车辆改型设计中稳态回转仿真的应用分析
- 格式:pdf
- 大小:186.65 KB
- 文档页数:3
科研训练文献阅读综述题目:汽车操纵稳定性和平顺性的仿真研究姓名:学号:专业:班级:指导老师:时间:第一章整车操纵稳定性试验仿真分析本章节,在前悬架优化的基础上建立整车模型。
整车进行转向回正试验、转向轻便性试验、稳态回转试验,并根据国标计分评价。
1.1转向回正试验仿真分析转向回正试验是研究汽车瞬态响应特性的一种重要试验方法,尤其是研究汽车能否恢复直线行驶能力的一种重要试验方法,汽车的转向回正表达了汽车的自由控制运动特性,其实质是一种力阶跃输入试验。
国标 GB/T6323.4-94对试验做出了相关规定。
低速回正试验在半径为15m圆周上侧向加速度达到4m/s^2,,然后然放松转向盘,记录汽车的状态。
由于该重货车最高车速为90km/h,按照国标规定不需要进行高速转向回正试验。
对于侧向加速度达不到4士0.2m/s^2的汽车,按试验汽车所能达到的最高侧向加速度进行试验。
试验按向左与向右两个方向进行,每个方向三次[1].1.1.1仿真曲线:仿真中设定圆弧半径为15m,要达到4士0.2m/s的侧向加速度车速必须大于7.746m/s^2。
左转低速转向回正试验具体仿真结果如下(右转仿真结果略):1.1.2仿真结论:对于虚拟样车系统,回正特性的主要参数根据国标GB/T6323.4-94规定的转向回正试验要求计算,结果见表6-1。
1.2转向瞬态响应试验(转向盘转角阶跃输入)仿真分析瞬态转向特性是指汽车在受到外界扰动下,达到稳态状态前表现出来的特性,瞬态转向特性是汽车最重要的性能之一,是评价汽车高速行驶安全性的一个重要指标。
1.2.1试验方法:具体做法参照国标GB/T6323.2-1994。
试验车速按被测汽车最高车速的70%并四舍五入为10的整数倍确定。
该重型货车最高车速为90KM/h,所以试验车速取6Okm/h。
试验中转向盘转角的预选位置(输入角),按稳态侧向加速度值1-3m/s^2确定,从侧向加速度为lm/s^2做起,每间隔0.5m/m^2进行一次试验。
汽车操纵稳定性-稳态回转试验一、试验目的1、了解稳态回转实验方法和数据处理过程。
2、加深理解车辆参数变化对车辆操作稳定性的影响。
二、试验内容1、行驶圆周为15米,试验车绕着圆周旋转,直到车速传感器对准地上标识,锁定方向盘。
2、第一圈以最低稳定速度行驶,记录数据。
3、记录不同车速下的7组数据。
4、改变前轮气压,再测一次。
三、试验对象、仪器、条件四、试验数据胎压:F—0.35Mpa R—0.26Mpa胎压:F —0.2Mpa R —0.26Mpa五、 数据处理1)计算转弯半径比Ri/R0与侧向加速度ay由2i s R π= ;22(/)y i iv s t a R R ==可得Ri 与ay 如下表:由上表可得到两次试验的侧向加速度与转弯半径比的关系曲线,如下:2)计算汽车前后轴侧偏角差值(δ1-δ2)与侧向加速度ay 关系表格,并绘制曲线。
已知轴距L=2800mm ,12036011()2i L R R δδπ-=-则可作前后轴侧偏角差值(δ1-δ2)与侧向加速度ay关系曲线,如下:六、试验比较分析1、转弯半径比比较由两组试验的结果可见,第二次试验,前胎胎压降低后,相同车速下,转弯半径比要大于第一次试验。
这说明胎压减小后,汽车侧偏加重,轮胎侧向刚度降低。
2、侧向加速度ay与转弯半径比Ri/R0的关系比较可得,随着转弯半径的上升,胎压低的那组试验侧向加速度的上升没有第一次试验快。
这就说明,在相同的侧向加速度下,第二组的侧偏角要比第一组大,这是由于胎压低导致轮胎侧向刚度降低导致的。
从两次试验可得随侧向加速度得增大,转弯半径比也随之增大,且二者转弯半径比相差越大。
这说明随着车速上升,胎压小的车侧偏程度上升快。
3、前后侧偏角之差δ1-δ2与侧向加速度ay的关系由图可得,胎压低时,曲线上翘程度大,相同侧向加速度下,第二次试验前后侧偏角之差大于第一次试验,也说明了胎压降低,轮胎侧偏刚度下降且下降快。
汽车稳态回转性能仿真与正交试验研究汽车的稳态回转性能是衡量其操控性和安全性的一个重要指标。
为了研究和评估汽车稳态回转性能,可以采用仿真与正交试验相结合的方法。
首先进行仿真,可以建立汽车动力学模型,利用计算机软件进行仿真计算。
可以通过调整车辆参数,如重心位置、悬挂刚度、轮胎摩擦系数等,来研究不同条件对汽车稳态回转性能的影响。
同时,可以对不同车型进行比较分析,从而找出具有良好稳态回转性能的设计方案。
在进行试验前,可以利用正交试验设计,确定影响汽车稳态回转性能的因素及其水平,从而减少试验次数,提高试验效率。
如可考虑以下因素:重心高度、车速、转向角度、刹车压力等。
正交试验设计可以通过构建试验矩阵,并根据结果进行多因素分析,得出每个因素的重要性及最佳水平组合。
试验过程中,应根据设计的试验方案进行测试,记录并统计汽车在不同条件下的稳态回转性能数据。
通过数据分析和结果对比,可以找出最优的参数组合,为汽车设计和改进提供指导和参考。
总之,汽车稳态回转性能仿真与正交试验研究是一种有效的方法,能够全面、科学地评估汽车稳态回转性能,为汽车设计和制造提供有力的支持。
除了利用仿真与正交试验研究汽车的稳态回转性能外,也可以通过实际测试进行评估。
针对不同车型或不同道路条件下的稳态回转性能进行测试,可以得出真实有效的数据,并从中分析出改进的方法。
在测试中,需要考虑的因素包括道路状态、车速、转向角度、刹车等。
通过调整测试条件,可以得到更全面准确的数据。
如增加刹车力度,测试汽车在紧急制动下的稳态回转性能;在不同路面条件下进行测试,评估汽车对道路状态的适应性等。
除了测试数据,也需要考虑具体的设计和制造方案。
在汽车设计和制造过程中,可以通过优化重心位置、改进悬挂系统、提高制动性能等方式来提高汽车的稳态回转性能。
如采用更轻的材料,可以降低汽车重心位置,提高转向灵活性和稳定性;改善悬挂系统,可以提高整车稳定性和操控性;使用高性能刹车系统,可以提高制动性能和安全性。
商用车操纵稳定性之稳态回转试验的研究与应用(1.中国农业机械化科学研究院集团有限公司,北京 100083;2.一汽解放青岛汽车有限公司,青岛 266043)崔康1、宋鲁宁2、蔡振华1、郭栋2、孟靓1摘要:本文从测试的角度,对商用车操纵稳定性的稳态回转试验进行了探讨和研究,对试验前找圆的3种方法进行讨论和验证。
研究中通过陀螺仪、GPS 非接触速度计和方向盘测力仪等设备,连续采集在不同悬架条件下,N2类商用车进行稳态回转试验时的车辆车身侧倾角、横摆角速度、侧向加速度和侧偏角等参数,并通过参数分析计算出悬架对车辆操纵稳定性的影响,为商用车辆选择悬架的类型提供了依据。
关键词:操纵稳定性;稳态回转;找圆;悬架;侧倾角;侧偏角中图分类号:U463.33 文献标识码:A0 引言汽车操纵稳定性是指车辆正常行驶状况下,遇到外界干扰时能够保持稳定行驶的能力[1]。
操纵稳定性可分为操纵性和稳定性两个部分,操纵性重点是响应驾驶员指令的能力;稳定性则是抗干扰能力或从非稳定状态恢复到稳定状态的能力。
车辆的操纵稳定性是影响汽车行驶安全的重要因素,是评价车辆性能的重要指标[2],稳态回转试验方法则是用来测试操纵稳定性的一种重要手段。
而悬架则是除转向系、轮胎等部件外,影响汽车操纵稳定性的又一重要因素。
从20世纪七八十年代开始,人们就通过建模、仿真和模拟试验等各个方面,对汽车的悬架及其对汽车的操纵稳定性、安全性和舒适性的影响进行了研究。
随着汽车技术的不断发展,人们采用稳态回转实验方法对车辆操纵稳定性的研究也不断增加,试验方法已相对成熟。
因此,通过稳态回转试验方法对商用车采用不同悬架的操纵稳定性进行研究具有重要意义。
1 稳态回转试验流程稳态回转试验是评价汽车操纵稳定性的一个重要试验,试验可分为3个阶段。
第一阶段是试验找圆过程。
试验前需在国家认可试验场地(最好是动态广场),以鲜艳、醒目的颜色画出半径不小于15 m 的圆周。
测试人员驾驶试验车辆以最低稳定车速围绕既定圆周行驶,以达到车辆纵向对称面上的传感器(一般安装在质心位置,受结构限制无法安装在质心的可通过设备设置质心偏移)在半圈内都可以对正圆周的状态。
ADAMS在汽车动⼒学仿真中的应⽤研究ADAMS在汽车动⼒学仿真中的应⽤研究newmaker⼀、引⾔数字化虚拟样机技术是缩短车辆研发周期、降低开发成本、提⾼产品设计和制造质量的重要途径。
随着虚拟产品开发、虚拟制造技术的逐渐成熟,计算机仿真技术得到⼤量应⽤。
系统动⼒学仿真是数字化虚拟样机的核⼼、关键技术。
对汽车⽽⾔,车辆动⼒学性能尤为重要。
为了降低产品开发风险,在样车制造出之前,利⽤数字化样机对车辆的动⼒学性能进⾏计算机仿真,并优化其参数就显得⼗分必要了。
对操纵稳定性的研究常采⽤仿真分析⽅法和试验⽅法来进⾏。
仿真分析是在计算机上建⽴简化到⼀定程度的模型,输⼊驾驶员对汽车的各种操纵信号,解算出系统的时域响应和频域响应,以此来表征汽车的操纵稳定性能。
因为仿真分析花费时间短,可在计算机上重复进⾏,对各种设计⽅案进⾏快速优化对⽐,并且可实现试验条件下不能进⾏的严酷⼯况分析,因此该⽅法⽇益被⼈们采⽤。
建⽴整车仿真模型常有多种⽅法,笔者应⽤机械系统运动学、动⼒学仿真分析软件ADAMS,来建⽴仿真模型,并对不同⽅向盘转⾓下的操纵稳定性进⾏了动⼒学仿真。
⼆、数字化分析模型的准备(⼀)仿真分析模型所需要的参数类型建⽴多体系统动⼒学分析模型,参数需要量⼤,精度要求⾼,参数准备⼯作量⼤。
所需的参数主要可划分为四类:尺⼨(⼏何定位)参数、质量特性参数(质量、质⼼与转动惯量等)、⼒学特性参数(刚度、阻尼等特性)与外界参数(道路谱等)。
其中的尺⼨参数和⼤部分的质量特性参数可以通过建⽴三维数字模型得到,其他参数尚需要别的参数获得⼿段来获取。
总的来说,参数的获得⽅法主要有以下⼏种:图纸查阅法、试验法、计算法、CAD建模法等。
可根据具体实际情况采⽤。
(⼆)数字模型间的数据传递基于CAD/CAM软件建⽴三维数字模型是建⽴数字化分析模型的基础。
使⽤CAD/CAM软件建⽴系统的三维实体数字模型,并以各个运动部件的形式先将零部件合并,装配好;将模型存为ADAMS软件可调⽤的特定格式的数据⽂件;然后利⽤CAD/CAM软件与ADAMS 软件之间的数据接⼝⽂件将三维模型传递到ADAMS软件中去;之后输⼊各运动部件的密度等必要参数,就可以直接得到各运动部件的质量、质⼼与转动惯量等质量参数。
实验四汽车稳态回转实验一、实验内容测定汽车定方向盘转角稳态回转时的汽车前进车速、汽车横摆角速度、绘制转弯半径比R/R0与侧向加速度ay关系曲线、汽车前后轴侧偏角速度差值(δ1—δ2)与侧向加速度ay关系曲线,计算稳态回转的特征参数。
二、实验目的通过实验使学生掌握汽车稳态回转试验的原理及实验方法,掌握仪器的使用方法及试验数据的处理方法。
三、实验条件1、实验车辆1)试验汽车应是按厂方规定装备齐全的汽车,试验前,应测定车轮定位参数,对转向系、悬架系进行检查,并按规定进行调整、紧固和润滑。
只有认定汽车已符合厂方规定的技术条件时,方可进行试验。
2)试验时若用新轮胎,轮胎至少应经过200km正常行驶的磨合,若用旧轮胎,试验终了,残留花纹的高度应不小于1.5mm。
轮胎气压应符合GB/T 12534中的规定。
3)试验汽车为厂定最大总质量状态(驾驶员、试验员及测试仪器的质量,计入总质量)和轻载状态;乘员和装载物(推荐用沙袋)的分布应符合GB/T 12534中的规定。
轴载质量必须符合厂方规定。
注:轻载状态是指除驾驶员、试验员及仪器外,没有其他加载物的状态。
对于承载能力小的汽车,如果轻载质量已超过最大总质量的70%,则不必进行轻载状态的试验。
2、试验场地与环境1)试验场地应为干燥、平坦且清洁的水泥或沥青路面,任意方向的坡度不大于2%;在试验场地上,用明显颜色画出半径为15m或20m的圆周。
2)试验时风速应不大于5m/s;3)大气温度在0~40℃之间。
四、实验仪器1、陀螺仪2、GPS测试仪3、DSA-2A数据采集器五、实验方法与步骤1.按仪器说明书的要求将仪器的各个连接线接好。
2.打开数据采集器的电源开关和GPS的电源开关。
3.按下开关ALT+SYS、MENU键,设置当天实验的日期。
4.试验开始之前,汽车应以侧向加速度为3m/s2的相应车速沿画定的圆周行驶500m以使轮胎升温。
5、在遥控器的显示屏上显示主菜单,用↑或↓键选择YAW项。
2020.18科学技术创新(转下页)对PM2.5微颗粒的捕集手段比较全面。
该公司主要侧重于喷雾凝聚,对于其他新型微颗粒捕集技术投入的相对较少。
水膜凝聚和喷雾凝聚技术是湿式电除尘中常用的技术,为了解决对微细粉尘PM2.5、SO 3酸雾和重金属等污染物去除效率低的问题。
该公司于2011年申请了专利CN202356193U,其采用位于所述收尘极顶端的喷雾管道;设置在所述喷雾管道上的喷雾喷嘴;位于所述壳体的底端并与其相连的排液管,该专利申请与现有技术采用振打装置振打收尘极,去除收尘极表面的粉尘的方式相比,该实用新型提供的静电除尘器,无需采用振打装置,避免了二次扬尘,进而减少了经过除尘后烟气的含粉尘量,使得除尘后的烟气满足了工业烟气PM2.5的排放标准,即使得除尘后的烟气满足了工业废气的排放标准。
2013年,该公司申请了专利CN203598944U ,该实用新型用于湿式电除尘器的水膜均布装置,包括收尘极和喷水管,在收尘极顶部设置喷水管,由喷水管作为收尘极悬吊装置,喷水管上间隔设置喷水小孔,喷水小孔喷水在收尘极上形成水膜。
针对实现喷雾的超细雾化效果、喷嘴最佳排布和提高除尘效率的技术问题,该公司于2014年申请了适用于湿式电除尘器的螺旋式喷嘴及其排布方式(CN103962243A ),本发明提出的喷嘴适用于湿式电除尘器,喷雾颗粒细小均匀,喷雾角度和散布范围大,能有效提高湿式电除尘器集尘极冲洗效果,减少喷嘴数量,有效降低耗水量,避免喷嘴磨损,提高除尘效率。
为了提高电凝聚效率,使粉尘充分扰流以增加碰撞频次,2015年,该公司申请了一种横向双极烟气电凝并装置(CN205341042U ),该装置的烟道内交替设置5~20个阳极部件和阴极部件,每个阳极部件上设置有4~10根阳极电晕线和5~11块阳极板,阳极电晕线位于相邻阳极板中间;每个阴极部件上设置有4~10块阴极板和5~11根阴极电晕线,阴极电晕线位于相邻阴极板中间。