次不等式的尺度情势一元一次方程的尺度情势:0ax b +>(0a ≠)或0ax b +<(0a ≠). 5.一元一次不等式组的解集肯定 若a>b则(1)当⎩⎨⎧>>b x a x 时,则a x >,即“大大取大”(2)当⎩⎨⎧<<b x a x 时,则b x <,即“小小取小”(3)当⎩⎨⎧><b x a x 时,则a x b <<,即“大小小大取中央”(4)当⎩⎨⎧<>b x a x 时,则无解,即“大大小小取不了”二.典范例题:1.下列关系不精确的是( )A .若b a >,则a b <B .若b a >,c b >,则c a >C .若b a >,d c >,则d b c a +>+D .若b a >,d c >,则d b c a ->- 2.已知y x >且0<xy ,a 为随意率性有理数,下列式子中精确的是( )A .y x >-B .y a x a 22> C .a y a x +-<+- D .y x -> 3.下列断定不精确的是( )A .若0>ab ,0<bc ,则0<acB .若0>>b a ,则b a 11<C .若0>a ,0<b ,则0<-b ba D .若b a <,则b a 11> 4.若不等式ax >b 的解集是x >a b,则a 的规模是( )A.a≥0B.a≤0C.a >0D.a <05.解关于x 的不等式 ()2355mx m xm ->+≠解:()()()5325321550,3252550,325mx x m m x m m m m x m m m m x m ->+->+>->+>-<-<+<-当时,则当时,则6.解关于x 的不等式()21a x a -<+.解:2-a>0,即a<2时,a a x -+<212-a<0,即a>2时,a a x -+>212-a=0,即a=2时,不等式即 0x<3 ,不等式有随意率性解 7.若不等式()21350m x x x ->+-<和是同解不等式,求m 的值.解:()()()()()()350513211212121021513188x x m x x m x m m m m m m m -<<->+->+-<⎧⎪∴+⎨=⎪-⎩<⎧∴⎨=⎩∴=-由得由得、两不等式为同解不等式。
七升八暑期衔接班数学培优讲义目录1.第一讲:与三角形有关的线段;2.第二讲:与三角形有关的角;3.第三讲:与三角形有关的角度求和;4.第四讲:专题一:三角形题型训练(一);5.第五讲:专题二:三角形题型训练(二);6.第六讲:全等三角形;7.第七讲:全等三角形的判定(一)SAS;8.第八讲:全等三角形的判定(二)SSS,ASA,AAS;9.第九讲:全等三角形的判定(三)HL;10.第十讲:专题三:全等三角形题型训练;11.第十一讲:专题四:全等三角形知识点扩充训练;12.第十二讲:角平分线的性质定理及逆定理;13.第十三讲:轴对称;14.第十四讲:等腰三角形;15.第十五讲:等腰直角三角形;16.第十六讲:等边三角形(一);17.第十七讲:等边三角形(二);18.第十八讲:专题五:全等、等腰三角形综合运用(一)19.第十九讲:专题六:全等、等腰三角形综合运用(二)20.第二十讲:专题七:综合题题型专题训练;CB A第 一 讲 与三角形有关的线段【知识要点】 一、三角形1.概念:①三条线段;②不在同一直线上;③首尾相连. 2.几何表示:①顶点;②内角、外角;③边;④三角形. 3.三种重要线段及画法:①中线;②角平分线;③高线. 二、三角形按边分类:(注意:等边三角形是特殊的等腰三角形)()⎧⎪⎧⎨⎪⎨⎪⎪⎩⎩不等边三角形腰底不相等的等腰三角形三角形等腰三角形腰底相等的等腰三角形等边三角形 三、三角形的三边关系(教具)引例:已知平面上有A 、B 、C 三点.根据下列线段的长度判断A 、B 、C 存在的位置情况: (1)若AB=9,AC=4,BC=5,则A 、B 、C 存在的位置情况是: (2)若AB=3,AC=10,BC=7,则A 、B 、C 存在的位置情况是: (3)若AB=5,AC=4,BC=8,则A 、B 、C 存在的位置情况是: (4)若AB=3,AC=9,BC=10,则A 、B 、C 存在的位置情况是: (5)若AB=4,AC=6,BC=12,则A 、B 、C 存在的位置情况是: 总结:三角形的三边关系定理:三角形任意两边之和大于第三边.三角形的三边关系定理的推论:三角形任意两边之差小于第三边.【应用】利用定理判断三条线段能否构成三角形或确定三角形第三边的长度或范围. 1.已知BC=a ,AC=b ,AB=c.(1)A 、B 、C 三点在同一条直线上,则a ,b ,c 满足: ; (2)若构成△ABC ,则a ,b ,c 满足: ; 2.已知BC=a ,AC=b ,AB=c ,且a <b <c.(1)A 、B 、C 三点在同一条直线上,则a ,b ,c 满足: ; (2)若构成△ABC ,则a ,b ,c 满足: ; 【新知讲授】例一、如图,在△ABC 中.①AD 为△ABC 的中线,则线段 = =21;②AE 为△ABC 的角平分线,则 = =21; ③AF 为△ABC 的高线,则 = =90°;④以AD 为边的三角形有 ;⑤∠AEC 是 的一个内角;是 的一个外角.例二、已知,如图,BD ⊥AC ,AE ⊥CG ,AF ⊥AC ,AG ⊥AB ,则△ABC 的BC 边上的高线是线段( ).(A)BD (B) AE (C) AF(D) AG 例三、(1)以下列各组长度的线段为边,能.构成三角形的是( ). (A)7cm ,5cm ,12cm (B)6cm ,8cm ,15cm(C)4cm ,6cm ,5cm (D)8cm ,4cm ,3cm (2)满足下列条件的三条线段不能..组成三角形的是 .(a 、b 、c 均为正数) AB CD E FDEA BCFG①a=5,b=9,c=7; ②a ∶b ∶c=2∶3∶5; ③1,a ,b ,其中1+a >b ;④a ,b ,c ,其中a+b >c ; ⑤a+2,a+6,5; ⑥a <b <c ,其中a+b >c.例四、已知三角形的三边长分别为2,5,x ,则x 的取值范围是 .发散:①已知三角形的三边长分别为2,5,2x-1,则x 的取值范围是 . ②已知三角形的三边长分别为2,5,243x-,则x 的取值范围是 . ③已知三角形三边长分别为2,x ,13,若x 为正整数,则这样的三角形个数为( ). (A)2 (B)3(C)5(D)13④已知三角形的两边长分别为2,5,则三角形周长l 的取值范围是 .⑤已知一个三角形中两边长分别为a 、b ,且a >b ,那么这个三角形的周长l 的取值范围是 . (A)3b <l <3a (B)2a <l <2a+2b (C)a+2b <l <2a+b (D)a+2b <l <3a-b例五、已知三角形的三边长分别为5,11-x ,3x-1.(1)则x 的取值范围是 ; (2)则它的周长l 的取值范围是 ; (3)若它是一个等腰三角形,则x 的值是 .发散:①已知三角形的三边长分别为2,5-x ,x-1,则x 的取值范围是 .②已知三角形两边的长分别为3和7,则第三边a 的取值范围是 ;若它的周长是偶数,则满足条件的三角形共有 个;若它是一个等腰三角形,则它的周长为 .③已知等腰三角形腰长为2, 则三角形底边a 的取值范围是 ;周长l 的取值范围是 . ④已知三角形三边的长a 、b 、c 是三个连续正整数,则它的周长l 的取值范围是 .若它的周长小于19,则满足条件的三角形共有 个.⑤若a 、b 、c 是△ABC 的三边长,化简||c b a -++|c b a --|的结果为( ). (A)2b (B)0 (C)2a (D)22a c -⑥已知在△ABC 中,AB=7,BC ∶AC=4∶3,则△ABC 的周长l 的取值范围为 . 【题型训练】1.以下列各组线段为边,能组成三角形的是( ).(A)2cm ,3cm ,5cm (B)5cm ,6cm ,10cm (C)1cm ,1cm ,3cm (D)3cm ,4cm ,9cm2.各组线段的比分别为①1∶3∶4;②1∶2∶3;③1∶4∶6;④3∶4∶5;⑤3∶3∶6.其中能组成三角形的有( ). (A)1组 (B)2组 (C)3组 (D)4组 3.三角形的下列线段中能将三角形的面积分成相等两部分的是( )(A)中线 (B)角平分线 (C)高线 (D)角平分线或中线 4.已知三角形的三边长分别为6,7,x ,则x 的取值范围是( ).(A)2<x <12 (B)1<x <13 (C)6<x <7 (D)1<x <7 5.已知三角形的两边长分别为3和5,则周长l 的取值范围是( ).(A )6<l <15 (B )6<l <16 (C )11<l <13 (D )10<l <16 6.已知等腰三角形的两边长分别为5和11,则周长是( ).(A )21 (B )27 (C )32 (D )21或27 7.等腰三角形的底边长为8,则腰长a 的范围为 . 8.等腰三角形的腰长为8,则底边长a 的范围为 .9.等腰三角形的周长为8,则腰长a 的范围为 ;底边长b 的范围为 . 10.三角形的两边长分别为6,8,则周长l 的范围为 . 11.三角形的两边长分别为6,8,则最长边a 的范围为 . 12.等腰三角形的周长为14,一边长为3,则另两边长分别为 . 13.若a 、b 、c 分别为△ABC 的三边长,则|a+b-c |-|b-c-a |+|c-b-a |= .DAB CD ABC IIICBDACBDAADB CIIICBAC BD A EA EDBECAAAD14.已知在ΔABC 中,AB=AC ,它的周长为16厘米,AC 边上的中线BD 把∆ABC 分成周长之差为4厘米的两个三角形,求∆ABC各边的长.15.等腰三角形一腰的中线(如图,等腰△ABC 中,AB=AC ,BD 为△ABC 的中线)把它的周长分为15厘米和6厘米两部分,求该三角形各边长.综合探究、三角形两条内、外角平分线的夹角与第三个内角之间的关系1.如图,△ABC 中,∠ABC 、∠ACB 的平分线交于点I ,探求∠I 与∠A 的关系;2.如图,在△ABC 中,∠ABC 、∠ACB 的外角∠ACD 的平分线交于点I ,探求∠I 与∠A 的关系;3.如图,在△ABC 中,∠ABC 的外角∠CBD 、∠ACB 的外角∠BCE 的平分线交于点I ,探求∠I 与∠A 的关系.例三、“箭形”、“蝶形”、“四边形”两条内、外角平分线的夹角与另两个内角之间的关系 发散探索一:如图,∠ABD 、∠ACD 的平分线交于点I ,探索∠I 与∠A 、∠D 之间的数量关系.发散探索二:如图,∠ABD 的平分线与∠ACD 的邻补角∠ACE 的平分线所在的直线交于点I ,探索∠I 与∠A 、∠D 之间的数量关系.发散探索三:如图,∠ABD 的邻补角∠DBE 平分线与∠ACD 的邻补角∠DCF 的平分线交于点I ,探索∠I 与∠A 、∠D 之间的数量关系.A BCD I A B C DEIA BCI12CB AD A CB A FDH DAB C EHE D C B A第 二 讲 与三角形有关的角【知识要点】一、三角形按角分类:①锐角三角形;②直角三角形;③钝角三角形; 二、三角形的内角和定理:三角形内角和为180°(∠A+∠B+∠1=180°); 三、三角形的内角和定理的推论:①直角三角形两锐角互余;②三角形的任意一个外角等于和它不相邻的两个内角之和(∠2=∠A+∠B );③三角形的任意一个外角大于任意一个和它不相邻的内角; 四、n 边形的内角和定理:(n-2)×180°; 五、n 边形的外角和为360°. 【新知讲授】例一、①正方形的每个内角的度数为 ;正五边形的每个内角的度数为 ;正六边形的每个内角的度数为 ;正八边形的每个内角的度数为 ;正十边形的每个内角的度数为 ;正十二边形的每个内角的度数为 .②若一个正多边形的内角和等于等于外角和的5倍,则它的边数是 . ③若一个正多边形的每一个内角都等于144°,则它的边数是 .④若一个正多边形的每一个内角都等于相邻外角的2倍°,则它的边数是 . 例二、如图,△ABC 中,∠A=50°,两条高线BD 、CE 所在直线交于点H ,求∠BHC 的度数.例三、如图,△ABC 中,∠A=50°,两条角平分线BD 、CE 交于点I ,求∠BIC 的度数.例四、如图,四边形ABCD 中,∠A=∠C ,∠B=∠D ,求证:AB ∥CD ,AD ∥BC.例五、如图,AB ∥CD ,AD ∥BC ,AE ⊥BC ,AF ⊥CD ,求证:∠BAD+∠EAF=180°.A B C D E IDABE F C D E A FC B 例六、如图,六边形ABCDEF 中,AF ∥CD ,∠A=∠D ,∠B=∠E ,求证:BC ∥EF.例七、如图,在凸六边形ABCDEF 中,∠A+∠B+∠F=∠C+∠D+∠E ,求证:BC ∥EF.【题型训练】1.如图,△ABC 中,BD 、CE 为两条角平分线,若∠BDC=90°,∠BEC=105°,求∠A.2.如图,△ABC 中,BD 、CE 为两条角平分线,若∠BDC=∠AEC ,求∠A 的度数.3.如图,在△ABC 中,BD 为内角平分线,CE 为外角平分线,若∠BDC=125°,∠E=40°,求∠BAC 的度数.4.如图,在△ABC 中,BD 为内角平分线,CE 为外角平分线,若∠BDC 与∠E 互补,求∠BAC 的度数.ED C B AM EDC B AMEDCBAED C B AA BOD AE第二讲作业1.如果一个三角形三个内角的度数之比为2∶3∶7,这个三角形一定是( ).(A)等腰三角形(B)直角三角形(C)锐角三角形(D)钝角三角形2.如图所示,∠A、∠1、∠2的大小关系是( ).(A)∠A>∠1>∠2 (B)∠2>∠1>∠A(C)∠A>∠2>∠1 (D)∠2>∠A>∠13.下面四个图形中,能判断∠1>∠2的是( ).(A) (B) (C) (D)4.将一副三角板按如图所示摆放,图中∠α的度数是( ).A.75°B.90°C.105°D.120°5.在活动课上,小聪将一副三角板按图中方式叠放,则∠=( ).(A)30° (B)45° (C)60°(D)75°6.如图所示,一个60°角的三角形纸片,剪去这个60°角后,得到一个四边形,则∠1+∠2 的度数为( ).(A)120° (B)180° (C)240° (D)300°7.如图,在△ABC中,∠C=70º,沿图中虚线截去∠C,则∠1+∠2=( ).(A)360º (B)250º (C)180º (D)140º8.如图,折纸活动中,小明制作了一张△ABC纸片,点D、E分别是边AB、AC上,将△ABC沿着DE折叠,A与A′重合,若∠A=75°,则∠1+∠2=( ).(A)150° (B)210° (C)105° (D)75°9.如图,在△ABC中,∠B=67°,∠C=33°,AD是△ABC的角平分线,则∠CAD的度数为()(A)40° (B)45° (C)50° (D)55°10.已知ΔABC的三个内角∠A、∠B、∠C满足关系式∠B+∠C=3∠A,则此三角形( ).(A)一定有一个内角为45︒ (B)一定有一个内角为60︒(C)一定是直角三角形 (D)一定是钝角三角形11.将一副三角尺按如图方式放置,则图中∠AOB的度数为( ).(A)75° (B)95° (C)105° (D)120°12.若一个正多边形的每一个内角都等于160°,则它是( ).(A)正十六形 (B)正十七形 (C)正十八边形 (D)正十九边形13.一个多边形的内角和比它的外角和的2倍还大180°,这个多边形的边数为( ).(A)7 (B)8 (C)9 (D)1014. 已知:在△ABC中,∠B是∠A的2倍,∠C比∠A大20°,则∠A等于( ).(A)40° (B)60° (C)80° (D)90°15.如图,人民币旧版壹角硬币内部的正多边形每个内角度数是 .16.如图,在△ABC中,D、E分别是边AB、AC上的两点,BE、CD相交于点F,∠A=62°,∠ACD=40°,∠ABE=20°,求∠BFC 的度数.αCB DA CB D A A DB C 17.如图,已知直线DE 分别交△ABC 的边AB 、AC 于D 、E 两点,交边BC 的延长线于点F ,若∠B =67°,∠ACB =74°,∠AED =48°,求∠BDF 的度数.第三讲:与三角形有关的角度求和【知识要点】1.与三角形有关的四个基本图及其演变; 2.星形图形的角度求和. 【新知讲授】例一、如图,直接写出∠D 与∠A 、∠B 、∠C 之间的数量关系. 箭形: ;蝶形: ;四边形: . 请给出“箭形”基本图结论的证明(你能想出几种不同的方法):例二、三角形两条内、外角平分线的夹角与第三个内角之间的关系1.如图,△ABC 中,∠ABC 、∠ACB 的平分线交于点I ,探求∠I 与∠A 的关系;2.如图,在△ABC 中,∠ABC 、∠ACB 的外角∠ACD 的平分线交于点I ,探求∠I 与∠A 的关系;A B C I ABCDIIIICBDACBDAADB CIIICBAC BD A EA EDBECI I I C BD A CBA E A E DB FD E F F C A3.如图,在△ABC 中,∠ABC 的外角∠CBD 、∠ACB 的外角∠BCE 的平分线交于点I ,探求∠I 与∠A 的关系.例三、“箭形”、“蝶形”、“四边形”两条内、外角平分线的夹角与另两个内角之间的关系 发散探索一:如图,∠ABD 、∠ACD 的平分线交于点I ,探索∠I 与∠A 、∠D 之间的数量关系.发散探索二:如图,∠ABD 的平分线与∠ACD 的邻补角∠ACE 的平分线所在的直线交于点I ,探索∠I 与∠A 、∠D 之间的数量关系.发散探索三:如图,∠ABD 的邻补角∠DBE 平分线与∠ACD 的邻补角∠DCF 的平分线交于点I ,探索∠I 与∠A 、∠D 之间的数量关系.例四、如图,在△ABC 中, BP 、BQ 三等分∠ABC ,CP 、CQ 三等分∠ACB.(1)若∠A=60°,直接写出:∠BPC 的度数为 ,∠BQC 的度数为 ;(2)连接PQ 并延长交BC 于点D ,若∠BQD=63°,∠CQD=80°,求△ABC 三个内角的度数.A B CD EBA MECD OD BCEADBCF E A例五、如图,BD 、CE 交于点M ,OB 平分∠ABD ,OC 平分∠ACE ,OD 平分∠ADB ,OE 平分∠AEC ,求证:∠BOE=∠COD ;【题型训练】1.如图,求∠A+∠B+∠C+∠D+∠E 的度数和.2.如图,求∠A+∠B+∠C+∠D+∠E+∠F 的度数和.3.如图,已知∠1=60°,求∠A+∠B+∠C+∠D+∠E+∠F 的度数和.发散探索:①如图,∠A+∠B+∠C+∠D+∠E= ;②如图,∠A+∠B+∠C+∠D+∠E+∠F+∠G= ; ③如图,∠A+∠B+∠C+∠D+∠E+∠F= . ④如图,∠A+∠B+∠C+∠D+∠E+∠F= .⑤如图,∠A+∠B+∠C+∠D+∠E+∠F+∠G= ; ⑥如图,∠A+∠B+∠C+∠D+∠E+∠F+∠G= ; ⑦如图,BC ⊥EF ,求∠A+∠B+∠C+∠D+∠E+∠F 的度数.CBDAFE第三讲作业1.如图,B岛在A岛的南偏西30°,A岛在C岛的北偏西35°,B岛在C岛的北偏西78°,则从B岛看A、C两岛的视角∠ABC 的度数为( ).(A)65° (B)72° (C)75° (D)78°2.如图,D、E分别是AB、AC上一点,BE、CD相交于点F,∠ACD=30°,∠ABE=20°,∠BDC+∠BEC=170°则∠A等于( ).(A)50° (B)85° (C)70° (D)60°3.一副三角板,如图所示叠放在一起,则图中∠ 的度数是( ).(A)75° (B)60° (C)65° (D)55°4.如图,在△ABC中,∠BAC=36°,∠C=72°,BD平分∠ABC交AC于点D,AF∥BC,交BD的延长线于点F,AE平分∠CAF交DF于E点.我们定义:在一个三角形中,有一个角是36°,其余两个角均为72°的三角形和有一个角是108°,其余两个角均为36°的三角形均被称作“黄金三角形”,则这个图中黄金三角形共有( ).(A)8个 (B)7个 (C)6个 (D)5个5.如图,∠A=35°,∠B=∠C=90°,则∠D的度数是( ).(A)35° (B)45° (C)55° (D)65°6.如图,已知∠A+∠BCD=140°,BO平分∠ABC,DO平分∠ADC,则∠BOD=( ).(A)40° (B)60° (C)70° (D)80°7.如图,一个直角三角形纸片,剪去直角后,得到了一个四边形,则∠1+∠2= .8.如图,在△ABC中,∠A=80°,点D为边BC延长线上的一点,∠ACD=150°,则∠B= .9.将一副直角三角板如上图放置,使含30°角的三角板的短直角边和含45°角的三角板的一条直角边重合,则∠1的度数为 .10.一副三角板叠在一起如图放置,最小锐角的顶点D恰好放在等腰直角三角板的斜边AB上,BC与DE交于点M.若∠ADF=100°,则∠BMD为.O 2O 1A BC 图1CB A 图2图3OO 1O 2O n-111.如图,在△ABC 中,∠B=47°,三角形的外角∠DAC 和∠ACF 的平分线交于点E ,则∠AEC=______.12.如图,∠ACD 是△ABC 的外角,∠ABC 的平分线与∠ACD 的平分线交于点A 1,∠A 1BC 的平分线与∠A 1CD 的平分线交于点A 2,…,如此下去,∠A n ﹣1BC 的平分线与∠A n ﹣1CD 的平分线交于点n A .设∠A=θ.则∠A 1= ;n A = .13.已知:如图1,在△ABC 中,∠ABC 、∠ACB 的角平分线交于点O ,则1902BOC A ∠=︒+∠1118022A =⨯︒+∠;如图2,在△ABC 中,∠ABC 、∠ACB 的两条三等分角线分别对应交于点1O 、2O ,则12118033BOC A ∠=⨯︒+∠,21218033BO C A ∠=⨯︒+∠;……;根据以上阅读理解,当n 等分角时,内部有1n -个交点,你以猜想1n BO C -∠=( ).(A)21180A n n ⨯︒+∠ (B)12180A n n ⨯︒+∠(C)118011n A n n ⨯︒+∠--(D)11180n A n n-⨯︒+∠14.在△ABC 中,∠C=∠ABC=2∠A ,BD 是AC 边上的高,BE 平分∠ABC ,求∠DBE 度数.第 四 讲 专题一:三角形题型训练(一)【知识要点】平行线、三角形内角和的综合运用 【新知讲授】例一、如图,在四边形ABCD 中,∠A=∠C=90°,BE 、DF 分别平分∠ABC 、∠ADC ,请你判断BE 、DF 的位置关系并证明你的结论.例二、如图,在四边形ABCD 中,∠A=∠C=90°,∠ABC 的外角平分线与∠ADC 的平分线交于点E ,请你判断BE 、DE 的位置关系并证明你的结论.例三、 如图,在四边形ABCD 中,∠A=∠C=90°,BE 、DF 分别平分∠ABC 、∠ADC 的外角,请你判断BE 、DF 的位置关系并证明你的结论.例四、如图,∠A=∠C=90°,∠ABC 的平分线与∠ADC 的平分线交于点E ,请你判断BE 、DE 的位置关系并证明你的结论.例五、如图,∠A=∠C=90°,BE 平分∠ABC ,DF 平分∠ADC 的的外角,请你判断BE 、DE 的位置关系并证明你的结论. FED C BAMEDBAFNME DCBA EDCBA例六、如图,∠A=∠C=90°,∠ABC 的外角平分线与∠ADC 的外角平分线交于点E ,请你判断BE 、DE 的位置关系并证明你的结论.例七、如图,△ABC 中,P 为BC 边上任一点,PD ∥AB ,PE ∥AC.(1)若∠A=60°,求∠DPE 的度数;(2)若EM 平分∠BEP ,DN 平分∠CDP ,试判断EM 与DN 之间的位置关系,写出你的结论并证明.例八、如图,△ABC 中,D 、E 、F 分别在三边上,∠BDE =∠BED ,∠CDF =∠CFD.(1)若∠A=70°,求∠EDF 的度数;(2)EM 平分∠BED ,FN 平分∠CFD ,若EM ∥FN ,求∠A 的度数.例九、如图,△ABC 中,D 、E 、F 分别在三边上,∠DBE =∠DEB ,∠DCF =∠DFC.(1)若∠A=70°,求∠EDF 的度数;(2)EM 平分∠BED ,FN 平分∠CFD ,若EM ∥FN ,求∠A 的度数.【题型训练】 1.如图1、图2是由10把相同的折扇组成的“蝶恋花”和“梅花”,图中的折扇完全打开且无重叠,则“梅花”图案中五角星的5个锐角的度数均为( ).(A) 36° (B) 42° (C) 45° (D) 48°2.如图,在△ABC 中,∠B=∠C ,D 是BC 上一点,DE ⊥BC 交AC 于点E ,DF ⊥AB ,垂足为F ,若∠AED=160°,则∠EDF 等于( ). (A)50° (B)60° (C)70° (D)80°3.如图,△ABC 中,∠B=∠C ,∠BAD=32°,∠ADE=∠AED ,则∠CDE= . NME D CBA NMPEDCBANMFEDCBAN M FED C B AA DCMBBD A ECDB AC E F4.已知△ABC 中,∠ACB—∠B=90°,∠BAC 的平分线交BC 于E ,∠BAC 的外角的平分线交BC 的延长线于F ,则△AEF 的形状是 . 5.如图,AB ∥CD ,∠A=∠C ,AE ⊥DE ,∠D=130°,则∠B 的度数为 .6.如图:点D 、E 、F 为△ABC 三边上的点,则∠1 +∠2 +∠3+∠4 +∠5 +∠6 = .7.若一束光线经过三块平面镜反射,反射的路线如图所示,图中的字母表示相应的度数,若60c =︒,∠P=110°,则d e +的值为 ,x 的值 .8.如图,在平行四边形ABCD 中,∠BAD 的平分线交边BC 于点M ,连接MD ,且MD 恰好平分∠AMC ,若∠MDC=45°,则∠BAD= ,∠ABC= .第 四 讲 作 业1.如图,已知△ABC 的三个顶点分别在直线a 、b 上,且a ∥b ,若∠1=120°,∠2=80°,则∠3的度数是( ). (A)40° (B)60° (C)80° (D)120°2.如图,BD ∥EF ,AE 与BD 交于点C ,若∠ABC=30°,∠BAC=75°,则∠CEF 的大小为( ). (A)60° (B)75° (C)90° (D)105°3.如图,已知D 、E 在△ABC 的边上,DE ∥BC ,∠B=60°,∠AED=40°,则∠A 的度数为( ). (A)100° (B)90° (C)80° (D)70°4.已知,直线l 1∥l 2,将一块含30°角的直角三角板如图所示放置,∠1=25°,则∠2等于( ). (A)30° (B)35° (C)40° (D)45°5.如图,将三角尺的直角顶点放在直线a 上,a∥b,∠1=50°,∠2=60°,则∠3的度数为( ).(A)50° (B)60° (C)70° (D)80°6.小明同学把一个含有45°角的直角三角板在如图所示的两条平行线上,测得α∠=120°,则的度数是( ). (A)45° (B)55° (C)65° (D)75°m n ,β∠7.如图,在Rt△ABC中,∠C=90°.D为边CA延长线上的一点,DE‖AB,∠ADE=42°,则∠B的大小为( ).(A) 42° (B) 45° (C) 48° (D)58°8.如图,B处在A处的南偏西45°方向,C处在A处的南偏东15°方向,C处在B处的北偏东80°方向,则∠ACB等于()(A)65° (B)72° (C)75° (D)78°9.如图,已知AC∥ED,∠C=26°,∠CBE=37°,则∠BED的度数是( ).(A)63° (B)83° (C)73° (D)53°10.如图,已知a∥b,小亮把三角板的直角顶点放在直线b上.若∠1=40°,则∠2的度数为.11.如图,已知DE∥BC ,CD是∠ACB的平分线,∠B=70°,∠A=60°.(1)求∠EDC的度数;(2)求∠BDC度数.12.如图,∠DAB+∠D=180°,AC平分∠DAB,且∠CAD=25°,∠B=95°.(1)求∠DCA的度数;(2)求∠FEA的度数.13.如图,B处在A处的南偏西57°的方向,C处在A处的南偏东15°方向,C处在B处的北偏东82°方向,求∠C的度数.北南ABC第五讲专题一:三角形题型训练(二)知识点:三角形三边的关系定理:两边之和大于第三边;两边之差小于第三边三角形的内角和定理:三角形的内角和等于180°典型例题:1、已知ΔABC的周长为10,且三边长为整数,求三边的长。
1. 定义:能够完全重合的两个图形称为全等图形.观察右面两组图形,它们是不是全等图形?为什么?2. 由全等图形类比得出:能够完全重合的两个三角形叫做全等三角形。
比如,在图中,△ABC与△DEF能够完全重合,它们是全等的。
其中顶点A,D重合,它们是对应顶点;AB边与DE边重合,它们是对应边;A与 D 重合,它们是对应角.△ABC与△ DEF全等,我们把它记作“△ABC≌△DEF”.记两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上.A D A(D)B C E F B(E) C(F)一、图形的全等观察下面两组图形,它们是不是全等图形?为什么?全等三角形的对应边全等三角形的对应边上的中线形的周长,面积几何语言:,对应角。
,对应边上的高,对应角的角平分线;全等三角∵△ ABC≌△ DEF (已知)∴AB= ,AC= ,BC= ()∠A= , ∠C=,∠B= .()练习:1.如图6,△ABC≌△AEC,∠B=75°, ∠ACB=55°, 求出△AEC各内角的度数。
解: ABEC( 图6)2.如图7,△ ABD≌△ EBC,AB=3 cm,AC=8 cm,求DE的长。
D解:E3. 判断:A B C(图7)○1 全等三角形的边相等,角相等,中线相等,角平分线相等.()○2 全等三角形的周长相等.()○3 周长相等的两个三角形是全等三角形.()○4 全等三角形的面积相等.()CBD5.如图 3,已知 CD ⊥ AB 于 D , BE ⊥ AC 于 E,△ ABE ≌△ ACD ,∠ C=20°, AB=10,AD=4, G 为 AB 延长线上的一点,求∠ ABE 的度数和 CE 的长 .CEFA二、三角形的判定定理:边角边公理DB G定理: 两个三角形的两组对应边相等且它们的夹角相等,那么这两个三角形全等,简记为 " 边角边 " ,符号表示: "SAS"例 1. 下列哪组三角形能完全重合(全等)?例 2. 如图,在△ ABC 和△ A ′ B ′C ′中,已知 AB = A ′ B ′,∠ B =∠ B ′, BC = B ′ C ′.这两个三角形全等吗 ?○5 面积相等的两个三角形是全等三角形 .( )4. 填空:如图所示,已知△AOB ≌△ COD ,∠ C=∠ A,AB=CD ,则另外两组对应边为,另外两组对应角为。
七升八暑假衔接学习讲义TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】一、图形的1.定义:能够完全重合的两个图形称为全等图形.观察右面两组图形,它们是不是全等图形为什么2.由全等图形类比得出:能够完全重合的两个三角形叫做全等三角形。
比如,在图中,△ABC与△DEF能够完全重合,它们是全等的。
其中顶点A,D重合,它们是对应顶点;AB边与DE边重合,它们是对应边;A∠与D∠重合,它们是对应角.△ ABC与△DEF全等,我们把它记作“△ABC≌△DEF”.记两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上.全等三角形的对应边,对应角。
全等三角形的对应边上的中线,对应边上的高,对应角的角平分线;全等三角形的周长,面积。
几何语言:∠A= ,∠C= ,∠B= .()练习:1.如图6,△ABC≌△AEC,∠B=75°,∠ACB=55°,求出△AEC各内角的度数。
解:2.如图7,△ABD≌△EBC,AB=3 cm,AC=8 cm,求DE解: 3.判断:○1全等三角形的边相等,角相等,中线相等,角平分线相等.( ) ○2全等三角形的周长相等.( )○3周长相等的两个三角形是全等三角形.( ) ○4全等三角形的面积相等.( )○5面积相等的两个三角形是全等三角形.( )4.填空:如图所示,已知△AOB ≌△COD ,∠C =∠A ,AB =CD ,则另外两组对应边为________________,另外两组对应角为________________。
5.如图3,已知CD ⊥AB 于D , BE ⊥AC 于E ,△ABE ≌△ACD ,∠C=20°,AB=10,AD=4,G 为AB 延长线上的一点,求∠ABE例1. 下列哪组三角形能完全重合(全等)例2.如图,在△ABC 和△A ′B ′C ′中,已知AB =A ′B ′,∠B =∠B ′,BC =B ′C ′.这两个三角形全等吗?例3. 在△ABC 和△A ′B ′C ′中(自己画图)(1)⎪⎩⎪⎨⎧''='∠=∠''=C B BC B B B A AB (2) ⎪⎩⎪⎨⎧='∠=∠''=______A A B A ABACDBOAD E∴C B A ABC '''∆≅∆( SAS ) ∴C B A ABC '''∆≅∆( )(3) ⎪⎩⎪⎨⎧''=∠=∠''=C B BC C A AC ____∴C B A ABC '''∆≅∆( ) 练习1:1.根据题目条件,判断下面的三角形是否全等(1) AC =DF , ∠C =∠F , BC =EF ; (2) BC =BD , ∠ABC =∠ABD . 2. 如图2,△AOB 和△COD 全等吗为什么3. 如图,在△ABC 中,AB =AC , AD 平分∠BAC ,求证:△ABD ≌△ACD .4. 如图3,已知AD ∥BC ,AD =CB ,证明:△ABC ≌△CDA.5.如图4,已知AB =AC ,AD =AE ,∠1=∠2,证明:△ABD ≌ACE.6. 如图,已知AB=AC ,AE=AD ,那么图中哪两个三角形全等?并进行证明.7.已知: AD ∥BC ,AD = CB(如图).现有条件能证明△ADC ≌△CBA 吗如果能请写出证明过程,若不能,那么还需添加怎样的条件才能证明练习21.已知:如图,AC=AD ,∠CAB=∠DAB , 求证:△ACB ≌△ADB2.已知:AD ∥BC ,AD=CB 求证:△ADC ≌△CBA3.已知:AD ∥BC ,AD=CB ,AE=CFADCB EADC B FE ADCBE12求证:△AFD ≌△CEB4.已知:EA=EC ,ED=EB , 求证:△AED ≌△CEB5.已知:AC=DB ,AE=DF ,EA ⊥AD ,FD ⊥AD , 求证:△EAB ≌△FDC6.已知:AB=AC ,AD=AE ,∠1=∠2 求证:∠B=∠C三、三角形的判定定理:角边角定理定理:两个三角形的两组对应角相等且它们的夹边也相等,那么这两个三角形全等,简记为"角边角",符号表示:"ASA" 例1. 如图所示,某同学把一块三角形的玻璃不小心打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带哪块去?例2.如图,AD ∥BC ,BE ∥DF ,AE =CF ,试说明:△ADF ≌△CBE .例3.如图,在△ABC 中,AD ⊥BC 于点D ,BE ⊥AC 于与BE 交于F ,若BF =AC ,试说明:△ADC ≌△BDF .例4.在△ABC 中,∠BAC =90°,AB =AC ,直线m 经过点A ,BD ⊥直线m ,CE ⊥直线m ,垂足分别为点D 、E .试说明:(1)△BDA ≌△AEC ; (2)DE =BD +CE . 练习:1. 如图,已知AO =DO ,∠AOB 与∠DOC 是对顶角,还需补充条件_________=___________,就可根据“ASA ”说明△AOB ≌△DOC ;或者补充条件_______________=_______________,就可根据“SAS ”,说ABoABCDEF明△AOB ≌△D OC2. 已知:点D 在AB 上,点E 在AC 上,BE 和CD 相交于点O ,AB=AC ,∠B=∠C 。
七升八数学暑假衔接教材可打印人教版
以下是可以打印的人教版的七年级到八年级数学暑假衔接教材:
七年级上册数学暑假衔接教材:
1. 整式与简单整式的加减
2. 一元一次方程
3. 基本图形的认识
4. 二次根式
5. 比例和比例直线
6. 两个变量的线性方程
七年级下册数学暑假衔接教材:
1. 整数的加减法
2. 一元一次方程的应用
3. 三角形的面积和周长
4. 有理数的加减法
5. 几何体的认识
6. 相交线与平行线的性质
八年级上册数学暑假衔接教材:
1. 实数的认识和运算
2. 一元一次方程与实数
3. 圆的性质和圆相关的计算
4. 一元一次不等式与实数的关系
5. 平方根与立方根
6. 长方体和正方体的表面积和体积
八年级下册数学暑假衔接教材:
1. 平行线的性质和判定
2. 一元二次方程的解
3. 直角三角形和勾股定理
4. 投影定理和欧几里得几何
5. 三角比的意义与计算
6. 统计图和统计量的理解与应用
以上是人教版数学七年级和八年级的暑假衔接教材,你可以选择需要的部分打印。
请注意,为了获取更准确和完整的教材内容,请参考正式的教材版本。
蒙娜丽莎教育初一升初二〔数学〕编者:雷教师XX ·2021 .6暑期培优教材目录第一局部——温故知新专题一整式运算 (1)专题二乘法公式 (3)专题三平行线的性质与判定 (9)专题四三角形的根本性质 (11)专题五全等三角形 (14)专题六如何做几何证明题 (17)专题七轴对称 (22)第二局部——提前学习专题一勾股定理 (25)专题二平方根与算数平方根 (29)专题三立方根 (32)专题四平方根与立方根的应用 (35)专题五实数的分类 (39)专题六最简二次根式及分母有理化 (42)专题七非负数的性质及应用 (46)专题八二次根式的复习 (49)第一局部——温故知新专题一 整式运算1.由数字与字母组成的代数式叫做单项式。
单独一个数或字母也是单项式。
单项式中的叫做单项式的系数 单项式中所有字母的叫做单项式的次数2.几个单项式的和叫做多项式 多项式中叫做这个多项式的次数3.单项式和多项式统称为4.整式加减实质就是 后5.同底数幂乘法法那么:nm n m a a a +=·〔m.n 都是正整数〕;逆运算=+nm a6.幂的乘方法那么:()=nma 〔m.n 都是正整数〕;逆运算=mna 7.积的乘方法那么:()=n ab 〔n 为正整数〕;逆运算=nn b a8.同底数幂除法法那么:nm n m a a a -=÷〔a ≠0,m.n 都是正整数〕;逆运算=-n m a9.零指数的意义:()010≠=a a ;10.负指数的意义:()为正整数p a aa p p,01≠=-11.整式乘法:〔1〕单项式乘以单项式;〔2〕单项式乘以多项式;〔3〕多项式乘以多项式 12.整式除法:〔1〕单项式除以单项式;〔2〕多项式除以单项式知识点1.单项式多项式的相关概念归纳:在准确记忆根本概念的根底上,加强对概念的理解,并灵活的运用 例1.以下说法正确的选项是〔 〕 A .没有加减运算的式子叫单项式 B.35abπ-的系数是35-C.单项式-1的次数是0D.3222+-ab b a 是二次三项式 例2.如果多项式()1132+---x n xm 是关于x 的二次二项式,求m ,n 的值知识点2.整式加减归纳:正确掌握去括号的法那么,合并同类项的法那么 例3.多项式()⎪⎭⎫ ⎝⎛-+--8313322xy y kxy x 中不含xy 项,求k 的值知识点3.幂的运算归纳:幂的运算一般情况下,考题的类型均以运算法那么的逆运算为主,加强对幂的逆运算的练习,是解决这类题型的核心方法。
三角形第一讲与三角形有关的线段1.定义:不在一条直线上的三条线段首尾顺次相接组成的图形叫做三角形。
注意:三条线段必须①不在一条直线上,②首尾顺次相接。
组成三角形的线段叫做三角形的边,相邻两边所组成的角叫做三角形的内角,简称角,相邻两边的公共端点是三角形的顶点。
三角形ABC用符号表示为△ABC.三角形ABC的顶点C所对的边AB可用c 表示,顶点B所对的边AC可用b表示,顶点A所对的边BC可用a表示.2.三角形三边的不等关系三角形的任意两边之和大于第三边. 三角形的任意两边之差小于第三边。
3.三角形的高:从三角形的向它的作垂线,顶点和垂足之间的线段叫做三角形的高,(注意八字形)注意:高与垂线不同,高是线段,垂线是直线。
三角形的三条高相交于一点。
.............4.三角形的中线:三角的三条中线相交于一点。
(三角形中线分三角形面积相等的两个三角形)5.三角形的角平分线:在三角形中,一个内角的角平分线与它的对边相交,与之间的线段,叫做三角形的角平分线.三角形三个角的平分线相交于一点...............三角形的三条中线的交点、三条角平分线的交点在三角形的内部,而锐............................................三角形的三条高的交点在三角形的内部,直角三角形三条高的交战在角直角顶点,钝角三角形的三条高的交点在三角形的外部。
...........................................6.三角形的稳定性:例1.一个等腰三角形的周长为32 cm,腰长的3倍比底边长的2倍多6 cm.求各边长.例2.已知:△ABC的周长为48cm,最大边与最小边之差为14cm,另一边与最小边之和为25cm,求:△ABC 的各边的长。
例3.已知△ABC的周长是24cm,三边a、b、c满足c+a=2b,c-a=4cm,求a、b、c的长.例4.已知等腰三角形的周长是16cm.(1)若其中一边长为4cm,求另外两边的长;(2)若其中一边长为6cm,求另外两边长;(3)若三边长都是整数,求三角形各边的长.例5.已知等腰三角形的周长是25,一腰上的中线把三角形分成两个,两个三角形的周长的差是4,求等腰三角形各边的长。
例6.已知:△ABC的周长为48cm,最大边与最小边之差为14cm,另一边与最小边之和为25cm,求:△ABC 的各边的长。
※例7.如图所示,已知在△ABC中,AB=AC=8,P是BC上任意一点,PD⊥AB于点D,PE⊥AC于点E.若△ABC 的面积为14,问:PD+PE的值是否确定?若能确定,是多少?若不能确定,请说明理由.【课堂练习】1.下列说法错误的是( ).A.三角形的三条高一定在三角形内部交于一点;B.三角形的三条中线一定在三角形内部交于一点C.三角形的三条角平分线一定在三角形内部交于一点;D.三角形的三条高可能相交于外部一点2.有下列长度的三条线段,能组成三角形的是( )A.1、2、3B.1、2、4C.2、3、4D.2、3、63.已知三角形的周长为15cm,且其中的两边都等于第三边的2倍,则此三角形的最短边为()A.1cmB.2cmC.3cmD.4cm4.已知三角形的三边长分别为4、5、x,则x不可能是()A.3 B.5 C.7 D.95.等腰三角形的底边BC=8 cm,且|AC-BC|=2 cm,则腰长AC为( )A.10 cm或6 cmB.10 cmC.6 cmD.8 cm或6 cm6.如果三角形的两边分别为7和2,且它的周长为偶数,那么第三边的长为()A.5B.6C.7D.87.如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是[ ]A.锐角三角形B.直角三角形C.钝角三角形D.锐角三角形8.如图,在△ABF中,∠B的对边是()A.ADB.AEC.AFD.AC9.图中三角形的个数是()A.8 B.9 C.10 D.1110.已知,如图所示,△ABC的顶点坐标分别为A(-4,-3),B(0,-3),C(-2,1),如将B点向右平移2个单位后再向上平移4个单位到达B1点,若设△ABC的面积为S1,△AB1C的面积为S2,则S1,S2的大小关系为()A. S1>S2B. S1=S2C.S1<S2D. 不能确定11.如图所示,每个小方格都是边长为1的正方形,点A,B是方格纸的两个格点(即正方形的顶点),在这个44 的方格纸中,找出格点C,使△ABC的面积为1个平方单位的三角形的个数是( ).A.8B.9C.10D.1112.图中有个三角形,用符号表示为13.图中共有个三角形。
14.如图,AD是△ABC的角平分线,则∠ =∠ =12∠;E在AC上,且AE=CE,则BE是△ABC的;CF是△ABC的高,则∠ =∠ =900,CF AB.15.如图,AD是△ABC的中线,AE是△ABC的角平分线,若BD=2cm,则BC= ;若∠BAC=600,则∠CAE=16.如图,以AD为高的三角形共有17.如图,AB⊥BD于B, DC⊥AC于C,AC与BD交于点E,则△ADE的边DE上的高为,AE上的高为18.长为11,8,6,4的四根木条,选其中三根组成三角形有种选法,它们分别是19.已知一个三角形的两边长分别是3cm和4cm,则第三边长x的取值范围是____.•若x是奇数,则x的值是______;这样的三角形有______个;•若x•是偶数,则x•的值是______;这样的三角形又有________个.20.现有8根木棒,它们的长分别是1,2,3,4,5,6,7,8,若从8根木棒中抽取3根拼成三角形,要求三角形的最长边为8,另两边之差大于2,那么可以拼成的不同的三角形的有种。
21.一个三角形的两边长分别是3和8,则第三边的范围是22.如上图,BD=DE=EF=FC,那么,AE是_____的中线。
23.三角形三边的比是3∶4∶5,周长是96cm,那么三边分别是________cm.24.已知等腰三角形的周长是25cm,其中一边长为10cm,求另两边长________25.已知a,b,c是三角形的三边长,化简|a-b+c|+|a-b-c|.26.已知a、b、c为△ABC的三边长,b、c满足(b-2)2+│c-3│=0,且a为方程│x-4│=2的解,求△ABC 的周长,判断△ABC的形状.27.已知三角形三边的长均为整数,其中某两条边长之差为5,•若此三角形周长为奇数,则第三边长的最小值为多少?28.已知,△ABC的周长为18 cm,BE、CF分别为AC、AB边上的中线,BE、CF相交于点O,AO的延长线交BC于D,且AF=3 cm,AE=2 cm,求BD的长.29.在△ABC中,AB=AC,AD是中线,△ABC的周长为34cm,△ABD的周长为30cm, 求AD的长.30.在△ABC中,高CE,角平分线BD交于点O, ∠ECB=50°,求∠BOC的度数.31.如图,已知AD、AE分别是△ABC的高和中线,AB=6厘米,AC=8厘米,BC=10厘米,∠CAB=900,试求:(1)AD的长;(2)△ABE的面积;(3)△ACE与△ABE的周长的差。
【课后练习】1.如图,以BC为公共边的三角形的个数是()A.2 B.3 C.4 D.52.如图,AD⊥BC于D,CE⊥AB于E,AD、CE交于点O,OF⊥CE,则下列说法中正确的是()A.OE为△ABD中AB边上的高B.OD为△BCE中BC边上的高C.AE为△AOC中OC边上的高D.OF为△AOC中AC边上的高3.如图,在△ABC中EF∥AC,BD⊥AC于D,交EF于G,则下面说话中错误的是()A.BD是△ABC的高B.CD是△BCD的高C.EG是△ABD的高D.BG是△BEF的高4.在△ABC中,D,E分别为BC上两点,且BD=DE=EC,则图中面积相等的三角形有()A.4对B.5对C.6对D.7对5.若三条线段中a=3,b=5,c为奇数,那么由a,b,c为边组成的三角形共有()A.1个 B.3个 C.无数多个 D.无法确定,,能组成三角形,那么它们的长度比可能是()6.如果线段a b cA.1:2:4B.1:3:4C.3:4:7D.2:3:47.三角形的一条高是一条()A.直线B.垂线C.垂线段D.射线8.下列说法中,正确的是()A.三角形的角平分线是射线B.三角形的高总在三角形的内部C.三角形的高、中线、角平分线一定是三条不同的线段D.三角形的中线在三角形的内部 9.下列说法正确的是〔 〕A.直角三角形只有一条高B.三角形的三条中线相交于一点C.三角形的三条高相交于一点D.三角形的角平分线是射线10.现有两根木棒,它们的长度分别为20cm 和30cm,若不改变木棒的长度, 要钉成一个三角形木架,应在下列四根木棒中选取〔 〕的木棒.A.10cmB.20cmC.50cmD.60cm11.已知三角形的两边长分别为4cm 和9cm ,则下列长度的四条线段中能作为第三边的是( ) A.13cm B.6cmC.5cmD.4cm12.已知等腰三角形的两边长分别为4cm 和7cm ,则此三角形的周长为( ) A.15cm B.18cmC.15cm 或18cmD.不能确定13.下列各组给出的三条线段中不能组成三角形的是( ) A.3,4,5B.3a ,4a ,5aC.3+a ,4+a ,5+aD.三条线段之比为3∶5∶814.在△ABC 中,AD 是BC 上的中线,且S △ACD =12,则S △ABC =15.若a b c ,,为ABC △的三边,则a b c a b c---+______0(填“>,=,<”).16.如图,在△ABC 中,BC 边上的高是________;在△AFC 中,CF 边上的高是________;在△ABE 中,AB 边上的高是________17.如图,△ABC 的三条高AD 、BE 、CF 相交于点H ,则△ABH 的三条高是_______,这三条高交于________.BD 是△________、△________、△________的高.18.两根木棒的长分别为7cm 和10cm .要选择第三根木棒,将它们钉成一个三角形框架,那么,第三根木棒长x (cm )的范围是______19.若等腰三角形的腰长为6,则它的底边长a 的取值范围是________;若等腰三角形的底边长为4,则它的腰长b 的取值范围是_______.20.用7根火柴首尾顺次连结摆成一个三角形,能摆成不同的三角形的个数是__________21.小鹏同学有长分别为10cm,8cm,9cm,2cm的四根小木棒,用来钉成三角形.请你帮他设计,可钉成几种不同的三角形.22.已知△ABC的周长是36cm,a、b、c是三边长,且a+b=2c,a:b=1:2,求△ABC的三边长.23.已知BD是△ABC的中线,AC长为5cm,△ABD与△BDC的周长差为3cm.AB长为3cm,求BC的长.24.在△ABC中,AB=AC, AC边上的中线BD把△ABC的周长分成15和6两部分,求这个三角形的腰长及底边长。